Microorganisms Living on Macroalgae: Diversity, Interactions, and Biotechnological Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomics 98 (2011) 370–375
Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc. -
Cone-Forming Chloroflexi Mats As Analogs of Conical
268 Appendix 2 CONE-FORMING CHLOROFLEXI MATS AS ANALOGS OF CONICAL STROMATOLITE FORMATION WITHOUT CYANOBACTERIA Lewis M. Ward, Woodward W. Fischer, Katsumi Matsuura, and Shawn E. McGlynn. In preparation. Abstract Modern microbial mats provide useful process analogs for understanding the mechanics behind the production of ancient stromatolites. However, studies to date have focused on mats composed predominantly of oxygenic Cyanobacteria (Oxyphotobacteria) and algae, which makes it difficult to assess a unique role of oxygenic photosynthesis in stromatolite morphogenesis, versus different mechanics such as phototaxis and filamentous growth. Here, we characterize Chloroflexi-rich hot spring microbial mats from Nakabusa Onsen, Nagano Prefecture, Japan. This spring supports cone-forming microbial mats in both upstream high-temperature, sulfidic regions dominated by filamentous anoxygenic phototrophic Chloroflexi, as well as downstream Cyanobacteria-dominated mats. These mats produce similar morphologies analogous to conical stromatolites despite metabolically and taxonomically divergent microbial communities as revealed by 16S and shotgun metagenomic sequencing and microscopy. These data illustrate that anoxygenic filamentous microorganisms appear to be capable of producing similar mat morphologies as those seen in Oxyphotobacteria-dominated systems and commonly associated with 269 conical Precambrian stromatolites, and that the processes leading to the development of these features is more closely related with characteristics such as hydrology and cell morphology and motility. Introduction Stromatolites are “attached, lithified sedimentary growth structures, accretionary away from a point or limited surface of initiation” (Grotzinger and Knoll 1999). Behind this description lies a wealth of sedimentary structures with a record dating back over 3.7 billion years that may be one of the earliest indicators of life on Earth (Awramik 1992, Nutman et al. -
Evolution of the 3-Hydroxypropionate Bicycle and Recent Transfer of Anoxygenic Photosynthesis Into the Chloroflexi
Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi Patrick M. Shiha,b,1, Lewis M. Wardc, and Woodward W. Fischerc,1 aFeedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608; bEnvironmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and cDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Edited by Bob B. Buchanan, University of California, Berkeley, CA, and approved August 21, 2017 (received for review June 14, 2017) Various lines of evidence from both comparative biology and the provide a hard geological constraint on these analyses, the timing geologic record make it clear that the biochemical machinery for of these evolutionary events remains relative, thus highlighting anoxygenic photosynthesis was present on early Earth and provided the uncertainty in our understanding of when and how anoxy- the evolutionary stock from which oxygenic photosynthesis evolved genic photosynthesis may have originated. ca. 2.3 billion years ago. However, the taxonomic identity of these A less recognized alternative is that anoxygenic photosynthesis early anoxygenic phototrophs is uncertain, including whether or not might have been acquired in modern bacterial clades relatively they remain extant. Several phototrophic bacterial clades are thought recently. This possibility is supported by the observation that to have evolved before oxygenic photosynthesis emerged, including anoxygenic photosynthesis often sits within a derived position in the Chloroflexi, a phylum common across a wide range of modern the phyla in which it is found (3). Moreover, it is increasingly environments. Although Chloroflexi have traditionally been thought being recognized that horizontal gene transfer (HGT) has likely to be an ancient phototrophic lineage, genomics has revealed a much played a major role in the distribution of phototrophy (8–10). -
Yu-Chen Ling and John W. Moreau
Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig. -
Microbial Community Structure in Rice, Crops, and Pastures Rotation Systems with Different Intensification Levels in the Temperate Region of Uruguay
Supplementary Material Microbial community structure in rice, crops, and pastures rotation systems with different intensification levels in the temperate region of Uruguay Sebastián Martínez Table S1. Relative abundance of the 20 most abundant bacterial taxa of classified sequences. Relative Taxa Phylum abundance 4,90 _Bacillus Firmicutes 3,21 _Bacillus aryabhattai Firmicutes 2,76 _uncultured Prosthecobacter sp. Verrucomicrobia 2,75 _uncultured Conexibacteraceae bacterium Actinobacteria 2,64 _uncultured Conexibacter sp. Actinobacteria 2,14 _Nocardioides sp. Actinobacteria 2,13 _Acidothermus Actinobacteria 1,50 _Bradyrhizobium Proteobacteria 1,23 _Bacillus Firmicutes 1,10 _Pseudolabrys_uncultured bacterium Proteobacteria 1,03 _Bacillus Firmicutes 1,02 _Nocardioidaceae Actinobacteria 0,99 _Candidatus Solibacter Acidobacteria 0,97 _uncultured Sphingomonadaceae bacterium Proteobacteria 0,94 _Streptomyces Actinobacteria 0,91 _Terrabacter_uncultured bacterium Actinobacteria 0,81 _Mycobacterium Actinobacteria 0,81 _uncultured Rubrobacteria Actinobacteria 0,77 _Xanthobacteraceae_uncultured forest soil bacterium Proteobacteria 0,76 _Streptomyces Actinobacteria Table S2. Relative abundance of the 20 most abundant fungal taxa of classified sequences. Relative Taxa Orden abundance. 20,99 _Fusarium oxysporum Ascomycota 11,97 _Aspergillaceae Ascomycota 11,14 _Chaetomium globosum Ascomycota 10,03 _Fungi 5,40 _Cucurbitariaceae; uncultured fungus Ascomycota 5,29 _Talaromyces purpureogenus Ascomycota 3,87 _Neophaeosphaeria; uncultured fungus Ascomycota -
Fecal Microbiota Alterations and Small Intestinal Bacterial Overgrowth in Functional Abdominal Bloating/Distention
J Neurogastroenterol Motil, Vol. 26 No. 4 October, 2020 pISSN: 2093-0879 eISSN: 2093-0887 https://doi.org/10.5056/jnm20080 JNM Journal of Neurogastroenterology and Motility Original Article Fecal Microbiota Alterations and Small Intestinal Bacterial Overgrowth in Functional Abdominal Bloating/Distention Choong-Kyun Noh and Kwang Jae Lee* Department of Gastroenterology, Ajou University School of Medicine, Suwon, Gyeonggi-do, Korea Background/Aims The pathophysiology of functional abdominal bloating and distention (FABD) is unclear yet. Our aim is to compare the diversity and composition of fecal microbiota in patients with FABD and healthy individuals, and to evaluate the relationship between small intestinal bacterial overgrowth (SIBO) and dysbiosis. Methods The microbiota of fecal samples was analyzed from 33 subjects, including 12 healthy controls and 21 patients with FABD diagnosed by the Rome IV criteria. FABD patients underwent a hydrogen breath test. Fecal microbiota composition was determined by 16S ribosomal RNA amplification and sequencing. Results Overall fecal microbiota composition of the FABD group differed from that of the control group. Microbial diversity was significantly lower in the FABD group than in the control group. Significantly higher proportion of Proteobacteria and significantly lower proportion of Actinobacteria were observed in FABD patients, compared with healthy controls. Compared with healthy controls, significantly higher proportion of Faecalibacterium in FABD patients and significantly higher proportion of Prevotella and Faecalibacterium in SIBO (+) patients with FABD were found. Faecalibacterium prausnitzii, was significantly more abundant, but Bacteroides uniformis and Bifidobacterium adolescentis were significantly less abundant in patients with FABD, compared with healthy controls. Significantly more abundant Prevotella copri and F. -
Concerted Gene Recruitment in Early Plant Evolution Jinling Huang* and J Peter Gogarten†
Open Access Research2008HuangVolume and 9, Issue Gogarten 7, Article R109 Concerted gene recruitment in early plant evolution Jinling Huang* and J Peter Gogarten† Addresses: *Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA. †Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA. Correspondence: Jinling Huang. Email: [email protected] Published: 8 July 2008 Received: 30 April 2008 Revised: 24 June 2008 Genome Biology 2008, 9:R109 (doi:10.1186/gb-2008-9-7-r109) Accepted: 8 July 2008 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2008/9/7/R109 © 2008 Huang and Gogarten; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Eukaryotic<p>Analysesto the split ofhorizontal ofred the algae red gene andalgal transfergreen <it>Cyanidioschyzon</it> plants.</p> genome identified 37 genes that were acquired from non-organellar sources prior Abstract Background: Horizontal gene transfer occurs frequently in prokaryotes and unicellular eukaryotes. Anciently acquired genes, if retained among descendants, might significantly affect the long-term evolution of the recipient lineage. However, no systematic studies on the scope of anciently acquired genes and their impact on macroevolution are currently available in eukaryotes. Results: Analyses of the genome of the red alga Cyanidioschyzon identified 37 genes that were acquired from non-organellar sources prior to the split of red algae and green plants. -
1 Genomic Analysis of the Mesophilic Thermotogae Genus Mesotoga Reveals
bioRxiv preprint doi: https://doi.org/10.1101/322537; this version posted October 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic analysis of the mesophilic Thermotogae genus Mesotoga reveals 2 phylogeographic structure and genomic determinants of its distinct metabolism 3 Camilla L. Nesbø1,2,3* , Rhianna Charchuk1, Stephen M. J. Pollo1, Karen Budwill4, Ilya V. 4 Kublanov5, Thomas H.A. Haverkamp3,6 and Julia Foght1 5 1 Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada 6 2 BioZone, Department of Chemical Engineering and Applied Chemistry, Wallberg 7 Building, University of Toronto, Toronto, ON, Canada. 8 3 Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, 9 University of Oslo, Blindern, Oslo, Norway. 10 4 InnoTech Alberta, Edmonton, Alberta, Canada T6N 1E4 11 5 Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, 12 Russian Academy of Sciences, Moscow, Russia 13 6 Norwegian Veterinary Institute, Oslo, Norway. 14 15 *Corresponding Authors: [email protected] 16 Department of Biological Sciences, CW 405 Biological Sciences Bldg., 11455 17 Saskatchewan Drive , University of Alberta, Edmonton, Alberta, Canada, T6G 2E9 18 19 Running title: Comparative genomic analysis of Mesotoga. 20 Key words: Thermotogae, subsurface, gene recombination, oil reservoir, phylogeny, 21 sulfur metabolism, hydrogenase, anaerobe. 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/322537; this version posted October 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Gut Microbiome and Serum Metabolome Alterations in Isolated Dystonia
Gut microbiome and serum metabolome alterations in isolated dystonia Yongfeng Hu ( [email protected] ) Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Pathogen Biology https://orcid.org/0000-0003-3799-5526 Ling yan Ma Center for Movement disorders Min Cheng China Institute of Veterinary Drug Control Bo Liu Institute of pathogen Biology Hua Pan Center for Movement Disorders Jian Yang Institute of Pathogen Biology Tao Feng Center for Movement Disorders Qi Jin Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Pathogen Biology Research Keywords: Dystonia, Gut microbiome, Serum metabolomics, Multi-omics analysis Posted Date: January 6th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-139606/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background Dystonia is a complex neurological movement disorder characterised by involuntary muscle contractions. The relationship between the gut microbiota and isolated dystonia remains poorly explored. Methods We collected faeces and blood samples to study the microbiome and the serum metabolome from a cohort of 57 drug-naïve isolated dystonia patients and 27 age- and environment-matched healthy individuals. We rst sequenced the V4 regions of the 16S rDNA gene from all faeces samples. Further, we performed metagenomic sequencing of gut microbiome and non-targeted metabolomics proling of serum from dystonia patients with signicant dysbiosis. Results Gut microbial β-diversity was signicantly different, with a more heterogeneous community structure among dystonia individuals than healthy controls, while no difference in α-diversity was found. Gut microbiota in dystonia patients was enriched with Blautia obeum, Dorea longicatena and Eubacterium hallii, but depleted with Bacteroides vulgatus and Bacteroides plebeius. -
Succession and Cazyme Expression of Marine Bacterial
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.416354; this version posted December 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Sweet and magnetic: Succession and CAZyme expression of marine bacterial communities encountering a mix of alginate and pectin particles Carina Bunse1,2,*, Hanna Koch3,4,*, Sven Breider3, Meinhard Simon1,3 and Matthias Wietz2,3# 1Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Germany 2Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Germany 3Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Germany 4Department of Microbiology, Radboud University Nijmegen, The Netherlands *These authors contributed equally to this work. #Corresponding author HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Am Handelshafen 12 27570 Bremerhaven Germany Email: [email protected] Telephone +49-471-48311454 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.416354; this version posted December 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Polysaccharide particles are an important nutrient source and microhabitat for marine bacteria. However, substrate-specific bacterial dynamics in a mixture of particle types with different polysaccharide composition, as likely occurring in natural habitats, are undescribed. -
Gene Expression Analysis of Zobellia Galactanivorans During The
ORIGINAL RESEARCH published: 21 September 2017 doi: 10.3389/fmicb.2017.01808 Gene Expression Analysis of Zobellia galactanivorans during the Degradation of Algal Polysaccharides Reveals both Substrate-Specific and Shared Transcriptome-Wide Responses François Thomas 1*, Philippe Bordron 2, 3, 4, Damien Eveillard 5 and Gurvan Michel 1* 1 Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France, 2 Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, FR2424, Analysis and Bioinformatics for Marine Science, Station Biologique de 3 4 Edited by: Roscoff, Roscoff, France, Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile, Center for 5 Catherine Ayn Brissette, Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile, Université de Nantes, Laboratoire des University of North Dakota, Sciences du Numérique de Nantes, Centre National de la Recherche Scientifique, ECN, IMTA, Nantes, France United States Reviewed by: Flavobacteriia are recognized as key players in the marine carbon cycle, due to their Thomas Schweder, ability to efficiently degrade algal polysaccharides both in the open ocean and in coastal University of Greifswald, Germany Matthias Wietz, regions. The chemical complexity of algal polysaccharides, their differences between University of Oldenburg, Germany algal groups and variations through time and space, imply that marine flavobacteria *Correspondence: have evolved dedicated degradation mechanisms and regulation of their metabolism François Thomas [email protected] during interactions with algae. In the present study, we report the first transcriptome-wide Gurvan Michel gene expression analysis for an alga-associated flavobacterium during polysaccharide [email protected] degradation. -
Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes
Article Degradation of Marine Algae‐Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota Miaomiao Li 1,2, Qingsen Shang 1, Guangsheng Li 3, Xin Wang 4,* and Guangli Yu 1,2,* 1 Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and pharmacy, Ocean University of China, Qingdao 266003, China; [email protected] (M.L.); [email protected] (Q.S.) 2 Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 DiSha Pharmaceutical Group, Weihai 264205, China; gsli‐[email protected] 4 State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control and Zhejiang Key Laboratory of Food Microbiology, Academy of Agricultural Sciences, Hangzhou 310021, China * Correspondence: [email protected] (X.W.); [email protected] (G.Y.); Tel.: +86‐571‐8641‐5216 (X.W.); +86‐532‐8203‐1609 (G.Y.) Academic Editor: Paola Laurienzo Received: 2 January 2017; Accepted: 20 March 2017; Published: 24 March 2017 Abstract: Carrageenan, agarose, and alginate are algae‐derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens, Bacteroides ovatus, and Bacteroides uniforms, isolated from human gut microbiota, are studied. Keywords: carrageenan; agarose; alginate; oligosaccharides; Bacteroides xylanisolvens; Bacteroides ovatus; Bacteroides uniforms 1.