Development and Migration a Role for CCR9 in T Lymphocyte

Total Page:16

File Type:pdf, Size:1020Kb

Development and Migration a Role for CCR9 in T Lymphocyte A Role for CCR9 in T Lymphocyte Development and Migration Shoji Uehara, Alexander Grinberg, Joshua M. Farber and Paul E. Love This information is current as of October 2, 2021. J Immunol 2002; 168:2811-2819; ; doi: 10.4049/jimmunol.168.6.2811 http://www.jimmunol.org/content/168/6/2811 Downloaded from References This article cites 47 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/168/6/2811.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. A Role for CCR9 in T Lymphocyte Development and Migration1 Shoji Uehara,* Alexander Grinberg,* Joshua M. Farber,† and Paul E. Love2* CCR9 mediates chemotaxis in response to CCL25/thymus-expressed chemokine and is selectively expressed on T cells in the thymus and small intestine. To investigate the role of CCR9 in T cell development, the CCR9 gene was disrupted by homologous recombination. B cell development, thymic ␣␤-T cell development, and thymocyte selection appeared unimpaired in adult CCR9- deficient (CCR9؊/؊) mice. However, competitive transplantation experiments revealed that bone marrow from CCR9؊/؊ mice was less efficient at repopulating the thymus of lethally irradiated Rag-1؊/؊ mice than bone marrow from littermate CCR9؉/؉ mice. CCR9؊/؊ mice had increased numbers of peripheral ␥␦-T cells but reduced numbers of ␥␦TCR؉ and CD8␣␤؉␣␤TCR؉ intraepithelial lymphocytes in the small intestine. Thus, CCR9 plays an important, although not indispensable, role in regulating .the development and/or migration of both ␣␤؊ and ␥␦؊ T lymphocytes. The Journal of Immunology, 2002, 168: 2811–2819 Downloaded from evelopment of T cells continues into adulthood and re- both cortex and medulla (10, 11). Interestingly, CCL25 is also quires the periodic migration of progenitor cells from the expressed in fetal thymus, raising the possibility that it may par- D bone marrow to the thymus (1, 2). The ordered progres- ticipate in recruiting T progenitor cells to the thymus (12). The sion of thymocytes through distinct stages of development is also only other known site of CCL25 production is the epithelial layer associated with the migration of cells into and between different of the small intestine (11, 13–15). Thus, CCL25 may also be im- thymic microenvironments (3). Chemokines are a group of small portant for the development, homeostasis, and/or function of mu- http://www.jimmunol.org/ (8–14 kDa), mostly basic, structurally related molecules that reg- cosal T lymphocytes. ulate trafficking of leukocytes through interactions with a subset of CCR9 mediates chemotaxis in response to CCL25 (16–19). seven-transmembrane, G protein-coupled receptors (4–8). Several CCR9 is expressed on the majority of immature CD4ϩCD8ϩ (dou- different chemokines are expressed in the thymus, including ble-positive (DP)) thymocytes, is down-regulated during their tran- XCL1/lymphotactin, CCL3/macrophage-inflammatory protein sition to the CD4ϩ or CD8ϩ (single-positive (SP)) stage, and is 3 ␣ ␤ (MIP) -1 , CCL4/MIP-1 , CCL17/thymus and activation-regu- expressed on a minor subset of CD8ϩ lymph node T cells (20, 21). lated chemokine, CCL19/EBI-1 ligand chemokine/MIP-3␤, ϩ CD69 thymocytes demonstrate enhanced CCL25-induced migra- CCL21/6-cysteine chemokine/secondary lymphoid-tissue chemo- Ϫ tion compared with CD69 thymocytes (21, 22), and thymocyte by guest on October 2, 2021 kine, CCL25/thymus-expressed chemokine, and CXCL12/stromal migration in response to CCL25 is augmented by TCR signaling cell-derived factor-1, suggesting that chemokines may play an im- (21). These findings suggest that CCR9 may be involved in regu- portant role in thymopoiesis (4–8). Although a great deal has been lating T cell migration within the thymus, particularly during thy- learned about the function of chemokines and chemokine receptors mocyte selection. Approximately half of all ␥␦TCRϩ thymocytes in regulating the migration of mature lymphocytes, little informa- ␥␦ tion is available concerning their potential role in lymphocyte de- and peripheral -T cells express CCR9, and these cells migrate to ␥␦ velopment. CCL25 (21). The expression of CCR9 on specific -T cell subsets ␥ ϩ ␥ ϩ Expression of CCL25/thymus-expressed chemokine was ini- (e.g., V 2 , but not V 3 ) indicates that CCR9 may also function ␥␦ tially detected in medullary dendritic cells (9), but recent experi- in the development and/or trafficking of -T cells (21). Finally, ments indicate that it is also expressed by thymic epithelial cells in pre-pro-B cells in the bone marrow respond to CCL25, raising the possibility that CCR9 may regulate the early stages of B cell de- velopment (23). *Laboratory of Mammalian Genes and Development, National Institute of Child To investigate the role of CCR9 during lymphocyte develop- † Health and Human Development, and Laboratory of Clinical Investigation, National Ϫ/Ϫ Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, ment, we generated CCR9-deficient (CCR9 ) mice by homol- MD 20892 ogous recombination. Surprisingly, both ␣␤-T cell and B cell de- Ϫ/Ϫ Received for publication November 27, 2001. Accepted for publication January velopment appeared normal in adult CCR9 mice. In addition, 18, 2002. thymocyte selection of ␣␤-lineage T cells was unaffected in The costs of publication of this article were defrayed in part by the payment of page CCR9Ϫ/Ϫ mice, even through most DP thymocytes express CCR9 charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. at high levels and respond to CCL25. However, the results of com- 1 This work was supported in part by an Intramural AIDS Targeted Antiviral Program petitive bone marrow transplantation experiments demonstrated Ϫ Ϫ grant. S.U. is supported by Japan Society for the Promotion of Science Research that CCR9 / bone marrow cells had a reduced capacity to re- Fellowships for Japanese Biomedical and Behavioral Researchers at the National populate the thymus compared with bone marrow cells from Institutes of Health. CCR9ϩ/ϩ mice. These results suggest that CCR9 may be in- 2 Address correspondence and reprint requests to Dr. Paul E. Love, Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human volved in regulating the migration of progenitor cells to the Development, National Institutes of Health, Bethesda, MD 20892. E-mail address: thymus or the retention of T progenitor cells in the thymus. [email protected] Ϫ Ϫ CCR9 / mice also contained increased numbers of peripheral 3 Abbreviations used in this paper: MIP, macrophage-inflammatory protein; DN, dou- ␥␦ ␥␦ ϩ ble negative; DP, double positive; IEL, intraepithelial lymphocyte; TN, triple nega- -T cells but reduced numbers of TCR intraepithelial lym- tive; ES cell, embryonic stem cell. phocytes (IEL) in the small intestine. Thus, CCR9 also plays an Copyright © 2002 by The American Association of Immunologists 0022-1767/02/$02.00 2812 CHARACTERIZATION OF CCR9-DEFICIENT MICE important role in regulating the development and/or migration 107 cell/ml in RPMI 1640 plus 0.5% BSA, and 100 ␮l cell suspension was of ␥␦-T lymphocytes. added to an insert in a well with 600 ␮l medium. After equilibration at 37°C for 1 h chemokines were added to the wells and the plates were incubated for an additional 2 h before cells were harvested, collected by Materials and Methods centrifugation, and counted. Duplicate wells were used for each condition. Generation of CCR9-deficient mice Murine CXCL12 and CCL25 were obtained from PeproTech (Rocky Hill, NJ) and R&D Systems (Minneapolis, MN), respectively. An ϳ15-kb fragment containing the mouse CCR9 gene was cloned from a ␭ 129 SvJ genomic library (Stratagene, La Jolla, CA). A 7-kb EcoRV Northern blotting fragment and a 1.6-kb HindIII-EcoRV fragment were then cloned into the XpPNT (NEO/TK) vector (24). The targeting construct was linearized with Total RNA was isolated from various organs from B6 and Rag-1Ϫ/Ϫ mice NotI and electroporated into 2 ϫ 107 embryonic stem cells (ES cells). After using TRIzol (Life Technologies, Gaithersburg, MD). Twenty micrograms transfection, ES cells were selected in the presence of G418 and gancy- of total RNA was fractionated on a 1% agarose/formaldehyde gel and clovir and screened for homologous recombination. Chimeric mice were transferred onto a GeneScreen Plus nylon membrane (New England Nu- generated from CCR9ϩ/Ϫ ES cell clones by injection into B6 blastocysts, clear, Boston, MA). The membrane was hybridized with 32P-labeled cDNA and germline transmission of the mutant allele was confirmed by Southern fragments encoding mouse CCR9, mouse CCL25, or human EF-1␣. blot analysis of DNA obtained from tail biopsies. H-Y (25), P14 (26), and AND (27) ␣␤TCR transgenes were bred into Bone marrow chimeras the CCR9Ϫ/Ϫ background. The phenotype of thymocytes and peripheral T ϩ/ϩ cells was analyzed by staining with PE-labeled anti-CD4, CyChrome-la- Bone marrow cells were isolated from femurs of CCR9 (CD45.2), Ϫ/Ϫ a beled anti-CD8␣, and FITC-labeled anti-H-Y clonotypic receptor (T3.70), CCR9 (CD45.2), and B6.SJL-Ptprc /BoAiTac mice (B6.CD45.1; Tac- 6 anti-TCR-V␣ 2 (P14), or anti-TCR-V␣ 11 (AND) mAb as previously de- onic Farms, Lexington, KY).
Recommended publications
  • Disease Lymphocytes in Small Intestinal Crohn's Chemokine
    Phenotype and Effector Function of CC Chemokine Receptor 9-Expressing Lymphocytes in Small Intestinal Crohn's Disease This information is current as of September 29, 2021. Masayuki Saruta, Qi T. Yu, Armine Avanesyan, Phillip R. Fleshner, Stephan R. Targan and Konstantinos A. Papadakis J Immunol 2007; 178:3293-3300; ; doi: 10.4049/jimmunol.178.5.3293 http://www.jimmunol.org/content/178/5/3293 Downloaded from References This article cites 26 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/178/5/3293.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Phenotype and Effector Function of CC Chemokine Receptor 9-Expressing Lymphocytes in Small Intestinal Crohn’s Disease1 Masayuki Saruta,2*QiT.Yu,2* Armine Avanesyan,* Phillip R. Fleshner,† Stephan R.
    [Show full text]
  • A Subset of CCL25-Induced Gut-Homing T Cells Affects Intestinal Immunity to Infection and Cancer
    ORIGINAL RESEARCH published: 25 February 2019 doi: 10.3389/fimmu.2019.00271 A Subset of CCL25-Induced Gut-Homing T Cells Affects Intestinal Immunity to Infection and Cancer Hongmei Fu 1, Maryam Jangani 1, Aleesha Parmar 1, Guosu Wang 1, David Coe 1, Sarah Spear 2†, Inga Sandrock 3, Melania Capasso 2†, Mark Coles 4, Georgina Cornish 1, Helena Helmby 5 and Federica M. Marelli-Berg 1* 1 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, 2 Bart’s Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, 3 Institute of Immunology, Hannover Medical School, Hannover, 4 5 Edited by: Germany, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom, Department for Immunology Mariagrazia Uguccioni, and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom Institute for Research in Biomedicine (IRB), Switzerland Protective immunity relies upon differentiation of T cells into the appropriate subtype Reviewed by: required to clear infections and efficient effector T cell localization to antigen-rich tissue. Maria Rescigno, Istituto Europeo di Oncologia s.r.l., Recent studies have highlighted the role played by subpopulations of tissue-resident Italy memory (TRM) T lymphocytes in the protection from invading pathogens. The intestinal Fabio Grassi, Institute for Research in Biomedicine mucosa and associated lymphoid tissue are densely populated by a variety of resident (IRB), Switzerland lymphocyte populations, including αβ and γδ CD8+ intraepithelial T lymphocytes (IELs) *Correspondence: and CD4+ T cells. While the development of intestinal γδ CD8+ IELs has been extensively Federica M.
    [Show full text]
  • CC Chemokine Ligand 25 Enhances Resistance to Apoptosis in CD4 T
    [CANCER RESEARCH 64, 7579–7587, October 15, 2004] CC Chemokine Ligand 25 Enhances Resistance to Apoptosis in CD4؉ T Cells from Patients with T-Cell Lineage Acute and Chronic Lymphocytic Leukemia by Means of Livin Activation Zhang Qiuping,1 Xiong Jei,1,2 Jin Youxin,2 Ju Wei,1 Liu Chun,1 Wang Jin,1 Wu Qun,1 Liu Yan,1 Hu Chunsong,3 Yang Mingzhen,4 Gao Qingping,5 Zhang Kejian,5 Sun Zhimin,6 Li Qun,3 Liu Junyan,1 and Tan Jinquan1,3 1Department of Immunology, and Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases and Center for Medical Research, Wuhan University School of Medicine, Wuhan; 2The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai; 3Department of Immunology, College of Basic Medical Sciences, Anhui Medical University, Hefei; 4Department of Hematology, The Affiliated University Hospital, Anhui Medical University, Hefei; 5Department of Hematology, The First and Second Affiliated University Hospital, Wuhan University, Wuhan; and 6Department of Hematology, The Provincial Hospital of Anhui, Hefei, Peoples Republic of China ABSTRACT intestine (8), providing the evidence for distinctive mechanisms of -؉ lymphocyte recruitment. The importance of CCL25/TECK is to li We investigated CD4 and CD8 double-positive thymocytes, CD4 T cense effector/memory cells to access anatomic sites (9, 10). Thus, cells from typical patients with T-cell lineage acute lymphocytic leukemia CCL25/TECK is important for the homing, development, and home- (T-ALL) and T cell lineage chronic lymphocytic leukemia (T-CLL), and MOLT4 T cells in terms of CC chemokine ligand 25 (CCL25) functions of ostasis of T cells, particularly, mucosal T cells.
    [Show full text]
  • Th2 Effector Lymphocytes Regulatory and + Cells Enriched for FOXP3
    CCR8 Expression Identifies CD4 Memory T Cells Enriched for FOXP3 + Regulatory and Th2 Effector Lymphocytes This information is current as Dulce Soler, Tobias R. Chapman, Louis R. Poisson, Lin of September 27, 2021. Wang, Javier Cote-Sierra, Mark Ryan, Alice McDonald, Sunita Badola, Eric Fedyk, Anthony J. Coyle, Martin R. Hodge and Roland Kolbeck J Immunol 2006; 177:6940-6951; ; doi: 10.4049/jimmunol.177.10.6940 Downloaded from http://www.jimmunol.org/content/177/10/6940 References This article cites 68 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/177/10/6940.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology CCR8 Expression Identifies CD4 Memory T Cells Enriched for FOXP3؉ Regulatory and Th2 Effector Lymphocytes Dulce Soler,1 Tobias R.
    [Show full text]
  • Mouse CCL25/TECK Antibody
    Mouse CCL25/TECK Antibody Monoclonal Rat IgG2A Clone # 89827 Catalog Number: MAB4811 DESCRIPTION Species Reactivity Mouse Specificity Detects mouse CCL25/TECK in ELISAs and Western blots. In Western blots, no cross­reactivity with recombinant human CCL1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, recombinant mouse CCL1, 2, 3, 4, 6, 7, 9, 11, 12, 19, 20, 21, 22, 24, and recombinant rat CCL20 is observed. Source Monoclonal Rat IgG2A Clone # 89827 Purification Protein A or G purified from hybridoma culture supernatant Immunogen E. coli­derived recombinant mouse CCL25/TECK Gln24­Asn144 Accession # O35903.1 Endotoxin Level <0.10 EU per 1 μg of the antibody by the LAL method. Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL Recombinant Mouse CCL25/TECK (Catalog # 481­TK) Immunohistochemistry 8­25 µg/mL Perfusion fixed frozen sections of mouse intestine and perfusion fixed frozen sections of rat intestine Mouse CCL25/TECK Sandwich Immunoassay Reagent ELISA Capture 2­8 µg/mL Mouse CCL25/TECK Antibody (Catalog # MAB4811) ELISA Detection 0.1­0.4 µg/mL Mouse CCL25/TECK Biotinylated Antibody (Catalog # BAF481) Standard Recombinant Mouse CCL25/TECK (Catalog # 481­TK) PREPARATION AND STORAGE Reconstitution Reconstitute at 0.5 mg/mL in sterile PBS.
    [Show full text]
  • The Chemokine System in Innate Immunity
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function.
    [Show full text]
  • Polyclonal Anti-CCR1 Antibody
    FabGennix International, Inc. 9191 Kyser Way Bldg. 4 Suite 402 Frisco, TX 75033 Tel: (214)-387-8105, 1-800-786-1236 Fax: (214)-387-8105 Email: [email protected] Web: www.FabGennix.com Polyclonal Anti-CCR1 antibody Catalog Number: CCR1-112AP General Information Product CCR1 Antibody Affinity Purified Description Chemokine (C-C motif) receptor 1 Antibody Affinity Purified Accession # Uniprot: P32246 GenBank: AAH64991 Verified Applications ELISA, WB Species Cross Reactivity Human Host Rabbit Immunogen Synthetic peptide taken within amino acid region 1-50 on human CCR1 protein. Alternative Nomenclature C C chemokine receptor type 1 antibody, C C CKR 1 antibody, CCR1 antibody, CD191 antibody, CMKBR 1 antibody, CMKR1 antibody, HM145 antibody, LD78 receptor antibody, Macrophage inflammatory protein 1 alpha /Rantes receptor antibody, MIP-1alpha-R antibody, MIP1aR antibody, RANTES receptor antibody, SCYAR1 antibody Physical Properties Quantity 100 µg Volume 200 µl Form Affinity Purified Immunoglobulins Immunoglobulin & Concentration 0.65-0.75 mg/ml IgG in antibody stabilization buffer Storage Store at -20⁰C for long term storage. Recommended Dilutions DOT Blot 1:10,000 ELISA 1:10,000 Western Blot 1:500 Related Products Catalog # FITC-Conjugated CCR1.112-FITC Antigenic Blocking Peptide P-CCR1.112 Western Blot Positive Control PC-CCR1.112 Tel: (214)-387-8105, 1-800-786-1236 Fax: (214)-387-8105 Email: [email protected] Web: www.FabGennix.com Overview: Chemokine receptors represent a subfamily of ~20 GPCRs that were originally identified by their roles in immune cell trafficking. Macrophage inflammatory protein-1 alpha (MIP-1 alpha) and RANTES, members of the beta chemokine family of leukocyte chemo- attractants, bind to a common seven-transmembrane-domain human receptor.
    [Show full text]
  • Role of Chemokines in Hepatocellular Carcinoma (Review)
    ONCOLOGY REPORTS 45: 809-823, 2021 Role of chemokines in hepatocellular carcinoma (Review) DONGDONG XUE1*, YA ZHENG2*, JUNYE WEN1, JINGZHAO HAN1, HONGFANG TUO1, YIFAN LIU1 and YANHUI PENG1 1Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051; 2Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China Received September 5, 2020; Accepted December 4, 2020 DOI: 10.3892/or.2020.7906 Abstract. Hepatocellular carcinoma (HCC) is a prevalent 1. Introduction malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges Hepatocellular carcinoma (HCC) is the sixth most common for the treatment of HCC is the prevention or management type of cancer worldwide and the third leading cause of of recurrence and metastasis of HCC. It has been found that cancer-associated death (1). Most patients cannot undergo chemokines and their receptors serve a pivotal role in HCC radical surgery due to the presence of intrahepatic or distant progression. In the present review, the literature on the multi- organ metastases, and at present, the primary treatment methods factorial roles of exosomes in HCC from PubMed, Cochrane for HCC include surgery, local ablation therapy and radiation library and Embase were obtained, with a specific focus on intervention (2). These methods allow for effective treatment the functions and mechanisms of chemokines in HCC. To and management of patients with HCC during the early stages, date, >50 chemokines have been found, which can be divided with 5-year survival rates as high as 70% (3). Despite the into four families: CXC, CX3C, CC and XC, according to the continuous development of traditional treatment methods, the different positions of the conserved N-terminal cysteine resi- issue of recurrence and metastasis of HCC, causing adverse dues.
    [Show full text]
  • 231115072.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Dartmouth Digital Commons (Dartmouth College) Dartmouth College Dartmouth Digital Commons Open Dartmouth: Faculty Open Access Articles 8-2003 CCR5 Mediates Specific iM gration of Toxoplasma Gondii—Primed CD8+ Lymphocytes to Inflammatory Intestinal Epithelial Cells Souphalone Luangsay Dartmouth College Lloyd H. Kasper Dartmouth College Nicolas Rachinel Dartmouth College Laurie A. Minns Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Digestive System Diseases Commons, and the Gastroenterology Commons Recommended Citation Luangsay, Souphalone; Kasper, Lloyd H.; Rachinel, Nicolas; and Minns, Laurie A., "CCR5 Mediates Specific iM gration of Toxoplasma Gondii—Primed CD8+ Lymphocytes to Inflammatory Intestinal Epithelial Cells" (2003). Open Dartmouth: Faculty Open Access Articles. 593. https://digitalcommons.dartmouth.edu/facoa/593 This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. GASTROENTEROLOGY 2003;125:491–500 CCR5 Mediates Specific Migration of Toxoplasma gondii–Primed CD8؉ Lymphocytes to Inflammatory Intestinal Epithelial Cells SOUPHALONE LUANGSAY,* LLOYD H. KASPER,* NICOLAS RACHINEL,* LAURIE A. MINNS,* FRANCK J. D. MENNECHET,* ALAIN
    [Show full text]
  • GM-CSF Modulates the Migratory Phenotype of Vaccine-Induced T Cells by Enhancing CXCR3 Expression
    GM-CSF modulates the migratory phenotype of vaccine-induced T cells by enhancing CXCR3 expression Il-Kang Na Carmen Scheibenbogen Ulrich Keilholz Department of Hematology, Oncology and Transfusion Medicine, Charité Berlin, Campus Benjamin Franklin, Germany. Background Selective chemokine receptor Inflammatory Local tissue microenvironment CXCR3 Tumor tissue CCR4 Skin CCR9 Tissue specific dendritic cells Small intestine Aim of the study Analysis of • Expression of chemokine receptors CXCR3 and CCR4 on vaccine-induced T cells. • Influence of GM-CSF as vaccine adjuvant on chemokine receptor expression. Materials & Methods • Patient samples: stage III/ IV melanoma 1) Tyrosinase peptide + KLH + GM-CSF 2 cohorts 2) Tyrosinase peptide + KLH • T cell response assessment by IFNγ flow cytometry analysis Phase I trial of tyrosinase peptide with adjuvants GM-CSF and KLH 50 50 40 40 30 30 Tyr specific 20 20 PBMC 6 10 10 / 10 0 0 before P13 P14 P15 P15 P16 P17 P17 P18 P18 P19 P11 P11 P12 P12 P13 P31 P32 P33 P34 P35 P35 P36 P36 P37 P38 P38 P39 P40 # 2 # 4 T cells Tyr + KLH Tyr + KLH + GM-CSF # 6 ng i 250 250 200 200 150 150 KLH specific IFNg-secret 100 100 50 50 0 0 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 Patient identification Scheibenbogen et al. 2003 CXCR3 expression on KLH-specific T cells no antigen KLH 25.2 0.02 24.7 0.06 74.7 0.04 75.1 0.2 Tyr + KLH cohort CXCR3 46.6 0.02 46.0 0.09 52.1 0.01 51.9 0.06 Tyr + KLH + GM-CSF cohort IFNγ CXCR3, CCR4 and CCR9 expression on KLH-specific T cells with GM-CSF without
    [Show full text]
  • CCR6 IL-17 Express the Chemokine Receptor Human T Cells That Are
    Human T Cells That Are Able to Produce IL-17 Express the Chemokine Receptor CCR6 This information is current as Satya P. Singh, Hongwei H. Zhang, John F. Foley, Michael of September 26, 2021. N. Hedrick and Joshua M. Farber J Immunol 2008; 180:214-221; ; doi: 10.4049/jimmunol.180.1.214 http://www.jimmunol.org/content/180/1/214 Downloaded from References This article cites 58 articles, 27 of which you can access for free at: http://www.jimmunol.org/content/180/1/214.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Human T Cells That Are Able to Produce IL-17 Express the Chemokine Receptor CCR61 Satya P. Singh, Hongwei H. Zhang, John F. Foley, Michael N. Hedrick, and Joshua M. Farber2 Some pathways of T cell differentiation are associated with characteristic patterns of chemokine receptor expression.
    [Show full text]
  • A Novel Role for Constitutively Expressed Epithelial-Derived Chemokines As Antibacterial Peptides in the Intestinal Mucosa
    ARTICLES nature publishing group A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa K K o t a r s k y 1 , K M S i t n i k 1 , H S t e n s t a d 1 , H K o t a r s k y 2 , A S c h m i d t c h e n 3 , M K o s l o w s k i 4 , J We h k a m p 4 a n d W W A g a c e 1 Intestinal-derived chemokines have a central role in orchestrating immune cell influx into the normal and inflamed intestine. Here, we identify the chemokine CCL6 as one of the most abundant chemokines constitutively expressed by both murine small intestinal and colonic epithelial cells. CCL6 protein localized to crypt epithelial cells, was detected in the gut lumen and reached high concentrations at the mucosal surface. Its expression was further enhanced in the small intestine following in vivo administration of LPS or after stimulation of the small intestinal epithelial cell line, mICc12 , with IFN , IL-4 or TNF . Recombinant- and intestinal-derived CCL6 bound to a subset of the intestinal microflora and displayed antibacterial activity. Finally, the human homologs to CCL6, CCL14 and CCL15 were also constitutively expressed at high levels in human intestinal epithelium, were further enhanced in inflammatory bowel disease and displayed similar antibacterial activity. These findings identify a novel role for constitutively expressed, epithelial-derived chemokines as antimicrobial peptides in the intestinal mucosa.
    [Show full text]