Road Pricing for Congestion Management: the Transition from Theory to Policy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 5 Conclusions and General Recommendations
Conclusions and general recommendations Chapter 5 Chapter 5 Conclusions and general recommendations Economic Instruments have a long history – both in developed and developing countries. Transport has always been used to generate state revenues. Many instruments that have been discussed in this book, in fact, can be found in various forms of horse ownership charges, and road and bridge tolls in many countries’ economic histories. Many of these roots, however, have been neglected and forgotten in the recent debate about sustainable transport policy. By 1776, Adam Smith, in “The Wealth of Nations,” had already outlined the basic principles of a sound transport policy. These included most of the aforementioned principles and recommendations for taxation and financing schemes.1 Economic Instruments thus are not new transport policy “tools.” But these tools have too long been idle. It is time to relearn their use, and to use them wisely in order to meet the economic, social and ecological challenges that occur today. 1 An excellent modern outline of the principles formulated by Adam Smith can be found in Metschies 2001. 117 Chapter 5 Conclusions and general recommendations Eight basic insights In the face of diminishing public budgets but increasing internal and toward a wise use of external costs of infrastructure and environmental damage a rethinking Economic of transport policy is needed. In this rethinking, Economic Instruments Instruments. should play an important role. The existing experience with the use of Economic Instruments, as presented in this book, lead to a number of conclusions. These can be summarised as follows: 1. There is a diverse toolbox of Economic Instruments that can be used to address economic, ecological and social goals with tailor-made measures based on economic incentives. -
The Marginal Cost of Traffic Congestion and Road Pricing: Evidence from a Natural Experiment in Beijing
The Marginal Cost of Traffic Congestion and Road Pricing: Evidence from a Natural Experiment in Beijing Shanjun Li Avralt-Od Purevjav Jun Yang1 Preliminary and Comments Welcome December 2016 ABSTRACT Leveraging a natural experiment and big data, this study examines road pricing, the first-best policy to address traffic congestion in Beijing. Based on fine-scale traffic data from over 1500 monitoring stations throughout the city, this paper provides the first empirical estimate of the marginal external cost of traffic congestion (MECC) and optimal congestion charges based on the causal effect of traffic density on speed, a key input for measuring the MECC. The identification of the causal effect relies on the plausibly exogenous variation in traffic density induced by the driving restriction policy. Our analysis shows that the MECC during rush hours is about 92 cents (or $0.15) per km on average, nearly three times as much as what OLS regressions would imply and larger than estimates from transportation engineering models. The optimal congestion charges range from 5 to 38 cents per km depending on time and location. Road pricing would increase traffic speed by 10 percent within the city center and lead to a welfare gain of 1.4 billion and revenue of 40 billion Yuan per year. Keywords: Traffic Congestion, Road Pricing, Natural Experiment JEL Classification: H23, R41, R48 1 Shanjun Li is an Associate Professor in the Dyson School of Applied Economics and Management, Cornell University, [email protected]; Avralt-Od Purevjav is a doctoral student in the Dyson School of Applied Economics and Management, Cornell University, [email protected]; Jun Yang is a research fellow in Beijing Transportation Research Center, [email protected]. -
Congestion Pricing
Congestion Pricing A PRIMER December 2006 FEDERAL HIGHWAY ADMINISTRATION Office of Transportation Management, HOTM 400 Seventh St. SW, Room 3404 Washington, DC 20590 Publication Number: FHWA-HOP-07-074 Table of Contents I. THE CONGESTION PROBLEM .....................................................................................................................1 Costs of Congestion ........................................................................................................................................1 Alarming Trends ...............................................................................................................................................1 Causes of Congestion .....................................................................................................................................1 II. WHAT IS CONGESTION PRICING? ..............................................................................................................1 Technology for Congestion Pricing .................................................................................................................2 Variably Priced Lanes ......................................................................................................................................2 Variable Tolls on Roadways .............................................................................................................................3 Cordon Pricing .................................................................................................................................................4 -
Welfare Implications of Congestion Pricing: Evidence from Sfpark
Welfare Implications of Congestion Pricing: Evidence from SFpark Pnina Feldman Haas School of Business, University of California, Berkeley, [email protected] Jun Li Stephen M. Ross School of Business, University of Michigan, [email protected] Hsin-Tien Tsai Department of Economics, University of California, Berkeley, [email protected] Congestion pricing offers an appealing solution to urban parking problems. Charging varying rates across time and space as a function of congestion levels may shift demand and improve allocation of limited resources. It aims to increase the accessibility of highly desired public goods to consumers who value them and to reduce traffic caused by drivers searching for available parking spaces. Using data from the City of San Francisco, both before and after the implementation of a congestion pricing parking program, we estimate the welfare implications of the policy. We use a two-stage dynamic search model to estimate consumers' search costs, distance disutilities, price sensitivities and trip valuations. We find that congestion pricing increases consumer and social welfare in congested regions but may hurt welfare in uncongested regions. Interestingly, despite the improved availability, congestion pricing may not necessarily reduce search traffic, because highly dispersed prices also induce consumers to search for more affordable spaces. In such cases, a simpler pricing policy may actually achieve higher welfare than a complex one. Lastly, compared to capacity rationing that imposes limits on parking durations, congestion pricing increases social welfare and has an ambiguous effect on consumer welfare. The insights from SFpark offer important implications for local governments considering alternatives for managing parking and congestion, and for public sector managers to evaluate the tradeoffs between regulation vs. -
Glossary of Regional Transportation Systems Management and Operations Terms
TRANSPORTATION RESEARCH Number E-C166 August 2012 Glossary of Regional Transportation Systems Management and Operations Terms Second Edition TRANSPORTATION RESEARCH BOARD 2012 EXECUTIVE COMMITTEE OFFICERS Chair: Sandra Rosenbloom, Professor of Planning, University of Arizona, Tucson Division Chair for NRC Oversight: C. Michael Walton, Ernest H. Cockrell Centennial Chair in Engineering, University of Texas, Austin Executive Director: Robert E. Skinner, Jr., Transportation Research Board Vice Chair: Deborah H. Butler, Executive Vice President, Planning, and CIO, Norfolk Southern Corporation, Norfolk, Virginia TRANSPORTATION RESEARCH BOARD 2012–2013 TECHNICAL ACTIVITIES COUNCIL Chair: Katherine F. Turnbull, Executive Associate Director, Texas Transportation Institute, Texas A&M University, College Station Technical Activities Director: Mark R. Norman, Transportation Research Board Paul Carlson, Research Engineer, Texas Transportation Institute, Texas A&M University, College Station, Operations and Maintenance Group Chair Thomas J. Kazmierowski, Manager, Materials Engineering and Research Office, Ontario Ministry of Transportation, Toronto, Canada, Design and Construction Group Chair Ronald R. Knipling, Principal, safetyforthelonghaul.com, Arlington, Virginia, System Users Group Chair Mark S. Kross, Consultant, Jefferson City, Missouri, Planning and Environment Group Chair Peter B. Mandle, Director, LeighFisher, Inc., Burlingame, California, Aviation Group Chair Harold R. (Skip) Paul, Director, Louisiana Transportation Research Center, Louisiana -
Technologies That Enable Congestion Pricing a Primer Quality Assurance Statement
Technologies That Enable Congestion Pricing A PRIMER Quality Assurance Statement The Federal Highway Administration (FHWA) provides high quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. Contents The Primer Series and the Purpose of This Volume 2 Congestion-Pricing Options 4 Functional Processes for Tolling and Congestion Charging 6 Primary Tolling and Pricing-System Components 7 Paper-Based Systems 7 Manual-Toll Facilities 8 Image-Based Tolling/Automatic License Plate Recognition (ALPR) Technology 9 DSRC Free-Flow Toll Using Transponders and Gantries 9 VPS Technologies 11 Cellular Telephone and Pico-Cell Systems 12 Combination Systems 13 Sub-System Technologies 14 Informing and Providing Standardized Signs and Lane Markings 14 Vehicle-Occupancy Detection Technologies 15 Vehicle-Identification and Classification Systems 15 Telecommunications: Roadside and Centralized Control Equipment 16 Automation of Operations 17 Payment Systems for Pre- and Post-Payment of Tolls and Charges 17 Secondary Enforcement 18 System Reliability and Accuracy of DSRC Systems 18 OBU Distribution Facilities 19 ITS Integration 19 Acronym List/Glossary 20 References 23 The Primer Series and the Purpose of This Volume States and local jurisdictions are increasingly dis- About This Primer Series cussing congestion pricing as a strategy for improv- The Congestion Pricing Primer Series is part of FHWA’s outreach efforts ing transportation system performance. In fact, to introduce the various aspects of congestion pricing to decision-makers many transportation experts believe that conges- and transportation professionals in the United States. -
Pricing out Congestion
RESEARCH NOTE PRICING OUT CONGESTION Experiences from abroad Patrick Carvalho*† 28 January 2020 I will begin with the proposition that in no other major area are pricing practices so irrational, so out of date, and so conducive to waste as in urban transportation. — William S. Vickrey (1963)1 Summary As part of The New Zealand Initiative’s transport research series, this study focuses on the international experiences around congestion pricing, i.e. the use of road charges encouraging motorists to avoid traveling at peak times in busy routes. More than just a driving nuisance, congestion constitutes a serious global economic problem. By some estimates, congestion costs the world as much as a trillion dollars every year. In response, cities across the globe are turning to decades of scientific research and empirical support in the use of congestion charges to manage road overuse. From the first congestion charging implementation in Singapore in 1975 to London, Stockholm and Dubai in the 2000s to the expected 2021 New York City launch, myriad road pricing schemes are successfully harnessing the power of markets to fix road overcrowding – and providing valuable lessons along the way. In short, congestion charging works. The experiences of these international cities can be an excellent blueprint for New Zealand to learn from and tailor a road pricing scheme that is just right for us. By analysing the international experience on congestion pricing, this research note provides further insights towards a more rational, updated and un-wasteful urban transport system. When the price is right, a proven solution to chronic road congestion is ours for the taking. -
Congestion Pricing: a Primer on Institutional Issues Notice
Congestion Pricing: A PRIMER ON INSTITUTIONAL ISSUES Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation. The U.S. Government does not endorse products of manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Quality Assurance Statement The Federal Highway Administration (FHWA) provides high quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-HOP-13-034 4. Title and Subtitle 5. Report Date Congestion Pricing: A Primer on Institutional Issues April 2013 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Donald Samdahl (Fehr & Peers), Myron Swisher (SAIC), Jennifer Symoun (SAIC), Will Lisska (Fehr & Peers) 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Science Applications International Corporation (SAIC) 11251 Roger Bacon Drive, 3rd Floor Reston, VA 20190 11. Contract or Grant No. Fehr & Peers 1001 4th Avenue, Suite 4120 DTFH61-06-D-00005 Seattle, WA 98154 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered United States Department of Transportation Federal Highway Administration 1200 New Jersey Ave., SE 14. -
Implementing Road and Congestion Pricing- Lessons from Singapore
European Conference of Ministers of Transport Ministry of Land, Infrastructure and Transport Japanese Government 2-3 March 2005 Akasaka Prince Hotel, Tokyo IImmpplleemmeennttiinngg RRooaadd aanndd CCoonnggeessttiioonn PPrriicciinngg-- LLeessssoonnss ffrroomm SSiinnggaappoorree Jeremy YAP Ministry of Transport Singapore Name : Jeremy Yap Evan Gwee Title : Deputy Director, Assistant Manager, Land Transport Division, Planning Department, Ministry of Transport, Land Transport Authority, Singapore Singapore Address : 460 Alexandra Road, #39-00 460 Alexandra Road, #24-00 Singapore 119963 Singapore 119963 Tel : +65-63752534 +65-63757612 Fax : +65-62768081 +65-63757213 e-mail : [email protected] [email protected] ABSTRACT Singapore has enjoyed rapid economic growth and intensive urbanisation over the last few decades and this has translated into an increase in travel demand. To support the increased travel demand, the Singapore government has over the years planned and put many measures in place to ensure that our transport system is adequate, sustainable and relevant. Our overall land transport strategy hinges on four key areas namely integrating land use / transport planning, providing a quality public transport system, developing a comprehensive road network and maximising its capacity and managing demand of road usage through ownership and usage measures. Our transport philosophy is to maintain a proper balance between the use of private and public transport and increases the efficiency of traffic flow on our roads. While most cities adopt the first three components, Singapore is one of the very few cities to have pursued travel demand management for the past 30 years and with a degree of success, as is evidenced by the respectable speeds along the city roads and expressways. -
Financial and Technical Feasibility of Dynamic Congestion Pricing As A
MN WI MI OH IL IN USDOT Region V Regional University Transportation Center Final Report NEXTRANS Project No 044PY02 Financial and Technical Feasibility of Dynamic Congestion Pricing as a Revenue Generation Source in Indiana – Exploiting the Availability of Real-Time Information and Dynamic Pricing Technologies By Apichai Issariyanukula Graduate Student School of Civil Engineering Purdue University [email protected] and Samuel Labi, Principal Investigator Assistant Professor School of Civil Engineering Purdue University [email protected] Report Submission Date: October 19, 2011 DISCLAIMER Funding for this research was provided by the NEXTRANS Center, Purdue University under Grant No. DTRT07-G-005 of the U.S. Department of Transportation, Research and Innovative Technology Administration (RITA), University Transportation Centers Program. The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. MN WI MI OH IL IN USDOT Region V Regional University Transportation Center Final Report TECHNICAL SUMMARY NEXTRANS Project No 044PY02 Final Report, October 19 Financial and Technical Feasibility of Dynamic Congestion Pricing as a Revenue Generation Source in Indiana – Exploiting the Availability of Real-Time Information and Dynamic Pricing Technologies Introduction Highway stakeholders continue to support research studies that address critical issues of the current era, including congestion mitigation and revenue generation. A mechanism that addresses both concerns is congestion pricing which establishes a direct out-of-pocket charge to road users thus potentially generating revenue and also reducing demand during peak hours. -
Congestion Pricing and the Economics of Managing Traffic Robert Krol
Tolling the Freeway: Congestion Pricing and the Economics of Managing Traffic Robert Krol MERCATUS RESEARCH Robert Krol. “Tolling the Freeway: Congestion Pricing and the Economics of Managing Traffic.” Mercatus Research, Mercatus Center at George Mason University, Arlington, VA, May 2016. ABSTRACT Highway congestion increases the cost of travel in most urban areas in the United States. This paper examines the economics of highway congestion pric- ing. Toll-free highways can be congested at certain times of the day. When addi- tional drivers entering the freeway slow traffic, they impose an externality, or cost, on other highway users. A congestion toll that varies with the level of traf- fic can correct that congestion externality. The evidence indicates that conges- tion tolls reduce congestion and increase driving speeds. Some policymakers are concerned that congestion taxes are regressive. Many factors, such as the proximity of residential communities to jobs, can influence this outcome. Also, the way toll revenues are used determines the degree to which the tax is regres- sive or progressive. Research suggests that congestion tolls are no more regres- sive than the fuel tax that is currently used to finance highways. To encourage and facilitate the adoption of congestion pricing in the United States, Congress should pass legislation making congestion tolls legal on all interstate highways. Experience with congestion tolling improves the public’s perception of tolling and increases drivers’ willingness to accept highway tolls. One tactic that has been successful is following a congestion-pricing experiment with a referen- dum on whether the system should be made permanent. JEL codes: H21, H22, L91, 018, R41, R48 Keywords: congestion externalities, peak-load pricing, tax incidence, tax regressivity Copyright © 2016 by Robert Krol and the Mercatus Center at George Mason University Release: May 2016 The opinions expressed in Mercatus Research are the authors’ and do not represent official positions of the Mercatus Center or George Mason University. -
Dynamic, Stochastic Models for Congestion Pricing and Congestion Securities
Dynamic, Stochastic Models for Congestion Pricing and Congestion Securities FINAL REPORT December 31, 2010 By Terry L. Friesz and Tao Yao Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. PSU-2009-01 4. Title and Subtitle 5. Report Date December 31, 2010 Dynamic, Stochastic Models for Congestion Pricing and Congestion Securities 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report LTI 2011-17 Terry L. Friesz, Tao Yao 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) The Thomas D. Larson Pennsylvania Transportation Institute 11. Contract or Grant No. The Pennsylvania State University DTRT07-G-0003 201 Transportation Research Building University Park, PA, 16802-4710 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered US Department of Transportation Final Report 1/1/2010-12/31/2010 Research & Innovative Technology Administration 14. Sponsoring Agency Code UTC Program, RDT-30 1200 New Jersey Ave., SE Washington, DC 20590 15. Supplementary Notes 16. Abstract This research considers congestion pricing under demand uncertainty. In particular, a robust optimization (RO) approach is applied to optimal congestion pricing problems under user equilibrium. A mathematical model is developed and an analysis performed to consider robust, dynamic user equilibrium, optimal tolls based on the second-best problem known as the dynamic optimal toll problem with equilibrium constraints, or DOTPEC. Finally, numerical experiments and qualitative analyses are conducted to investigate the performance and robustness of the solutions obtained. 17. Key Words 18. Distribution Statement Robust Optimization, Dynamic Congestion Pricing, Dynamic User Equilibrium 19.