Aspects of Asymmetric Nucleophilic Amine Catalysis: Organocatalyst Design and Implementation
Total Page:16
File Type:pdf, Size:1020Kb
Aspects of Asymmetric Nucleophilic Amine Catalysis: Organocatalyst Design and Implementation MacMillan Group Meeting Ian Storer February 28, 2005 Asymmetric Nucleophilic Catalysis Outline ! Introduction to N-centred nucleophilic catalysts ! concepts and definitions ! origins and requirements ! Design, development and application of asymmetric nucleophilic catalysts ! Natural alkaloid catalysts - Precejus, Wynberg ! Synthetic alkaloid analogues - Lectka, Hatekeyama, Deng ! Biomimetic histidine containing peptide catalysts - Miller ! Asymmetric DMAP equivalents - Fuji / Fu Useful Reviews: ! Fance, S.; Guerin, D. J.; Miller, S. J.; Leckta, T., Nucleophilic Chiral Amines as Catalysts in Asymmetric Synthesis. Chem Rev. 2003, 103, 2985-3012. ! Miller, S. J. In Search of Peptide-Based Catalysts for Asymmetric Organic Synthesis. Acc. Chem. Res. 2004, 37, 601-610. ! Fu, G. C. Asymmetric Catalysis with "Planar-Chiral" Derivatives of DMAP. Acc. Chem. Res. 2004, 37, 542-547. Definitions ! Lewis base A molecular entity (and the corresponding chemical species) able to provide a pair of electrons and thus capable of coordination to a Lewis acid, thereby producing a Lewis adduct. ! Nucleophilic Catalysis Catalysis by a Lewis base, involving formation of a Lewis adduct as a reaction intermediate. For example, the esterification of anhydrides catalysed by DMAP: IUPAC Compendium of Chemical Terminology Me Me Me Me N N OH R1 R3 1 O O O 2 R O N N R R2 R O R Lewis base O R R3 O R O R Lewis base complex Me Me N N Lewis base ! Implication on Choice of catalyst The catalyst has to be a very effective nucleophile and a good leaving group . Useful Nucleophilic Catalysts ! Commonly applied 'everyday' nucleophilic catalysts Me Me N N Me H N N N N N N N N N PPY DMAP Pyridine Imidazole NMI DABCO Nucleophilic Aromatic Amines nucleophilic teriary amines ! Common applications ! O-acylation - electrophile activation (pyridine, DMAP) ! O-silylation - electrophile activation (imidazole, DMAP) ! Baylis-Hilman reaction - nucleophile activation (DABCO, DMAP) ! Ineffective bases: Nucleophilicity highly sensitive to steric and electronic factors Me Et N N Me Me N Me Me N Me Et Et picoline lutidine collidine TEA good Bronsted bases, poor nucleophilic catalysts Cinchona Alkaloids: Earliest Successful Nucleophilic Asymmetric Catalysts ! First used for a resolution of a racemate in 1853 by Pasteur. H H H H HO N N HO pseudoenantiomers H H R R1 1 N N 1 Cinchonidine (CD) R1 = H Cinchonine (CN) R = H 1 Quinine (QN) R1 = OMe Quinidine (QD) R = OMe ! Several modes of application ! Asymmetric Bronsted bases ! Asymmetric phase transfer reagents (as salts) ! Asymmetric bifunctional catalysts (acid / base) ! Asymmetric nucleophilic catalysts Moncure, R. MacMillan Group Meeting, 2003, web. – contains a more fully discussion of cinchona alkaloids Alkaloids and Derivatives as Nucleophilic Catalysts ! Natural alkaloids site of modification: ether/ ester formation OMe site of inversion of site of modification configuration (epi alkaloids) OH H -pseudoenantiomers N N H site of quaternary salt Quinidine formation, nucleophilic Pracejus (1964) addition or basicity Wynberg (1983) Simpkins (2001) ! Synthetically modified analogues Me OMe OH Et Et O O O O O H N O O N N N N N H benzoylquinine Hatakeyama MeO N N OMe Lectka (2000) (DHQD)2AQN Deng OMe Seminal Findings: Pracejus Methanolysis of Ketenes H ! Pracejus proposed a mechanism involving QN activation of methanol. OH O O N 1–2 mol % quinidine N Ph H MeOH, –110 °C OMe Quinidine Me Ph Me H selective OMe up to 76% ee protonation N H H O HO +MeOH NHR3 Ph H-bond activation OMe Me MeO N Precejus, H.; Mätje, H. J. Prakt. Chem. 4. Reihe. 1964, 24, 195. Precejus, H.; Santleben, R. J. Prakt. Chem. 1972, 314, 157. ! Simpkins proposes alternative nucleophilic mechanism O PhSH O 10 mol % quinidine Bn benzene, –78 °C SPh 79-93% ee Me3Si Bn SiMe H 3 N H HO O SPh selective Bn protonation NR3 MeO N SiMe3 Blake, A. J.; Friend, C. L.; Outram, R. J.; Simpkins, N. S.; Whitehead, A. J. Tetrahedron Lett. 2001, 42, 2877. Catalytic Asymmetric Cycloadditions: Synthesis of !"Lactones OMe H ! An early example of asymmetric nucleophilic catalysis using an alkaloid. OH O O N O 2.5 mol % Amine O N H 1 2 Toluene, –50 °C, 1 h Quinidine R CCl2R 1 R 2 H H CCl2R R1 = H, alkyl, aryl R2 = Cl, alkyl up to 95 % yield 45-98 % ee catalyst O (nucleophile) H O 1 2 R CCl2R H NR3 zwitterionic intermediate ! Unprotected quinidine also catalyses its own acylation at OH ! Wynberg's proposed this stereoselectivity model O Me O CCl3 O O H H CCl3 CH O Me 2 H O Me OR N O H HC Me H H Cl C Me H 3 MeO CCl3 ! In the left TS, the ketene oxygen faces the methylene of the catalyst ring .The chloral approaches the catalyst with the trichloromethyl group facing away from the methyl group of the catalyst to avoid steric strain. ! In the bottom TS, the ring is the dominant form of stereocontrol, and the CCl3 orients itself away from the ring methylene protons. Wynberg, H. J. Am. Chem. Soc. 1982, 104, 166. Wynberg, H. J. Org. Chem. 1985, 50, 1977. Development of Functionalised Alkaloid Analogues: Catalytic Asymmetric Cycloadditions ! !-lactone synthesis: Romo's expansion of Wynberg's method O OMe Me O O O O 2 mol% cat. 2 H CCl2R O H R1 >90% ee O Cl NR3 PhMe, –25 ˚C 2 1 R1 R Cl2C R N i R N N Base: Pr2NEt 3 R1 = H, alkyl, aryl cat. H R2 = Cl, alkyl Acyl-quinidine ! The use of pre-acylated catalyst stops unwanted acylation of the catalyst during the reaction. ! Applies a stoichiometric, non-nucleophilic base to turn over the catalyst. ! In situ ketene generation ! Solubility of the Hunigs salt may be crucial to catalyst turnover. Tennyson, R.; Romo, D. J. Org. Chem. 2000, 65, 7248. Development of Functionalised Alkaloid Analogues: Catalytic Asymmetric Cycloadditions ! !-lactam synthesis: Lectka Ts O Ts 45-65% yield N O N 10 mol% cat. 95-99% ee R1 25-99:1 dr 1 Cl H CO2Et PhMe, –78 ˚C EtO2C R Base: proton sponge OMe cat. or K2CO3 or NaH O Ts N O H Ts O N O R N H CO2Et 3 N cat. N NR3 EtO2C NR3 H R1 R1 Benzoyl-quinidine ! 'Shuttle deprotonation' using excess of a thermodynamic, non-nucleophilic base. ! Concomitant Lewis acid activation of the imine later provided better yields Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J.; Lectka, T. J.. J. Am. Chem. Soc. 2000, 122, 7831. Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Ferraris, D.; Lectka, T. J.. J. Am. Chem. Soc. 2002, 124, 6626. ! Proposed transition state Development of Functionalised Alkaloid Analogues: Catalytic Asymmetric Halogenation ! Halogenation: Lectka Cl O Cl Cl O Cl 10 mol% cat. O Cl 1 R1 Cl THF, –78 ˚C R Cl O Cl Cl Cl Base: BEMP or Cl Cl K2CO3 or NaH Cl OMe 65-85% yield O t 99% ee Bu N NEt2 O H P MeN NMe N N H O Benzoyl-quinidine Br Br Br Br O 10 mol% cat. O R1 R1 Cl THF, –78 ˚C O Br Br Base: BEMP or Br Br K2CO3 or NaH 55-80% yield >90% ee Wack, H.; Taggi, A. E.; Hafez, A. M.; Drury, W. J.; Lectka, T. J. J. Am. Chem. Soc. 2001, 123, 1531. Hafez, A. M.; Taggi, A. E.; Wack, H.; Esterbrook, J.; Lectka, T. J. Org. Lett. 2001, 3, 2049. Taggi, A. E.; Wack, H.; Hafez, A. M.; France, S.; Lectka, T. J. Org. Lett. 2002, 4, 627. Development of Functionalised Alkaloid Analogues: Catalytic Asymmetric Baylis-Hillman Reaction ! Natural alkaloid - poor enantioselectivity O OH O OMe O 15 mol% catalyst 2 R R1 R2 up to OH H R1 H 45% ee THF, 30 ˚C, 34 h N cat. N O H O O O O quinidine R1 H R2 R2 R1 R2 R3N NR3 R3N Marko, I. E.; Giles, P. R.; Hindley, N. J. Tetrahedron 1997, 53, 1015. ! Synthetic analogue - better results Me O CF3 OH O CF3 OH O 15 mol% catalyst 31-58% yield 1 O O CF3 R O CF3 91-99% ee R1 H THF, 30 ˚C, 34 h N Me N quinidine analogue O N O CF3 O CF3 ! Mechanism of asymmetric induction not well understood N H ! Hatekayama proposes a 13-membered ring transistion state O Ph H ! Limited substrate scope O Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatekeyama, S. J. Am. Chem. Soc. 1999, 121, 10219. Et Et N N Ph H H O O H Deng's Application of bis-quinuclidines H MeO N N OMe Ph N N catalyst ! Cyanation O O O 10-35 mol% catalyst O OEt 52-78% yield NC 87-97% ee R1 R2 NC OEt CHCl3, –12 to –24 °C R2 0.5 - 7 days R1 cat. R3N O ! Mechanism of asymmetric induction CN O O NC O not well understood R1 R2 1 R3N OEt R R3N OEt R2 Deng, L. et al. J. Am. Chem. Soc. 2001, 123, 7475. ! Desymmmetrization of meso anhydrides O O R R 5-30 mol% catalyst OH 70-99% yield O MeOH ( ) OMe 90-98% ee ( )n n R Et2O R O O Deng, L. et al. J. Am. Chem. Soc. 2000, 122, 9542. Designing Asymmetric Variants of Known Nucleophilic Amine Catalysts ! Considerations ! Must be nucleophilc, but maintain good leaving group ability ! Must have a valid chiral pocket to transfer asymmetry to product. ! Alkaloids and analogues Me OMe OH Et Et O O O OH H N O O N N N N N H H Quinine Hatakeyama MeO N N OMe Wynberg (DHQD)2AQN Deng ! Synthetic chiral analogues of common nucleophilic heterocycles O Me OH Me Me Me N H N O N H H Fe N Ph Ph N BocHN H O Me Ph Ph N Ph N Fu (1998-current) N Miller Synthetic chiral imidazole equivalents Synthetic chiral DMAP equivalents Biological Role of Nucleophilic Catalysis ! Mechanism of some kinases - role of histidine ATP ADP O O O O O O E N O P O P O P O A O P O O P O P O A 3– O O NDP O O O E N O O NH fast E N NH NTP4– OH OH OH OH NH ! Phosphorylation transfer from ATP is ubiquitous in biological chemistry.