CD Maps—Dynamic Profiling of CD1–CD100 Surface Expression on Human Leukocyte and Lymphocyte Subsets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy
International Journal of Molecular Sciences Review Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy Jianguang Zhang, Huifang Zheng and Yong Diao * School of Medicine, Huaqiao University, Quanzhou 362021, Fujian, China; [email protected] (J.Z.); [email protected] (H.Z.) * Correspondence: [email protected]; Tel.: +86-595-2269-2516 Received: 15 November 2018; Accepted: 11 January 2019; Published: 14 January 2019 Abstract: Natural killer (NK) cells are innate immune cells that can be activated rapidly to target abnormal and virus-infected cells without prior sensitization. With significant advancements in cell biology technologies, many NK cell lines have been established. Among these cell lines, NK-92 cells are not only the most widely used but have also been approved for clinical applications. Additionally, chimeric antigen receptor-modified NK-92 cells (CAR-NK-92 cells) have shown strong antitumor effects. In this review, we summarize established human NK cell lines and their biological characteristics, and highlight the applications of NK-92 cells and CAR-NK-92 cells in tumor immunotherapy. Keywords: natural killer cell line; NK-92; chimeric antigen receptor; immunotherapy; tumor 1. Introduction Natural killer (NK) cells are innate immune cells that were first discovered in mice in 1975 [1]. NK cells account for approximately 10% of lymphocytes in human peripheral blood (PB). Owing to the distinct chemokine receptors expressed in NK cells, the distributions of NK cells differ among healthy tissues. Most NK cells are found in the PB, liver, spleen, and bone marrow, and a small portion are also present in the lymph nodes [2–5]. -
Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species
International Journal of Molecular Sciences Review Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species Mohammed Yusuf Zanna 1 , Abd Rahaman Yasmin 1,2,* , Abdul Rahman Omar 2,3 , Siti Suri Arshad 3, Abdul Razak Mariatulqabtiah 2,4 , Saulol Hamid Nur-Fazila 3 and Md Isa Nur Mahiza 3 1 Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] 2 Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (A.R.O.); [email protected] (A.R.M.) 3 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (S.S.A.); [email protected] (S.H.N.-F.); [email protected] (M.I.N.M.) 4 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-8609-3473 or +601-7353-7341 Abstract: Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most effi- cient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this Citation: Zanna, M.Y.; Yasmin, A.R.; review has elucidated the general aspects of DCs as well as the current dynamic perspectives and Omar, A.R.; Arshad, S.S.; distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, Mariatulqabtiah, A.R.; Nur-Fazila, cat, horse, cattle, sheep, pig, and non-human primates. -
CD2 Molecules Redistribute to the Uropod During T Cell Scanning: Implications for Cellular Activation and Immune Surveillance
CD2 molecules redistribute to the uropod during T cell scanning: Implications for cellular activation and immune surveillance Elena V. Tibaldi*†, Ravi Salgia†‡, and Ellis L. Reinherz*†§ *Laboratory of Immunobiology and ‡Division of Adult Oncology, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, and †Department of Medicine, Harvard Medical School, Boston, MA 02115 Communicated by Stuart F. Schlossman, Dana-Farber Cancer Institute, Boston, MA, April 9, 2002 (received for review February 14, 2002) Dynamic binding between CD2 and CD58 counter-receptors on op- cells, whereas its counter-receptor CD58 is expressed on a posing cells optimizes immune recognition through stabilization of diverse array of nucleated and non-nucleated cells including cell–cell contact and juxtaposition of surface membranes at a distance APCs and stromal cells (reviewed in refs. 11 and 12). CD2 suitable for T cell receptor–ligand interaction. Digitized time-lapse functions in both T cell adhesion and activation processes (13). Ϸ differential interference contrast and immunofluorescence micros- Of note, the weak affinity of the CD2-CD58 interaction (Kd copy on living cells now show that this binding also induces T cell 1 M) is associated with remarkably fast on and off rates that polarization. Moreover, CD2 can facilitate motility of T cells along foster rapid and extensive exchange between CD2 and CD58 antigen-presenting cells via a movement referred to as scanning. Both partners on opposing cell surfaces (14–16). These biophysical activated CD4 and CD8 T cells are able to scan antigen-presenting cells characteristics are reminiscent of the selectin–ligand interactions surfaces in the absence of cognate antigen. -
Stroma-Free, Serum-Free Expansion and Differentiation of Hematopoietic Stem and Progenitor Cells to the T Cell Lineage Nooshin Tabatabaei-Zavareh1, Tim A
Stroma-free, serum-free expansion and differentiation of hematopoietic stem and progenitor cells to the T cell lineage Nooshin Tabatabaei-Zavareh1, Tim A. Le Fevre1, Alexander J.Y. Man1, Evan A. Karas1, Stephen J. Szilvassy1, Terry E. Thomas1 , Allen C. Eaves1,2, and Albertus W. Wognum1 1 STEMCELL Technologies Inc., Vancouver, BC, Canada 2 Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada Introduction The use of T cells for cancer immunotherapy and other therapeutic applications relies on the isolation of T cells from peripheral blood and their subsequent activation and expansion in culture. T cells can also be generated from hematopoietic stem and/or progenitor cells (HSPCs) in cord blood (CB) or bone marrow (BM). This approach not only offers a renewable source of T cells, but also provides a model system to study disease mechanisms or validate new drugs that affect T cell development and/or function. Differentiation of HSPCs to T cells typically requires co-culture with stromal cell lines that have been engineered to express a Notch-ligand. In such cultures, CD34+CD38-/lo HSPCs develop into CD7+CD5+ pro-T cells that further differentiate to T lineage-committed progenitor cells (pre-T cells) characterized by the expression of CD1a. CD7+CD1a+ pre-T cells can then differentiate to express CD4 and become CD4 immature single-positive (CD4ISP) cells. CD4ISP cells give rise to CD4+CD8+ double positive (DP) cells. These finally mature into CD4 and CD8 single-positive (SP) CD3+TCRαβ+ T cells. Here we describe a serum-free culture method that recapitulates these differentiation steps in the absence of stromal cells and generates large numbers of functional T lineage cells from a limited number of purified CD34+ CB cells. -
Human Fcgr2a / Cd32a (H131) Protein Catalog # AMS.CD1-H5223-100UG for Research Use Only
Human FcGR2A / CD32a (H131) Protein Catalog # AMS.CD1-H5223-100UG For Research Use Only Description Source Human FcGR2A / CD32a (H131) Protein,also called Human FcGR2A / CD32a Protein (167 His), Ala 36 - Ile 218 (Accession # P12318-1), was produced in human 293 cells (HEK293) Predicted N-terminus Ala 36 Protein Structure Molecular Human FcGR2A / CD32a (H131), His Tag is fused with a polyhistidine tag at the C-terminus, and has a calculated MW of 21.1 Characterization kDa. The predicted N-terminus is Ala 36. The reducing (R) protein migrates as 29-32 kDa in SDS-PAGE due to glycosylation. Endotoxin Less than 1.0 EU per μg by the LAL method. >95% as determined by SDS-PAGE. Purity Bioactivity The bioactivity is measured by its binding ability to Ipilimumab in a SPR assay. Immobilized Human FcGR2A / CD32a (H131), His Tag (Cat# AMS.CD1-H5223-100UG) can bind Ipilimumab with affinity constant of around 2.7 uM. Measured by its binding ability in a functional ELISA. Immobilized human IgG4 at 10μg/mL (100 µl/well),can bind Human FcGR2A / CD32a (H131), His Tag (Cat# AMS.CD1-H5223-100UG) with a linear of 0.1-2 μg/mL. Formulation and Storage Formulation Lyophilized from 0.22 μm filtered solution in PBS, pH7.4. Normally Trehalose is added as protectant before lyophilization. Contact us for customized product form or formulation. Please see Certificate of Analysis for specific instructions. For best performance, we strongly recommend you to follow the Reconstitution reconstitution protocol provided in the COA. Storage For long term storage, the product should be stored at lyophilized state at -20°C or lower. -
REVIEW Dendritic Cell-Based Vaccine
Leukemia (1999) 13, 653–663 1999 Stockton Press All rights reserved 0887-6924/99 $12.00 http://www.stockton-press.co.uk/leu REVIEW Dendritic cell-based vaccine: a promising approach for cancer immunotherapy K Tarte1 and B Klein1,2 1INSERM U 475, Montpellier; and 2Unit For Cellular Therapy, CHU Saint Eloi, Montpellier, France The unique ability of dendritic cells to pick up antigens and to + + and interstitial DC pick up antigens (Ag) in peripheral tissues activate naive and memory CD4 and CD8 T cells raised the and migrate to lymphoid organs through lymphatic vessels in possibility of using them to trigger a specific anti-tumor 8 immunity. If numerous studies have shown a major interest in response to inflammatory stimuli. Activated mature DC, dendritic cell-based vaccines for cancer immunotherapy in ani- which express CD1a and CD83 antigens, represent the latter mal models, only a few have been carried out in human can- stage of LC and interstitial DC maturation. According to their cers. In this review, we describe recent findings in the biology high expression of MHC class I, MHC class II and costimu- of dendritic cells that are important to generate anti-tumor cyto- latory molecules, they present, efficiently, Ag-derived peptides toxic T cells in vitro and we also detail clinical studies reporting to CD4+ and CD8+ T lymphocytes in lymph node T cell areas the obtention of specific immunity to human cancers in vivo using reinfusion of dendritic cells pulsed with tumor antigens. (Figure 1). Recently, another subset of DC was identified on Keywords: dendritic cells; cancer; immunotherapy the basis of their high expression of the interleukin-3 receptor alpha chain (IL-3R␣hi). -
Multiparameter Phenotype Mapping of Normal and Post-Chemotherapy B
Leukemia (1997) 11, 1266–1273 1997 Stockton Press All rights reserved 0887-6924/97 $12.00 Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow MN Dworzak, G Fritsch, C Fleischer, D Printz, G Fro¨schl, P Buchinger, G Mann and H Gadner Children’s Cancer Research Institute, St Anna Kinderspital, Kinderspitalgasse 6, A-1090 Vienna, Austria We studied the differentiation profiles of B cell precursors Materials and methods (BCP) in normal and post-chemotherapy pediatric bone marrow (BM) using multiparameter flow cytometry. The goal of our study was to draw a comprehensive phenotypic map of the Sample description three major maturational BCP stages in BM. By correlating lin- eage-associated markers, CD45RA, and several adhesion mol- Pediatric bone marrow (BM) samples (n = 44) were obtained ecules, the stage-specific patterns were found to differ in cer- from children undergoing diagnostic BM aspiration for the fol- tain details from previously published concepts. Among the earliest BCP, a subset of CD34+CD10lo precursors was repeat- lowing diagnoses in the absence of BM involvement at the edly observed in addition to the well characterized time of immunologic investigation: suspicion of storage dis- CD34+CD10hiCD19+ majority of cells. Only two-thirds of these ease (n = 1), bacterial lymphadenitis (n = 1), neuroblastoma CD34+CD10lo cells expressed CD19. However, uniformity of (n = 1), severe aplastic anemia in remission (n = 2), single sys- phenotypic features, absence of T lineage markers, and the tem Langerhans cell histiocytosis (n = 1), idiopathic throm- regeneration kinetics after chemotherapy suggest the B lineage = + lo bocytopenic purpura (n 1), early stage (localized) non- affiliation of the CD34 CD10 precursors in general. -
Mechanisms and Consequences of Antigen Presentation By
Series: The Biology of Antigen Presentation Feature Review Mechanisms and Consequences of Antigen Presentation by CD1 1, 1 1,2 Luc Van Kaer, * Lan Wu, and Sebastian Joyce The CD1 proteins are a family of non-polymorphic and MHC class I-related Trends molecules that present lipid antigens to subsets of T lymphocytes with innate- or The CD1–lipid presentation system adaptive-like immune functions. Recent studies have provided new insight into allows the immune system to sense alterations in lipid homeostasis, and the identity of immunogenic CD1 antigens and the mechanisms that control the complements the classical MHC–pep- generation and loading of these antigens onto CD1 molecules. Furthermore, tide presentation system. There are substantial progress has been made in identifying CD1-restricted T cells and remarkable similarities and surprising differences in the way that TCRs decoding the diverse immunological functions of distinct CD1-restricted T cell engage CD1–lipid versus MHC–pep- subsets. These findings shed new light on the contributions of the CD1 antigen- tide complexes. presentation pathway to normal health and to a diverse array of pathologies, and Group 1 CD1 proteins (CD1a–c) pre- provide a new impetus for exploiting this fascinating recognition system for the sent a variety of endogenous, myco- development of vaccines and immunotherapies. bacterial, and potentially other bacterial lipids to T cells. CD1b-restricted T cells include subsets expressing germline- Antigen-Presentation Systems encoded TCRs. Products encoded by the major histocompatibility complex (MHC) region of the vertebrate Group 2 CD1 proteins (CD1d) present genome bind peptide fragments from pathogens and display them at the surface of antigen- diverse endogenous and exogenous presenting cells (APCs) for appraisal by T lymphocytes [1]. -
Brain Tumor Cells in Circulation Are Enriched for Mesenchymal Gene Expression
Author Manuscript Published OnlineFirst on August 19, 2014; DOI: 10.1158/2159-8290.CD-14-0471 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Brain Tumor Cells in Circulation are Enriched for Mesenchymal Gene Expression Authors: James P. Sullivan1,3,*, Brian V. Nahed1,4*, Marissa W. Madden1, Samantha M. Oliveira1, Simeon Springer1, Deepak Bhere5, Andrew S. Chi1,5, Hiroaki Wakimoto1,4, S. Michael Rothenberg1, 3, Lecia V. Sequist1, 3, Ravi Kapur2, Khalid Shah5,6, A. John Iafrate1,7, William T. Curry1,4, Jay S. Loeffler1, Tracy T. Batchelor1,5, David N. Louis1,7, Mehmet Toner2,8, Shyamala Maheswaran1,8†, Daniel A. Haber1,3,9† Author’s Affiliations: 1Massachusetts General Hospital Cancer Center, 2Center for Engineering in Medicine and Departments of 3Medicine, 4Neurosurgery, 5Neurology, 6Radiology, 7Pathology, and 8Surgery, Harvard Medical School, Boston, Massachusetts 02114, USA 9Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA * Denotes equal contribution Corresponding Authors: †Shyamala Maheswaran, Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA 02129. Phone: 617-726-6552; Fax: 617-726-6919; Email: [email protected] †Daniel A. Haber, Massachusetts General Hospital Cancer Center, Building 149 13th Street, Charlestown, MA, 02129. Phone: 617-726-7805; Fax: 617-726-6919; Email: [email protected] Running Title: Mesenchymal Glioblastoma Cells in Circulation. Downloaded from cancerdiscovery.aacrjournals.org on September 24, 2021. © 2014 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 19, 2014; DOI: 10.1158/2159-8290.CD-14-0471 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
LECTURE 07 Immune Cells Surface Receptors and Their Functions
LECTURE: 07 Title: IMMUNE CELL SURFACE RECEPTORS AND THEIR FUNCTIONS LEARNING OBJECTIVES: The student should be able to: • The chemical nature of the cellular surface receptors. • Define the location of the cellular receptors. • Enumerate the different given terms for the word "receptor". • Define the term "CD" marker. • Describe the location of the immune receptors. • Classify the cellular receptors according to the information they offer. • Classify the cellular receptors according to their families. • Enumerate some common immunoglobulin receptors. • Enumerate some common complement receptors. • Enumerate some adhesion molecules receptors. • Enumerate the main functions of the immune cell receptors. • Realize the importance of the immune receptors. LECTURE REFRENCE: 1. TEXTBOOK: ROITT, BROSTOFF, MALE IMMUNOLOGY. 6th edition. pp. 29, 143, 76, 77, 78, 221, 325. 2. TEXTBOOK: ABUL K. ABBAS. ANDREW H. LICHTMAN. CELLULAR AND MOLECULAR IMMUNOLOGY. 5TH EDITION. Chapter. 6 .pg 105. Chapter 4. pg 65- 80. 1 Lymphocytes can be identified by characteristic markers Lymphocytes and other leukocytes express different surface molecules which can be used for distinguishing cell population. A systemic nomenclature called the CD system has been developed, in which the term CD refers to (cluster of designation). These different cell surface molecules are detected with specific monoclonal antibodies, each of these molecules are given CD number. Molecular markers can be further defined according to the information they offer about the cell. For example; A. Lineage markers are exclusive to a particular cell line, e.g., CD3, which is found only on T cells. B. Maturation markers are transiently expressed during cell differentiation, e.g., CD1, which is only found on cells developing in thymus and is not present on peripheral T cells. -
CD5-Positive Acute Lymphoblastic Leukemia Dawood Ahmed1, Tahir Aziz Ahmed1, Suhaib Ahmed 2, Hamid Nawaz Tipu1 and Muhammad Amin Wiqar1
CASE REPORT CD5-Positive Acute Lymphoblastic Leukemia Dawood Ahmed1, Tahir Aziz Ahmed1, Suhaib Ahmed 2, Hamid Nawaz Tipu1 and Muhammad Amin Wiqar1 ABSTRACT CD5-positive B-ALL is a rare variant of Acute Lymphoblastic Leukemia (ALL). In literature, only three cases have been reported so far. This fourth case report describes a young lady who was diagnosed as ALL (L-2) on bone marrow examination and was found to be CD5 positive B-cell acute lymphoblastic leukemia on immunophenotyping. Cytogenetic analysis revealed translocation t(9:22). Key words: CD5. Immunophenotyping. Acute lymphoblastic leukemia. INTRODUCTION blood examination. On peripheral blood examination hemoglobin (Hb) was reported 7.6 g/dl, Total Leukocyte CD5 is a 67-kd glycoprotein that is expressed by most Count (TLC) 18,600/µl with 85% lymphocytes, 9% T-cells and a subset of B-cells called B-1 cells. neutrophils, 4% eosinophils and 2% monocytes. CD5-positive B-cells are found in fetal spleen, cord Lymphocytes were described as atypical and abnormal blood and peritoneal cavity of adults. Similar cells are cells and bone marrow aspiration was advised. Blood also present in the marginal zones of lymphoid follicles counts carried out at the time of bone marrow aspiration in spleen. Only 5 to 10% of B-cells belong to this revealed ESR 120 mm after one hour, Hb 5.3 g/dl, TLC category in blood and lymphoid tissues.1 These cells 26,900/µl with 82% lymphocytes and 18% neutrophils in produce IgM antibodies (natural antibodies) against the peripheral blood specimen. Platelets count was polysaccharide and lipid antigens. -
Cells and Marginal Zone B Cells CD1.1 Expression by Mouse Antigen-Presenting
CD1.1 Expression by Mouse Antigen-Presenting Cells and Marginal Zone B Cells Jessica H. Roark, Se-Ho Park, Jayanthi Jayawardena, Uma Kavita, Michele Shannon and Albert Bendelac This information is current as of September 29, 2021. J Immunol 1998; 160:3121-3127; ; http://www.jimmunol.org/content/160/7/3121 References This article cites 48 articles, 26 of which you can access for free at: Downloaded from http://www.jimmunol.org/content/160/7/3121.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on September 29, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. CD1.1 Expression by Mouse Antigen-Presenting Cells and Marginal Zone B Cells1 Jessica H. Roark, Se-Ho Park, Jayanthi Jayawardena, Uma Kavita, Michele Shannon, and Albert Bendelac2 Mouse CD1.1 is an MHC class I-like, non-MHC-encoded, surface glycoprotein that can be recognized by T cells, in particular NK1.11 T cells, a subset of ab T cells with semiinvariant TCRs that promptly releases potent cytokines such as IL-4 and IFN-g upon stimulation.