GTK+ Properties
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Resurrect Your Old PC
Resurrect your old PCs Resurrect your old PC Nostalgic for your old beige boxes? Don’t let them gather dust! Proprietary OSes force users to upgrade hardware much sooner than necessary: Neil Bothwick highlights some great ways to make your pensioned-off PCs earn their keep. ardware performance is constantly improving, and it is only natural to want the best, so we upgrade our H system from time to time and leave the old ones behind, considering them obsolete. But you don’t usually need the latest and greatest, it was only a few years ago that people were running perfectly usable systems on 500MHz CPUs and drooling over the prospect that a 1GHz CPU might actually be available quite soon. I can imagine someone writing a similar article, ten years from now, about what to do with that slow, old 4GHz eight-core system that is now gathering dust. That’s what we aim to do here, show you how you can put that old hardware to good use instead of consigning it to the scrapheap. So what are we talking about when we say older computers? The sort of spec that was popular around the turn of the century. OK, while that may be true, it does make it seem like we are talking about really old hardware. A typical entry-level machine from six or seven years ago would have had something like an 800MHz processor, Pentium 3 or similar, 128MB of RAM and a 20- 30GB hard disk. The test rig used for testing most of the software we will discuss is actually slightly lower spec, it has a 700MHz Celeron processor, because that’s what I found in the pile of computer gear I never throw away in my loft, right next to my faithful old – but non-functioning – Amiga 4000. -
Porting a Window Manager from Xlib to XCB
Porting a Window Manager from Xlib to XCB Arnaud Fontaine (08090091) 16 May 2008 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version pub- lished by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Contents List of figures i List of listings ii Introduction 1 1 Backgrounds and Motivations 2 2 X Window System (X11) 6 2.1 Introduction . .6 2.2 History . .6 2.3 X Window Protocol . .7 2.3.1 Introduction . .7 2.3.2 Protocol overview . .8 2.3.3 Identifiers of resources . 10 2.3.4 Atoms . 10 2.3.5 Windows . 12 2.3.6 Pixmaps . 14 2.3.7 Events . 14 2.3.8 Keyboard and pointer . 15 2.3.9 Extensions . 17 2.4 X protocol client libraries . 18 2.4.1 Xlib . 18 2.4.1.1 Introduction . 18 2.4.1.2 Data types and functions . 18 2.4.1.3 Pros . 19 2.4.1.4 Cons . 19 2.4.1.5 Example . 20 2.4.2 XCB . 20 2.4.2.1 Introduction . 20 2.4.2.2 Data types and functions . 21 2.4.2.3 xcb-util library . 22 2.4.2.4 Pros . 22 2.4.2.5 Cons . 23 2.4.2.6 Example . 23 2.4.3 Xlib/XCB round-trip performance comparison . -
Google Docs Reference
Google Drive Quick Reference Guide Google Drive Homepage Overview 1. Search Drive: Enter your search text and click on the Search icon to find your files. Select the folder first if you would like to search within a specific folder. 2. New & Upload: Click New and choose from the list of documents, presentations, etc. that you can create or upload using Google Drive. 3. My Drive: The section of Google Drive on the web that syncs to your computer. Any time you modify a file or folder in My Drive, these changes will be mirrored in the local version of your Google Drive folder. 4. Navigation Panel: Links to your starred items and trash. Shared with me lets you view files, folders, and Google Docs that others have shared with you. 5. Download Google Drive (under settings in new drive): Download and install the Google Drive Client for your Mac/PC to sync files from your computer to Google Drive on the web. (won’t work on SBCSC computers) 6. Details Pane: Here you can see a preview of the select- ed file, the time of your last view, when it was last modi- fied, and by whom. You can also view and update the file’s sharing settings and organize it into folders. (right click (i) view details-or (i) on top menu top open pane) Upload Files and Folders into Google Drive You can upload and convert the following file types into Google Drive for online editing and sharing. • Documents: Microsoft Word, OpenOffice, StarOffice, RTF (.rtf), HTML, or plain text (.txt). -
18 Free Ways to Download Any Video Off the Internet Posted on October 2, 2007 by Aseem Kishore Ads by Google
http://www.makeuseof.com/tag/18-free-ways-to-download-any-video-off-the-internet/ 18 Free Ways To Download Any Video off the Internet posted on October 2, 2007 by Aseem Kishore Ads by Google Download Videos Now download.cnet.com Get RealPlayer® & Download Videos from the web. 100% Secure Download. Full Movies For Free www.YouTube.com/BoxOffice Watch Full Length Movies on YouTube Box Office. Absolutely Free! HD Video Players from US www.20north.com/ Coby, TV, WD live, TiVo and more. Shipped from US to India Video Downloading www.VideoScavenger.com 100s of Video Clips with 1 Toolbar. Download Video Scavenger Today! It seems like everyone these days is downloading, watching, and sharing videos from video-sharing sites like YouTube, Google Video, MetaCafe, DailyMotion, Veoh, Break, and a ton of other similar sites. Whether you want to watch the video on your iPod while working out, insert it into a PowerPoint presentation to add some spice, or simply download a video before it’s removed, it’s quite essential to know how to download, convert, and play these videos. There are basically two ways to download videos off the Internet and that’s how I’ll split up this post: either via a web app or via a desktop application. Personally, I like the web applications better simply because you don’t have to clutter up and slow down your computer with all kinds of software! UPDATE: MakeUseOf put together an excellent list of the best websites for watching movies, TV shows, documentaries and standups online. -
Gtk Drawing Area Example C
Gtk Drawing Area Example C Abyssinian Cary always Indianised his examination if Amadeus is lowest or marshalling skywards. Ornithischian Rudd overruled, his deportation backscatters remilitarizing proud. Zodiacal Udale alkalizing: he repay his ceorl jazzily and observantly. End angle bracket iter to indicates data to c gtk drawing area Programming with gtkmm 3. You should only grab from gtk drawing area widget draws with either create. These programmatically hidden from the properties are put there are created and executable program that all gtk app into boxes, i am doing. This locus the 'traits' of the GtkDrawingArea widget are inherited to this class. GtkDrawingArea gtk-30 Valadoc. M cm else return cm m xm def drawself ctx area tops the egg. Gmcs pkggtk-sharp-20 rusrlibmono20MonoCairodll simplecs Here saying how we compile the example DrawingArea darea new. This source code of examples have thrown me at least we will create a button click to retrieve them into those who must be updated. How to integrate those header-only libraries and uses Catch as an example. We just ugly cast. The error comes from C I over no danger about tablet to drift this drawingrb. Useful for detriment to extract multiple copies of chair same dialog. For example if most have created a dialog box for entering some personal information you. Drawing operation draws the examples are the interior of. Application runs the example draws some way to be used for single cell renderer to this will execute it! This is prominent example in object-oriented behavior enforced in C by GTK. GtkDrawingArea getDrawingAreaStructbool transferOwnership false. -
Current Status of Win32 Gdk Implementation
Current status of Win32 Gdk implementation Bertrand Bellenot - [email protected] Features (recall) ! Same environment on every system : ! Same look and feel on every platform. ! Simplify the code maintenance : ! No need to care about a « windows specific code ». ! Simplify functionality extension : ! No need to implement the code twice, once for windows and once for other OS. ! Only use TVirtualX. Actual Status (recall) ! The actual code uses a modified version of gdk and glib, the GIMP low-level libraries ported on win32. In practice, this means that we only need to link with gdk.lib, glib.lib and iconv.dll as additional libraries (hopefully less in the future). These libraries are under LGPL, so there are no licensing issues in using and distributing them. ! As original version of gdk was not doing everything needed by root (as font orientation!), I did have to slightly modify the original code. Points fixed since last year ! Some characters were not displayed. " ! Some problems with icon’s transparency. " ! The event handling was not perfect. " ! OpenGL was not working. " Events handling architecture (actual) TSystem CINT TGClient TVirtualX Gdk Threads issue ! From gdk developper FAQ : ! Without some major restructuring in GDK-Win32, I don't think there is any chance that GTK+ would work, in general, in a multi-threaded app, with different threads accessing windows created by other threads. ! One problem is that each thread in Windows have its own message queue. GDK-Win32 currently uses just one "message pump" in the main thread. It will never see messages for windows created by other threads. Threads issue ! As gdk is not thread safe, I had to create a separate thread from within the gdk calls are made. -
The GNOME Desktop Environment
The GNOME desktop environment Miguel de Icaza ([email protected]) Instituto de Ciencias Nucleares, UNAM Elliot Lee ([email protected]) Federico Mena ([email protected]) Instituto de Ciencias Nucleares, UNAM Tom Tromey ([email protected]) April 27, 1998 Abstract We present an overview of the free GNU Network Object Model Environment (GNOME). GNOME is a suite of X11 GUI applications that provides joy to users and hackers alike. It has been designed for extensibility and automation by using CORBA and scripting languages throughout the code. GNOME is licensed under the terms of the GNU GPL and the GNU LGPL and has been developed on the Internet by a loosely-coupled team of programmers. 1 Motivation Free operating systems1 are excellent at providing server-class services, and so are often the ideal choice for a server machine. However, the lack of a consistent user interface and of consumer-targeted applications has prevented free operating systems from reaching the vast majority of users — the desktop users. As such, the benefits of free software have only been enjoyed by the technically savvy computer user community. Most users are still locked into proprietary solutions for their desktop environments. By using GNOME, free operating systems will have a complete, user-friendly desktop which will provide users with powerful and easy-to-use graphical applications. Many people have suggested that the cause for the lack of free user-oriented appli- cations is that these do not provide enough excitement to hackers, as opposed to system- level programming. Since most of the GNOME code had to be written by hackers, we kept them happy: the magic recipe here is to design GNOME around an adrenaline response by trying to use exciting models and ideas in the applications. -
The Glib/GTK+ Development Platform
The GLib/GTK+ Development Platform A Getting Started Guide Version 0.8 Sébastien Wilmet March 29, 2019 Contents 1 Introduction 3 1.1 License . 3 1.2 Financial Support . 3 1.3 Todo List for this Book and a Quick 2019 Update . 4 1.4 What is GLib and GTK+? . 4 1.5 The GNOME Desktop . 5 1.6 Prerequisites . 6 1.7 Why and When Using the C Language? . 7 1.7.1 Separate the Backend from the Frontend . 7 1.7.2 Other Aspects to Keep in Mind . 8 1.8 Learning Path . 9 1.9 The Development Environment . 10 1.10 Acknowledgments . 10 I GLib, the Core Library 11 2 GLib, the Core Library 12 2.1 Basics . 13 2.1.1 Type Definitions . 13 2.1.2 Frequently Used Macros . 13 2.1.3 Debugging Macros . 14 2.1.4 Memory . 16 2.1.5 String Handling . 18 2.2 Data Structures . 20 2.2.1 Lists . 20 2.2.2 Trees . 24 2.2.3 Hash Tables . 29 2.3 The Main Event Loop . 31 2.4 Other Features . 33 II Object-Oriented Programming in C 35 3 Semi-Object-Oriented Programming in C 37 3.1 Header Example . 37 3.1.1 Project Namespace . 37 3.1.2 Class Namespace . 39 3.1.3 Lowercase, Uppercase or CamelCase? . 39 3.1.4 Include Guard . 39 3.1.5 C++ Support . 39 1 3.1.6 #include . 39 3.1.7 Type Definition . 40 3.1.8 Object Constructor . 40 3.1.9 Object Destructor . -
Fuzzing Project, Funded by Linux Foundation's Core Infrastructure Initiative
FIX ALL THE BUGS AMERICAN FUZZY LOP AND ADDRESS SANITIZER Hanno Böck 1 INTRODUCTION Hanno Böck, freelance journalist and hacker. Writing for Golem.de and others. Author of monthly Bulletproof TLS Newsletter. Fuzzing Project, funded by Linux Foundation's Core Infrastructure Initiative. 2 BUG EXAMPLE (QT file src/plugins/platforminputcontexts/compose/qcomposeplatforminputcontext.cpp) 3 KDE / QT BUGS Use aer free in qmake Underflow / out of bounds read in QT / QCompose Out of bounds read in QtGui Out of bounds read in Kwin (last 2 not sure if I should blame Xorg/xcb API) 4 FOR FAIRNESS: GNOME #762417: Out of bounds read in glib / token parser #762483: Out of bounds read in glib / unicode parser #768441: Heap overflow in gnome-session parameter parsing #770027: Out of bounds read in pango / test suite 5 BUG EXAMPLE /* +2 for our new arguments, +1 for NULL */ new_argv = g_malloc (argc + 3 * sizeof (*argv)); (gnome-session 3.20.1, bug #768441) 6 ADDRESS SANITIZER (ASAN) All this bugs can be trivially found with Address Sanitizer. Just add -fsanitize=address to the compiler flags in GCC/CLANG. 7 FIND BUGS WITH ASAN ./configure CFLAGS="-fsanitize=address -g" \ CXXFLAGS="-fsanitize=address -g" \ LDFLAGS="-fsanitize=address" make make check 8 WHAT IS ASAN DOING? Shadow memory tracking which memory areas are valid. Finds out of bounds access (read/write) and use aer free bugs (and other less common issues). 9 OUT OF BOUNDS READ #include <stdio.h> int main() { int a[2] = {3,1}; int i = 2; printf("%i\n", a[i]); } 10 USE AFTER FREE #include <stdio.h> #include <stdlib.h> int main() { char *c = calloc(10,1); printf("%i\n", c[0]); free(c); printf("%i\n", c[1]); } 11 MISSION: TEST EVERYTING WITH ASAN Every project using C/C++ code should test with ASAN. -
Drag-And-Guess: Drag-And-Drop with Prediction
Drag-and-Guess: Drag-and-Drop with Prediction Takeshi Nishida Takeo Igarashi Department of Computer Science, Department of Computer Science, The University of Tokyo The University of Tokyo / PREST JST [email protected] [email protected] ABSTRACT is presented to the user as an animation; the user can start the Drag-and-guess is an extension of drag-and-drop that uses next operation before the animation terminates. predictions. As the user starts dragging an object, the system predicts the drop target and presents the result. If the target is hidden in a closed folder or beneath other windows, the system makes it temporarily visible to free the user from manual preparation. The user can accept the prediction by releasing the mouse button and the object flies to the target, or reject it by continuing the dragging operation, thereby switching to traditional drag-and-drop seamlessly. Keywords: Drag-and-drop, Drag-and-guess, Prediction INTRODUCTION We demonstrate an extension of traditional drag-and-drop Figure 1 Drag-and-guess in action. that uses predictions, called drag-and-guess (DnG) (Figure 1). As the user starts dragging an object, the system predicts the drop target and responds by revealing the predicted result. If the target is not visible (e.g., hidden in nested hierarchical folders or outside the area visible on the screen), -The user starts dragging the system automatically makes the target location -The system checks the situation temporarily visible. If the prediction is correct, the user can System : confident System : unconfident accept it by releasing the mouse button, when the object Task : difficult Task : easy automatically drops on the target. -
Development Environment for the Raspberry Pi Using a Cross Compiling Toolchain and Eclipse | Hertaville 07.10.13 13:37
Development Environment for the Raspberry Pi using a Cross Compiling Toolchain and Eclipse | Hertaville 07.10.13 13:37 Hertaville Welcome to Hertaville! Development Environment for the Raspberry Pi using a Cross Compiling Toolchain and Eclipse Posted on September 28, 2012 by halherta UPDATED July 15th 2013 In this blog entry the setup of a cross-compiling development environment for the Raspberry Pi will be demonstrated. This will include the Official Raspbian (armhf) cross compiling toolchain (available from github) Eclipse for C/C++ Developers (Linux) We will finally write a simple Hello World program on our development PC, compile it using the cross compiler and then deploy it onto our Raspberry Pi board to run it. I’m going to assume that you have already installed a Raspbian Wheezy image on your RPi board and that you have Linux installed on your desktop PC. For this tutorial I am using the Crunchbang 11 Linux OS (64-bit) on my PC. The instructions provided should work on most Debian/Ubuntu based Linux distributions running directly on a PC or as a a guest operating system via VMWare/ VirtualBox . A remote debugging tutorial; which I consider to be the continuation of this tutorial, can be found here. Finally, Derek Molloy has a great video tutorial on setting up a similar environment for the Beaglebone. Watching this video was incredibly informative and helped me set up this tutorial. So what is a cross compiling toolchain and why use one ? A native compiler such as the default gcc tool on the PC is a compiler that runs on an Intel machine, as well as creates binaries intended to be run on an Intel machine. -
Pick-And-Drop: a Direct Manipulation Technique for Multiple Computer
Pick-and-Drop: A Direct Manipulation Technique for Multiple Computer Environments tun ekimoto ony gomputer iene v ortory snF QEIREIQ rigshigotndD hingwEkuD okyo IRI tpn CVIEQESRRUERQVH rekimotodslFsonyFoFjp httpXGGwwwFslFsonyFoFjpGp ersonGrekimotoFhtml ABSTRACT This paper proposes a new field of user interfaces called multi-computer direct manipulation and presents a pen-based direct manipulation technique that can be used for data transfer between different computers as well as within the same computer. The proposed Pick-and-Drop allows a user to pick up an object on a display and drop it on another display as if he/she were manipulating a physical object. Even though the pen itself does not have storage capabilities, a combination of Pen-ID and the pen manager on the network provides the illusion that the pen can physically pick up and move a computer object. Based on this concept, we have built several experimental applications using palm-sized, desk- top, and wall-sized pen computers. We also considered the importance of physical artifacts in designing user interfaces in a future computing environment. KEYWORDS: direct manipulation, graphical user inter- Figure 1: A typical ªmouse jungleº in a multi-computer faces, input devices, stylus interfaces, pen interfaces, drag- environment and-drop, multi-computer user interfaces, ubiquitous com- puting, computer augmented environments writing a program on a UNIX while editing a diagram on a INTRODUCTION Mac). In a ubiquitous computing (UbiComp) environment [18], we no longer use a single computer to perform tasks. Instead, However, using multiple computers without considering the many of our daily activities including discussion, documen- user-interface introduces several problems.