Rules for the Classification of Diving Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Upper Respiratory Tract and Aural Flora of Saturation Divers
J Clin Pathol: first published as 10.1136/jcp.31.8.721 on 1 August 1978. Downloaded from Journal of Clinical Pathology, 1978, 31, 721-723 Upper respiratory tract and aural flora of saturation divers D. M. JONES AND P. DAVIS From the Department ofBacteriology, Withington Hospital, Manchester M20 8LR, UK SUMMARY The conditions of helium saturation diving promote the proliferation of Gram-negative bacterial species in the external auditory meatus of divers. These changes in flora occurred in the absence of operational diving, that is, no contact with water. The colonising bacteria were auto- genous in origin and cross-colonisation was observed between divers. On return to normal atmos- pheric conditions the aural flora became predominantly Gram-positive again within 48 hours. The slow return to normal pressures by deep-sea a high ambient temperature (30°-350C), and the divers, necessary to avoid decompression sickness, relative humidity is high. restricts the period that can be maintained at depth. Underwater exploration is a relatively new indus- This problem is overcome by the saturation diving try and by its nature is extremely dangerous. It is technique whereby the divers are maintained at high important that divers remain fit during the conduct of pressure in their living quarters and are transported a saturation dive because if a diver becomes unwell to the sea bed in a detachable diving bell. The com- the extreme slowness with which decompression can copyright. pression chamber and transfer chamber are anchored be carried out means that immediate medical atten- to the deck of an oil production platform, and the tion is not readily available. -
Notes on Diving in Ancient Egypt
A Brief History of Underwater Enterprise and Exploration The incentives to risk one’s life underwater from the earliest records of diving: 1) Subsistence and general aquatic harvest 2) Commerce/salvage 3) Warfare A sponge diver about to take the plunge, Classical Greece ca. 500 BCE The beginnings: subsistence in Ancient Egypt: skin divers netting fish in the Nile th Tomb of Djar, 11 Dynasty (ca. 2000 BCE) ‘Pull out well! (It is) a Happy day! Measure you, measure you, for you, good great fishes’ Text and image from the tomb of Ankhtifi (ca. 2100 BCE) The beginnings: other kinds of aquatic/underwater harvest: mother of pearl (left) and sponge diving (right) Mesopotamia (southern Iraq, ca. 2500 BCE) Classical Greece (ca. 500 BCE) The so-called ‘Standard of Ur’: a mosaic of lapis lazuli A sponge diver about to take the (from the exotic region of Afghanistan) and mother of plunge with a knife and a sack, the pearl (from the exotic source of a seabed), deposited in jar was also deposited in an elite tomb an elite tomb in Mesopotamia The beginnings: in search of exotic and high value things (things difficult to access/procure) Epic of Gilgamesh (composed in Mesopotamia no later than ca. 2100 BCE) records a heroic dive after a ‘plant of immortality’ on the seabed ‘He tied heavy stones *to his feet+ They pulled him down into the deep [and he saw the plant] He took the plant though it pricked his hands He cut the heavy stones from his feet The sea cast him up upon the shore’ The value of mother of pearl and sea sponge resides, in part, in the process of procuring them The beginnings: salvaging lost cargoes (lost valuable things) Scyllias and his daughter Hydna: the first professional divers known by name, famed for salvaging huge volumes of gold and silver (tribute and booty) from a Persian fleet in the Aegean that lost many ships in a storm (ca. -
ECHM-EDTC Educational and Training Standards for Diving and Hyperbaric Medicine 2011
ECHM-EDTC Educational and Training Standards for Diving and Hyperbaric Medicine 2011 EDUCATIONAL AND TRAINING STANDARDS FOR PHYSICIANS IN DIVING AND HYPERBARIC MEDICINE Written by Joint Educational Subcommittee of the European Committee for Hyperbaric Medicine (ECHM) and the European Diving Technical Committee (EDTC) List of content: Foreword ..................................................................................................................................................2 1. Introduction...........................................................................................................................................3 2. Definition of jobs...................................................................................................................................4 3. Training programs ................................................................................................................................6 4. Content of modules ..............................................................................................................................7 5. Standards for course organisation and certification.............................................................................9 5.1. Teaching courses..........................................................................................................................9 5.2. Modules and course organisation.................................................................................................9 5.3. Recognition of an expert.............................................................................................................10 -
DNVGL-OS-E402 Diving Systems
OFFSHORE STANDARDS DNVGL-OS-E402 Edition January 2017 Diving systems The content of this service document is the subject of intellectual property rights reserved by DNV GL AS ("DNV GL"). The user accepts that it is prohibited by anyone else but DNV GL and/or its licensees to offer and/or perform classification, certification and/or verification services, including the issuance of certificates and/or declarations of conformity, wholly or partly, on the basis of and/or pursuant to this document whether free of charge or chargeable, without DNV GL's prior written consent. DNV GL is not responsible for the consequences arising from any use of this document by others. The electronic pdf version of this document, available free of charge from http://www.dnvgl.com, is the officially binding version. DNV GL AS FOREWORD DNV GL offshore standards contain technical requirements, principles and acceptance criteria related to classification of offshore units. © DNV GL AS January 2017 Any comments may be sent by e-mail to [email protected] This service document has been prepared based on available knowledge, technology and/or information at the time of issuance of this document. The use of this document by others than DNV GL is at the user's sole risk. DNV GL does not accept any liability or responsibility for loss or damages resulting from any use of this document. CHANGES – CURRENT This document supersedes DNV-OS-E402 Offshore standard for Diving systems, October 2010 and DNV-DS- E403 Standard for Surface Diving Systems, July 2012 Changes in this document are highlighted in red colour. -
Download the Dci Whitepaper
Presented by London Diving Chamber in association with E-Med (www.londondivingchamber.co.uk / www.e-med.co.uk) Decompression Illness Advice Background Information The increasing popularity of SCUBA diving and growth of commercial diving has increased the incidence of decompression illness (DCI). As more people of varying ages and fitness dive more often, helped by developments in technology to go deeper and for longer, then doctors will see more cases of this condition. At our Hyperbaric Chamber in London we see many cases of DCI in divers who have observed all the rules and stayed within their tables or computer algorithms, but still develop DCI. No diver, diving school or independent instructor should think that they are immune to DCI. Here we explain how it can develop, how it is diagnosed and how it is treated. Pathophysiology Direct effects of increasing pressure occur only on the gas filled spaces in the body. The human body is primarily made of water, which is non-compressible and transmits pressure evenly. However, the gases in hollow organs - lungs, middle ear, sinuses, poorly filled teeth, bowels, and those dissolved in the blood - are at the mercy of pressure changes. The physical behaviour of gases is governed by the following 3 gas laws. They define the physics and problems involved in descending and ascending in water. To understand how DCI can occur and how it is treated, a diver needs to understand these 3 laws. Boyles Law The volume of a given mass of gas is inversely proportional to the pressure being exerted on it (temperature remaining steady). -
IMCA D022 the Diving Supervisor's Manual
AB The International Marine Contractors Association The Diving Supervisor’s Manual IMCA D 022 www.imca-int.com May 2000, incorporating the May 2002 erratum AB The International Marine Contractors Association (IMCA) is the international trade association representing offshore, marine and underwater engineering companies. IMCA promotes improvements in quality, health, safety, environmental and technical standards through the publication of information notes, codes of practice and by other appropriate means. Members are self-regulating through the adoption of IMCA guidelines as appropriate. They commit to act as responsible members by following relevant guidelines and being willing to be audited against compliance with them by their clients. There are two core committees that relate to all members: Safety, Environment & Legislation Training, Certification & Personnel Competence The Association is organised through four distinct divisions, each covering a specific area of members’ interests: Diving, Marine, Offshore Survey, Remote Systems & ROV. There are also four regional sections which facilitate work on issues affecting members in their local geographic area – Americas Deepwater, Asia-Pacific, Europe & Africa and Middle East & India. IMCA D 022 The Diving Supervisor’s Manual was produced for IMCA, under the direction of its Diving Division Management Committee, by Paul Williams. www.imca-int.com/diving The information contained herein is given for guidance only and endeavours to reflect best industry practice. For the avoidance of doubt no legal liability shall attach to any guidance and/or recommendation and/or statement herein contained. The Diving Supervisor’s Manual First edition, 2000 Published by The International Marine Contractors Association Carlyle House, 235 Vauxhall Bridge Road, London SW1V 1EJ, UK www.imca-int.com © IMCA 2000 ISBN: 1-903513-00-6 The Diving Supervisor’s Manual Chapter 1 - Introduction......................................................................................................... -
Saturation Diving Is Used for Deep Salvage Or Recovery Using U.S
CHAPTER 15 6DWXUDWLRQ'LYLQJ 15-1 INTRODUCTION 15-1.1 Purpose. The purpose of this chapter is to familiarize divers with U.S. Navy satu- ration diving systems and deep diving equipment. 15-1.2 Scope. Saturation diving is used for deep salvage or recovery using U.S. Navy deep diving systems or equipment. These systems and equipment are designed to support personnel at depths to 1000 fsw for extended periods of time. SECTION ONE — DEEP DIVING SYSTEMS 15-2 APPLICATIONS The Deep Diving System (DDS) is a versatile tool in diving and its application is extensive. Most of today’s systems employ a multilock deck decompression chamber (DDC) and a personnel transfer capsule (PTC). Non-Saturation Diving. Non-saturation diving can be accomplished with the PTC pressurized to a planned depth. This mode of operation has limited real time application and therefore is seldom used in the U.S. Navy. Saturation Diving. Underwater projects that demand extensive bottom time (i.e., large construction projects, submarine rescue, and salvage) are best con- ducted with a DDS in the saturation mode. Conventional Diving Support. The DDC portion of a saturation system can be employed as a recompression chamber in support of conventional, surface- supplied diving operations. 15-3 BASIC COMPONENTS OF A SATURATION DIVE SYSTEM The configuration and the specific equipment composing a deep diving system vary greatly based primarily on the type mission for which it is designed. Modern systems however, have similar major components that perform the same functions despite their actual complexity. Major components include a PTC, a PTC handling system, and a DDC. -
Training Objectives for a Diving Medical Physician
The Diving Medical Advisory Committee Training Objectives for a Diving Medicine Physician This guidance includes all the training objectives agreed by the Diving Medical Advisory Committee, the European Diving Technology Committee and the European Committee for Hyperbaric Medicine in 2011. Rev 1 - 2013 INTRODUCTION The purpose of this document is to define more closely the training objectives in diving physiology and medicine that need to be met by doctors already fully accredited or board-certified in a clinical speciality to national standards. It is based on topic headings that were originally prepared for a working group of European Diving Technology Committee (EDTC) and the European Committee of Hyperbaric Medicine (ECHM) as a guide for diving medicine some 20 years ago by J.Desola (Spain), T.Nome (Norway) & D.H.Elliott (U.K.). The training now required for medical examiners of working divers and for specialist diving medicine physicians was based on a EDTC/ECHM standard 1999 and subsequently has been enhanced by the Diving Medical Advisory Committee (DMAC), revised and agreed in principle by DMAC, EDTC and ECHM in 2010 and then ratified by EDTC and ECHM in 2011. The requirements now relate to an assessment of competence, the need for some training in occupational medicine, the need for maintenance of those skills by individual ‘refresher training’. Formal recognition of all this includes the need to involve a national authority for medical education. These objectives have been applied internationally to doctors who provide medical support to working divers. (Most recreational instructors and dive guides are, by their employment, working divers and so the guidance includes the relevant aspects of recreational diving. -
Baromedicine (Diving & Hyperbaric Medicine)
Baromedicine (diving & hyperbaric medicine) GENERAL POINTS • The training programme will share the common trunk of basic training (BST) of the other specialities followed by a period of Higher Specialist Training specific to diving medicine and hyperbaric medicine. • The program will include the four hours of formal academic activities each week as required for approval by the SAC. • For the purposes of completion of training a 40-hour week (full time) must be worked either at the Hyperbaric Unit or in the Medicine, E & A or any other speciality relevant to Baromedicine including an attachment to the Hyperbaric Unit on-call team (over and above any required duty rotas with other departments. • Part time trainees will have their training recognized pro-rata; 13 weeks of pregnancy leave (in addition to the normal entitlement of leave) can be recognized as part of the training period; however any longer period of leave will not be considered as training. Minimum training must be at least 50% whole time in order to be recognized as training. • Previous training and experience equivalent to required training and experience in Baromedicine both at BST and HST level shall be recognised following review as having completed the relevant training and experience requirements on a case by case basis • The trainee shall: 1. Record all stages of training and activities related to training in a log-book; 2. Have sufficient linguistic capabilities to communicate with patients and colleagues General Professional Training (Basic Medical Training; Common Trunk) Entry Requirements Recognised First Degree in Medicine and full registration with the Medical Council of Malta. -
Divers Things: Collecting the World Under Water
Hist. Sci., xlix (2011) DIVERS THINGS: COLLECTING THE WORLD UNDER WATER James Delbourgo Rutgers University I do not pretend to have been to the bottom of the sea. Robert Boyle, 1670 matter out of place Consider the following object as shown in an early eighteenth-century engraving (Figure 1). It is a piece of wood — not a highly worked thing, not ingeniously wrought, though it is an artefact of human labour rather than a natural body. Or is it? In the engraving, the piece of wood disappears: it is visible towards the bottom of the image, a sober pointed stump, but it is quickly subsumed by a second, enveloping entity that swirls about it in an embroidering corkscrew. What elements are here intertwin- ing? The legend beneath the engraving identifies the artefact thus: “Navis, prope Hispaniolam ann Dom 1659. Naufragium passae, asser, a clavo ferreo transfixus, corallio aspero candicante I. B. Obsitus, & a fundo maris anno 1687 expiscatus.” It describes a stake or spar from a ship wrecked off Hispaniola in 1659, which is transfixed by both an iron bolt and rough whitish coral, fished out of the depths in 1687. This collector’s item is neither the cliché of exemplarily beautiful coral nor straightforwardly a historical relic, but an intertwining of the two: the “transfixing” of a remnant of maritime technology by an aquatic agent. It exhibits the very proc- ess of encrustation. The spar is juxtaposed with the image of a jellyfish, and more proximately, engravings of Spanish silver coins, also encrusted with coral: “Nummus argenteus Hispanicus … incrustatus”, one of the labels reads.1 Still another illustra- tion, in a separate engraving, bears the legend “Frustum ligni e mari atlantico erutum cui adhaerescunt conchae anatiferae margine muricata” — a piece of “drift wood beset with bernecle [sic] shells”. -
The Fine Art of Extreme Exploration Dives
tech talk The fine art of conducting Extreme Exploration Dives 69 X-RAY MAG : 31 : 2009 EDITORIAL FEATURES TRAVEL NEWS EQUIPMENT BOOKS SCIENCE & ECOLOGY EDUCATION PROFILES PORTFOLIO CLASSIFIED tech talk How to master the complexities of extensive explorations of underwater caves and other overhead environments Our case story will be a recent actual a depth of 200 meter and ranging more exploration where the dive profile posed a than 700 meters from the entrance. On few challenges: the actual dive date we may then find - Distance of 700 meters from the that these preset definitions of depth and entrance to the end point. time do not match up with the actual - The depth of 164 meters at the begin- diving profile, mental and physical fitness ning of the actual exploration and 186 and the equipment at hand. This leads to m at the end. postponements and delays which may run - Duration of the dive which including into a year, or at least several month of deco stops required a run time 9 hours waiting, which is often the case. It is thus and 46 minutes submersed. necessary to stay fit and keep practicing all the relevant technical skills. In this case However, even if this specific dive profile I kept up a regular schedule doing many presented us with some exceptional chal- speleological/cave dives where I could lenges, it wasn’t fundamentally different rehearse practice stage and travel proce- from other technical dives in terms of dures as often as possible, as well as prac- safety and logistic considerations. -
Manufacture of Sonardyne 'AODC' Diving Bell Emergency
Information Note No. 1561 – May 2021 Manufacture of Sonardyne ‘AODC’ Diving Bell Emergency Transponders Discontinued 1 BACKGROUND Sonardyne International Ltd has recently announced the obsolescence of its types 7097 & 7192 Diving Bell Emergency Transponders. These were often referred to as the Sonardyne ‘AODC emergency transponders.’ Today, the requirement for emergency locating devices to be fitted to diving bells is mandated within the IMO Code of Safety for Diving Systems 1995 and there is clearly a continuing need for properly specified locating devices to be fitted to diving bells. This Information Note is intended to: • make IMCA Diving Division Members aware of the discontinuation of the Sonardyne products; • draw Members’ attention to Sonardyne Technical Bulletin No. TB21-001 (Issue 01) RJE ATT400 AODC Transponder Compatibility (dated 12th January 2021), which directs users of the discontinued Sonardyne transponders to the supplier of an equivalent alternative system which has been identified and tested by Sonardyne; and • alleviate the concerns of diving contractors with respect to the continuing availability of suitable diving bell locating devices. 2 Current IMO Requirements Paragraph 2.12.5 of the IMO Code of Safety for Diving Systems 1995 sets the requirements for diving bell emergency locating devices i.e. the diving bell emergency transponder and the diver-held interrogator receiver. Copies of the Code may be purchased from IMO using the following link: Publications (imo.org) IMCA store terms and conditions (https://www.imca-int.com/legal-notices/terms/) apply to all downloads from IMCA’s website, including this document. IMCA makes every effort to ensure the accuracy and reliability of the data contained in the documents it publishes, but IMCA shall not be liable for any guidance and/or recommendation and/or statement herein contained.