Full Issue PDF Volume 38, Issue 7 Published Online: 11 Jul 2013

Total Page:16

File Type:pdf, Size:1020Kb

Full Issue PDF Volume 38, Issue 7 Published Online: 11 Jul 2013 This article was downloaded by: [Department Of Fisheries] On: 11 July 2013, At: 19:38 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Fisheries Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ufsh20 Full Issue PDF Volume 38, Issue 7 Published online: 11 Jul 2013. To cite this article: (2013) Full Issue PDF Volume 38, Issue 7, Fisheries, 38:7, 293-340, DOI: 10.1080/03632415.2013.820962 To link to this article: http://dx.doi.org/10.1080/03632415.2013.820962 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions VOL 38 NO 7 FisheriesAmerican Fisheries Society • www.fisheries.org JULY 2013 Downloaded by [Department Of Fisheries] at 19:38 11 July 2013 AFS – Adapt or Perish! Integrated Multi-Trophic Aquaculture Realistic Monitoring Expectations Inherent Error in Fish Measurements Meet Some of Our New Members Ecological Surveys and eDNA The Imperative for Timely Action Run for Office! 03632415(2013)38(7) New! Large VI Alpha Tags for Individual Identification Visible Implant Alphanumeric (VI Alpha) Tags are used to identify individual animals. They are implanted subcutaneously but remain externally visible for easy recovery. VI Alpha Tags are now available in two sizes: standard (1.2 mm x 2.7 mm), shown in yellow, and large (2 mm x 5 mm), shown in orange. The larger tags are easier to read than the standard tags, and are suitable for larger animals. Large tags have black lettering on a fluorescent orange background, while standard tags are available with black lettering on a fluorescent orange, red, yellow or green background. Tag VI Alpha Tags are easy to load. Slide the readability and detection can be enhanced by tag into the needle, and snap it off. fluorescing the tags with the VI Light, as in the photo of the shrimp below. A wide variety of species are successfully tagged with VI Alpha Tags. Please contact NMT Biological Services to learn more. Large VI Alpha Tags are suitable for identifying many species, including Downloaded by [Department Of Fisheries] at 19:38 11 July 2013 broodstock shrimp and rainbow trout. Northwest Marine Technology, Inc. www.nmt.us Shaw Island, Washington, USA Corporate Office Biological Services 360.468.3375 [email protected] 360.596.9400 [email protected] New! Large VI Alpha Tags Fisheries VOL 38 NO 7 JULY 2013 Contents for Individual Identification COLUMNS President’s Hook Visible Implant Alphanumeric (VI Alpha) Tags are 295 The World of Tomorrow used to identify individual animals. They are The technology of the future will present us with many implanted subcutaneously but remain externally opportunities and challenges that we cannot even conceive of today. visible for easy recovery. John Boreman—AFS President A sock of blue mussels, Mytilus edulis, with siphons wide open VI Alpha Tags are now available in two sizes: Fish Habitat Connections as they filter organic particles at an Integrated Multi-Trophic standard (1.2 mm x 2.7 mm), shown in yellow, 297 Aquaculture (IMTA) site in the Bay of Fundy, New Brunswick, 296 The Imperative for Timely Action Canada. Photo credit: S. Robinson. and large (2 mm x 5 mm), shown in orange. The “The big challenges that fisheries face are increasingly larger tags are easier to read than the standard habitat challenges. Without healthy habitat we cannot 309 Detecting Temporal Trends in Freshwater Fisheries tags, and are suitable for larger animals. sustain the fisheries that will feed Americans now and into Surveys: Statistical Power and the Important Linkages the future.” Eric C. Schwaab, Acting Assistant Secretary for between Management Questions and Monitoring Conservation and Management for NOAA. Objectives Large tags have black lettering on a fluorescent Thomas E. Bigford Standard approaches for detecting trends are likely to fail orange background, while standard tags are and we advocate an approach more tightly linked to man- available with black lettering on a fluorescent The Livewell agement objectives orange, red, yellow or green background. Tag VI Alpha Tags are easy to load. Slide the 327 Stepping Up: Why You Should Consider Running Tyler Wagner, Brian J. Irwin, James R. Bence, and Daniel B. readability and detection can be enhanced by tag into the needle, and snap it off. for an AFS Office Hayes Jesse T. Trushenski and Margaret H. Murphy fluorescing the tags with the VI Light, as in the 320 Measurement Error in Fish Lengths: Evaluation and photo of the shrimp below. Guest Director’s Line Management Implications 332 Environmental DNA: Genetics Steps Forward When The setting, the fish, and you can influence measurement A wide variety of species are successfully tagged Traditional Ecological Surveys Fall Short accuracy—how do you measure up? with VI Alpha Tags. Please contact NMT Despite some limitations, eDNA has tremendous potential to Aaron J. Bunch, Carl J. Walters, and Lewis G. Coggins, Jr. Biological Services to learn more. step in when traditional ecological surveys are not feasible. So, how does sampling eDNA work? MEMBER SPOTLIGHT Marissa Jones 328 Meet Five of Our New Members! IN MEMORIAM FEATURES Large VI Alpha Tags are suitable for 331 Dr. Robert S. Campbell identifying many species, including 297 The Canadian Integrated Multi-Trophic broodstock shrimp and rainbow trout. Downloaded by [Department Of Fisheries] at 19:38 11 July 2013 Aquaculture Network (CIMTAN)—A Network for a UNIT NEWS New Era of Ecosystem Responsible Aquaculture 334 Forming New Partnerships… And Eating Hotdogs! CIMTAN, one of the strategic networks supported by the The West Virginia and Ohio chapters of the American Fisher- Natural Sciences and Engineering Research Council of ies Society met on the campus of Marshall University in Hun- Canada, is developing a new approach to ecosystem tington, West Virginia this year for a Joint Technical meeting responsible aquaculture for increased environmental titled, “Partnering Today for Challenges Tomorrow.” sustainability, economic stability, and societal acceptability. Joseph D. Conroy and David I. Wellman Thierry Chopin, Bruce MacDonald, Shawn Robinson, Stephen Cross, Christopher Pearce, Duncan Knowler, Anthony Noce, NEW AFS MEMBERS 335 Gregor Reid, Andrew Cooper, David Speare, Les Burridge, Curran Crawford, Manav Sawhney, Keng Pee Ang, Clare NEWLY CERTIFIED PROFESSIONALS 335 Backman, and Marilyn Hutchinson JOURNAL HIGHLIGHTS Northwest Marine Technology, Inc. 336 North American Journal of Aquaculture, Volume 75, Number 2, April 2013 www.nmt.us Shaw Island, Washington, USA CALENDAR Cover: Mixed Media — Humbpack Chub, Gila cypha. Credit: S. Gilbert Corporate Office Biological Services 339 Fisheries Events 360.468.3375 [email protected] 360.596.9400 [email protected] Fisheries • Vol 38 No 7 • July 2013 • www.fisheries.org 293 EDITORIAL / SUBSCRIPTION / CIRCULATION OFFICES 5410 Grosvenor Lane, Suite 110•Bethesda, MD 20814-2199 (301) 897-8616 • fax (301) 897-8096 • [email protected] The American Fisheries Society (AFS), founded in 1870, is the oldest and largest professional society representing fisheries scientists. The AFS promotes scientific research and enlightened Fisheries management of aquatic resources for optimum use and enjoyment by the public. It also American Fisheries Society • www.fisheries.org encourages comprehensive education of fisheries scientists and continuing on-the-job training. AFS OFFICERS FISHERIES STAFF EDITORS DUES AND FEES FOR 2013 ARE: $80 in North America ($95 elsewhere) for regular PRESIDENT SENIOR EDITOR CHIEF SCIENCE EDITOR members, $20 in North America ($30 elsewhere) John Boreman Ghassan “Gus” N. Rassam Jeff Schaeffer for student members, and $40 ($50 elsewhere) for retired members. PRESIDENT ELECT DIRECTOR OF PUBLICATIONS SCIENCE EDITORS Robert Hughes Aaron Lerner Marilyn “Guppy” Blair Jeffrey E. Hill Fees include $19 for Fisheries subscription. Jim Bowker Deirdre M. Kimball FIRST VICE PRESIDENT MANAGING EDITOR Mason Bryant Jeff Koch Nonmember and library subscription rates are Donna L. Parrish Sarah Fox Steven R. Chipps Jim Long $174. Steven Cooke Daniel McGarvey SECOND VICE PRESIDENT Ken Currens Roar Sandodden Ron Essig Andy Danylchuk Jesse Trushenski Michael R. Donaldson Usha Varanasi PAST PRESIDENT Andrew H. Fayram Jack E. Williams William L. Fisher Stephen Fried Jeffrey Williams Larry M. Gigliotti BOOK REVIEW EDITOR EXECUTIVE DIRECTOR Madeleine Hall-Arbor Francis Juanes Ghassan “Gus” N. Rassam Alf Haukenes ABSTRACT TRANSLATION Pablo del Monte Luna Fisheries (ISSN 0363-2415) is published monthly by the American Fisheries Society; 5410 Grosvenor Lane, Suite 110; Bethesda, MD 20814-2199 © copyright 2013. Periodicals postage paid at Bethesda, Maryland, and at an additional mailing office. A copy of Fisheries Guide for Authors is available from the editor or the AFS website, www.fisheries.org. If requesting from the managing editor, please enclose a stamped, self-addressed envelope with your request.
Recommended publications
  • Structures Assisting the Migrations of Non-Salmonid Fish: USSR
    FAO Structures assisting FISHERIES TECHNICAL the migrations of PAPER non-salmonid fish: USSR 308 D.S. Pavlov Severtsov's Institute of the Evolutionary Morphology and Ecology of Animals Leninskii Prospekt 33 117071 Moscow B-71, USSR FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1989 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-42 ISBN 92-5-102857-5 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechani- cal, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy. 0 FAO 1989 PREPARATION OF THIS DOC UMENT The Working Party of Experts on Inland Fisheries of the Indo-Pacific Commission, at a meeting in New Delhi, India, in January 1984, recommended that information be collected on the use of fish-passes. s a result of this recommenda- tion, FAO commissioned a consultant to review stn ctures assisting migration of non-salmonid stocks in the USSR. The original manuscript has been subject to substantial editing by Drs R.
    [Show full text]
  • Minutes of the AFS Southern Division Trout Committee Meeting May 23-24, 2006 Gaston’S Resort, Arkansas
    Minutes of the AFS Southern Division Trout Committee Meeting May 23-24, 2006 Gaston’s Resort, Arkansas The 2006 meeting of the American Fisheries Society – Southern Division Trout Committee was called to order at 8:30 AM by Matt Kulp, Chair. A quorum of 10 members was present. Old Business Matt Kulp distributed the 2005 meeting minutes. Jim Habera made a motion for approval which was seconded by Doug Besler, and the minutes were approved by the membership. Frank Fiss gave a report on the SDAFS meeting held in San Antonio, Texas. A discussion about a proposed symposium on 2-story lake fisheries followed. There is not much information available yet, but the symposium will have invited papers on various issued concerning 2-story fisheries. Darrell Bowman gave the Treasurer’s report. A new account with Bank of America has been opened. Since the last Treasurer’s report, a check to AFS for the publication of the Southern Appalachian Brook Trout paper was written. Also, Jack van Deventer was reimbursed for attending the recent SDAFS meeting to discuss Microfish 3.0. Current balance is $4663 and about $1100 will be needed for the 2006 committee meetng. Mike Kruse made a motion to accept the Treasurer’s report and was seconded by Frank Fiss. The motion passed unanimously. Jim Habera discussed the electrofishing gear study to be conducted August 8-10, 2006. Anyone who would like to participate is welcome and should contact Jim. University of Tennessee researchers have reviewed other studies concerning comparisons of various types of electrofishing gear. Matt Kulp gave an update on Microfish 3.0.
    [Show full text]
  • Annual Report 2015
    AnnualAnnual ReportReport 20152015 MassachusettsMassachusetts DivisionDivision ofof FisheriesFisheries && WildlifeWildlife 109 Annual Report 2015 Massachusetts Division of fisheries & WilDlife Wayne MacCallum (partial year) Jack Buckley (partial year) Director Susan Sacco Assistant to the Director Jack Buckley (partial year) Rob Deblinger, Ph.D. (partial year) Deputy Director Deputy Director Administration Field Operations Jim Burnham Debbie McGrath Administrative Assistant to the Administrative Assistant to the Deputy Director, Administration Deputy Director, Field Operations Blank Page Inside Title Page>>> 4 Table of Contents The Board Reports .............................................................................................6 Fisheries ...........................................................................................................16 Wildlife .............................................................................................................30 Private Lands Habitat Management ................................................................47 Natural Heritage & Endangered Species Program .........................................50 Information & Education ................................................................................61 Hunter Education ............................................................................................71 District Reports ................................................................................................73 Wildlife Lands ..................................................................................................88
    [Show full text]
  • Report No. REC-ERC-90-L, “Compilation Report on the Effects
    REC-ERC-SO-1 January 1990 Denver Office U. S. Department of the Interior Bureau of Reclamation 7-2090 (4-81) Bureau of Reclamation TECHNICAL REEPORT STANDARD TITLE PAG 3. RECIPIENT’S CATALOG ~0. 5. REPORT DATE Compilation Report on the Effects January 1990 of Reservoir Releases on 6. PERFORMING ORGANIZATION CODE Downstream Ecosystems D-3742 7. AUTHOR(S) 6. PERFORMING ORGANIZATION E. Cheslak REPORT NO. J. Carpenter REC-ERC-90-1 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NO. Bureau of Reclamation Denver Office 11. CONTRACT OR GRANT NO. Denver CO 80225 13. TYPE OF REPORT AND PERIOD COVERED 12. SPONSORING AGENCY NAME AND ADDRESS Same 14. SPONSORING AGENCY CODE DIBR 15. SUPPLEMENTARY NOTES Microfiche and/or hard copy available at the Denver Office, Denver, Colorado. Ed: RDM 16. ABSTRACT Most of the dams built by the Bureau of Reclamation were completed before environmental regulations such as the Clean Water Act, National Environmental Protection Act, or Toxic Substances Control Act existed. The management and operation of dams was instituted under conditions where the ecology of the downstream habitat was unknown and largely ignored. Changing or modifying structures, flow regimes, and land use patterns are some of the efforts being pursued by the Bureau to reconcile or mitigate the effects of impoundment to comply with these environmental policies and to maximize the potential for recreation, fisheries, and water quality in tailwater habitats for the water resource users. The purpose of this report is to provide a reference document intended to aid in the management, compliance, and problem solving processes necessary to accomplish these goals in Bureau tailwater habitats.
    [Show full text]
  • Impacts to Marine Fisheries Habitat from Nonfishing Activities in the Northeastern United States
    NOAA Technical Memorandum NMFS-NE-209 Impacts to Marine Fisheries Habitat from Nonfishing Activities in the Northeastern United States US DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Regional Office Gloucester, Massachusetts February 2008 Recent Issues in This Series: 191. Essential Fish Habitat Source Document: Northern Shortfin Squid, Illex illecebrosus, Life History and Habitat Characteristics. 2nd ed. By Lisa C. Hendrickson and Elizabeth M. Holmes. November 2004. v + 36 p., 13 figs., 1 table. NTIS Access. No. PB2005- 101437. [Online publication only.] 192. Essential Fish Habitat Source Document: Atlantic Herring, Clupea harengus, Life History and Habitat Characteristics. 2nd ed. By David K. Stevenson and Marcy L. Scott. July 2005. vi + 84 p., 40 figs., 7 tables. NTIS Access. No. PB2005-107567. [Online publication only.] 193. Essential Fish Habitat Source Document: Longfin Inshore Squid, Loligo pealeii, Life History and Habitat Characteristics. 2nd ed. By Larry D. Jacobson. August 2005. v + 42 p., 20 figs., 1 table. NTIS Access. No. PB2005-110684. [Online publication only.] 194. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2005. By Gordon T. Waring, Elizabeth Josephson, Carol P. Fairfield, and Katherine Maze-Foley, eds. Dana Belden, Timothy V.N. Cole, Lance P. Garrison, Keith D. Mullin, Christopher Orphanides, Richard M. Pace III, Debra L. Palka, Marjorie C. Rossman, and Fredrick W. Wenzel, contribs. March 2006. v + 392 p., 45 figs, 79 tables, 5 app., index. NTIS Access No. PB 2007-104395. 195. A Large Marine Ecosystem Voluntary Environmental Management System Approach to Fisheries Practices. By Frank J. Gable. December 2005.
    [Show full text]
  • Utilization of Unique Tailwater Habitats Below High-Head Dams Has Become
    Brown Trout Population Response to Trophy Regulations and Reservoir Discharge in a Large, Southeastern U.S. Tailwater by: David P. Dreves, Jeff R. Ross, and Jarrad T. Kosa Bulletin No. 111 March 2014 BROWN TROUT POPULATION RESPONSE TO TROPHY REGULATIONS AND RESERVOIR DISCHARGE IN A LARGE, SOUTHEASTERN U.S. TAILWATER By David P. Dreves, Jeff R. Ross, Jarrad T. Kosa Kentucky Department of Fish & Wildlife Resources March 2014 Partially funded by Sport Fish Restoration Funds Sport Fish Restoration Project F-40 “Statewide Fisheries Research” ABSTRACT Reservoir tailwaters can be an important resource for developing quality trout fisheries, especially when managed with special regulations. The objective of this study was to evaluate the effectiveness of a 508 mm minimum length limit and a one-fish-per-day creel limit on improving the size structure of the brown trout Salmo trutta population in the Cumberland River below Lake Cumberland, Kentucky. The purpose of the new regulations, which did not include gear or bait restrictions, was to increase the numbers of quality (381-507 mm total length) and trophy-size (≥ 508 mm total length) brown trout in the 121 km tailwater. A significant increase in brown trout electrofishing catch per unit effort was observed across years for small (< 381 mm), quality, trophy-size trout, and all sizes combined. As brown trout electrofishing and angler catch rates increased over time, no corresponding decrease in growth or condition was observed. Reservoir discharge was positively correlated with warmer water temperatures and lower dissolved oxygen in the tailwater. Growth and condition of brown trout in the tailwater were inversely correlated with an index of discharge from the reservoir.
    [Show full text]
  • Potential Maritime Markets for Marine and Hydrokinetic Technologies: Draft Report
    Potential Maritime Markets for Marine and Hydrokinetic Technologies: Draft Report April 2018 This information is predecisional and is for informational purposes only. No funding is being offered and no proposals are being solicited. (This page intentionally left blank) ii This information is predecisional and is for informational purposes only. No funding is being offered and no proposals are being solicited. 1 Acknowledgements 2 The U.S. Department of Energy (DOE) Water Power Technologies Office would like to express our 3 appreciation to everyone who has contributed to the general fact-finding of this task, including DOE 4 leadership, other DOE offices, the national labs, our friends in the U.S. Department of Defense and Navy, our 5 friends at other federal agencies, our affiliated universities, representatives from companies in the marine 6 energy community, and our new friends representing new industries and opportunities for marine energy. iii This information is predecisional and is for informational purposes only. No funding is being offered and no proposals are being solicited. 7 Table of Contents 8 Acknowledgements ........................................................................................................................... iii 9 Table of Contents ............................................................................................................................... iv 10 List of Figures ......................................................................................................................................
    [Show full text]
  • Salinas Valley Irrigation and Nutrient Management Program (Inmp)
    SALINAS VALLEY IRRIGATION AND NUTRIENT MANAGEMENT PROGRAM (INMP) 12-414-553 FINAL PROJECT REPORT Final Report California’s Proposition 84 Agricultural Water Quality Grant Program Agreement No. 12-414-553 Total Grant Funds: $1,250,000 1 ACKNOWLEDGEMENTS This project was made possible and the outcome successful by the combined effort and contributions of many individuals and organizations. Successful implementation was achieved through the coordinated dedicated work of project partners (CCR, CCWG, RCDMC, MBNMS, UCCE), the project manager & administrators from CCRWQCB, land owners where assessment were conducted and projects implemented (Ag Land Trust, DOLE, P,G&E, Oceanmist Farm, and USDA Research Station), permitting agencies (Monterey County and SWRCB) and the engineers and contractors who made it happen on the ground. The following individuals played important roles in the inspiration, planning, management and implementation Salinas Valley Irrigation and Nutrient Management Program Project Partners: Coastal Conservation and Research, Inc.: Jim Oakden Central Coast Wetlands Group: Ross Clark, Sierra Ryan, Jason Adelaars, Kevin O’Connor UC Cooperative Extension: Michael Cahn, Laura Murphy, Tom Lockhart MBNMS: Bridget Hoover, Pam Krone RCDMC: Paul Robins, Ben Burgoa Grant Management CCRWQCB: Katie McNeill, Stacy Denney, Karen Worcester Ocean Mist Bioreactor: Sea Mist Farms: Dale Huss Pajaro Valley Laser Leveling: Bob and Chris Peixoto CC&R Restoration Crew:Jane Echenique, Sarah Jeffries, Dorota Szuta, Niko Oliver MLML Volunteers:
    [Show full text]
  • Dynamic Fish Growth Modeling for Tailwater Fishery Management
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 1992 Dynamic Fish Growth Modeling for Tailwater Fishery Management Ming Shiao Tennessee Valley Authority Gary Hauser Tennessee Valley Authority Gary Chapman EPA Envir. Research Laboratory Bruce Yeager Tennessee Valley Authority Tom McDonough Tennessee Valley Authority See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Shiao, Ming; Hauser, Gary; Chapman, Gary; Yeager, Bruce; McDonough, Tom; and Ruane, Jim, "Dynamic Fish Growth Modeling for Tailwater Fishery Management" (1992). US Department of Energy Publications. 53. https://digitalcommons.unl.edu/usdoepub/53 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Ming Shiao, Gary Hauser, Gary Chapman, Bruce Yeager, Tom McDonough, and Jim Ruane This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/53 Published in Hydraulic Engineering: Saving a Threatened Resource—In Search of Solutions: Proceedings of the Hydraulic Engineering sessions at Water Forum ’92. Baltimore, Maryland, August 2–6, 1992. Published by American Society of Civil Engineers. Dynamic Fish Growth Modeling for Tailwater Fishery Management Ming Shiao·, Gary Hauser2, Gary Chapman3, Bruce Yeager4, Tom MCDonough5, and Jim Ruane6 Abstract Tailwater fisheries below hydroprojects are affected by variable flows and water quality in dam releases.
    [Show full text]
  • Positive Interactions in Freshwater Systems
    Clemson University TigerPrints All Theses Theses 12-2018 Positive Interactions in Freshwater Systems Samuel Clarence Silknetter Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Silknetter, Samuel Clarence, "Positive Interactions in Freshwater Systems" (2018). All Theses. 3257. https://tigerprints.clemson.edu/all_theses/3257 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. POSITIVE INTERACTIONS IN FRESHWATER SYSTEMS A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Wildlife and Fisheries Biology by Samuel Clarence Silknetter December 2018 Accepted by: Dr. Brandon Peoples, Committee Chair Dr. Kyle Barrett Dr. Troy Farmer ABSTRACT The goals of this thesis are twofold, 1) to review the existing literature on positive interactions, and 2) to experimentally test the role of biotic context in a freshwater reproductive interaction. First, my co-authors and I have conducted a review of positive interactions in freshwaters to establish a direction for future research. By outlining case studies and causal mechanisms, we illustrate the diversity of positive interactions, and set the stage for a comprehensive look at the role of context in shaping interaction outcomes. Our research directive focuses on the value of both basic life history and experimental research, then using those findings to investigate these interactions under different contexts, in different levels of ecosystem structure, and at multiple geographic scales.
    [Show full text]
  • Tailwater Recovery and On-Farm Storage Reservoir: System Overview
    Tailwater Recovery and On-Farm Storage Reservoir: System Overview Tailwater recovery (TWR) systems are a combination of financially assisted (by Natural Resources Conservation Service) conservation practices aimed at collecting runoff and storing that water for irrigation. As freshwater resources for irrigation decline, this surface water storage structure is a viable option for capturing and recycling precipitation and irrigation runoff. Figure 1. Top: Section view diagram of a TWR system installed in Mississippi’s Delta region. Middle: Plan view diagram of the same TWR system. Bottom: The TWR system shown in diagrams. Potential practices in TWR systems • Critical area stabilization (342) • Pumping plant water control (533) (NRCS practice codes): • Irrigation water conveyance (430) • Access road (560) • Irrigation reservoir (436) • Irrigation water management (449) • Water control structures (587) • Tailwater recovery (437) • Precision land forming (462) • Dikes (356) In-Field TWR System Practices Precision land form- ing (land leveling, land grading) is used to direct water to one end of the field by grading the field with a slope of 0–0.1 inch per 100 feet run for rice and 0.1–0.2 inch per 100 feet run for cotton, corn, and soybeans. Figure 2. Depiction of precision land forming impact on landscape grade. Top: Diagram of unleveled corn field. Middle: Tractors and scrapers for precision land forming. Bottom: Diagram of precision graded field. Edge-of-Field TWR System Practices Water control structures (riser or slotted board pipes) are used to convey water from the field through the dikes (pads) on the perimeter of the field and into the TWR ditch.
    [Show full text]
  • (PASS) Winthrop National Fish Hatchery Steelhead Management
    Project Alternatives Solution Study (PASS) Winthrop National Fish Hatchery Steelhead Management – RPA Action 40 Implementation Proposals Conducted by and for the Bureau of Reclamation in cooperation with the U.S. Fish and Wildlife Service, Bonneville Power Administration, NOAA Fisheries/NMFS, Yakama Nation, Washington Department of Fish and Wildlife, and Upper Columbia Salmon Recovery Board U.S. Department of the Interior Bureau of Reclamation Pacific Northwest Regional Office Boise, Idaho September 2012 U.S. Department of the Interior The Department of the Interior protects and manages the Nation's natural resources and cultural heritage; provides scientific and other information about those resources; and honors its trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities. Mission of the Bureau of Reclamation The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Cover Photograph: View of the Winthrop National Fish Hatchery, Winthrop, Washington. Table of Contents Page 1. Summary of PASS Process ............................................................................................... 1 2. Project Introduction.......................................................................................................... 1 3. Summary of Background Information............................................................................ 2 4.
    [Show full text]