Appendix A: Margherita Beloch Piazzolla: “Alcune applicazioni del metodo del ripiegamento della carta di Sundara Row”

This appendix presents, for the first time, a translation from Italian into English of Beloch’s four-page-long paper “Alcune applicazioni del metodo del ripiegamento della carta di Sundara Row,”1 published in 1934 in “Atti dell’Acc. di Scienze Mediche, Naturali e Matematiche di Ferrara Serie II, Vol. XI”; the translation is organized according to the numeration of the original paper (pp. 186–189). The footnotes presented in this section are Beloch’s, while remarks and explanations regarding the content of the paper are given in square brackets in a smaller font. For pp. 186–188, the Italian text is also given in footnotes in square brackets.2 It is also advisable to look from time to time at Fig. 5.25 in order to follow the (implicit) steps in Beloch’s argument, as Beloch herself does not supply any drawing. *** p. 186:

Some Applications of the Method of Paper Folding of Sundara Row

A note by Margherita Beloch Piazzolla, Prof. at the University of Ferrara. In an excerpt from my lessons of a complementary mathematics course taught at the University of Ferrara in the academic year 1933–1934, I proposed the following problem as an application of the paper folding method of Sundara Row,3 a problem

1Beloch (1934a). 2Starting from the end of page 188 until the end of the paper (p. 189), Beloch performs several calculations, and as can be seen, the language she uses is formal; hence, the original text is not given. 3Cf. Sundara Row, Geometric Exercises in Paper Folding (Madras, Addison and Co. 1893; , Court Company, 1917).

© Springer International Publishing AG, part of Springer Nature 2018 377 M. Friedman, A History of Folding in Mathematics, Science Networks. Historical Studies 59, https://doi.org/10.1007/978-3-319-72487-4 378 Appendix A: Margherita Beloch Piazzolla: “Alcune applicazioni del... that allows for a simple solution to the classic problem of duplicating the cube; the solution has not yet been noticed, to my knowledge. Another application is a method given concerning the graphical resolution of the equations of the third degree, which completes the well-known procedure of Lill. The problem in question is the following: Construct a square, two of whose opposite edges [or their extensions] pass through two given points, respectively, and two of whose adjacent vertices are respectively on two given straight lines. Let A, B be the two given points and r, s be the two given straight lines. Denote by X, Y the vertices of the square to be built, lying respectively on the lines r, s. One edge of the square would then be XY. Suppose that the second edge of the square, which exits from X, passes through A, and the second edge, which exits from Y, passes through B.4

p. 187:

Consider the parabola having its focus as point A and its tangent at its vertex the line r, where we assume that the (unknown) straight line XY is tangent to the parabola. Similarly, consider the parabola having, as its focus, point B, and as tangent at its vertex the line s, where we assume that the same straight line XY is tangent [to the second parabola]. This straight line can then be built as one of the common tangents to the two parabolas, and therefore the points X, Y can be built, and as a result also the required square. Since two parabolas have three common tangents, the problem admits three solutions, including certain real solutions. Those tangents can be found in the simplest way using the aforementioned paper folding method. For this purpose, it is enough to build the directrix of each of the two parabolas, denoted as d1 and d2 respectively, and remembering the property that the [geometric] locus of the symmetrical points regarding the focus [of the parabola] with respect to various tangents to the parabola is the directrix; on this property, the

4[The original text: Stralcio dalle mie lezioni del corso di Matematiche complementari tenuto all’Università di Ferrara nell’anno accademico 1933–1934, il seguente problema, da me proposto come applicazione del metodo del ripiegamento della carta di Sundara Row e che consente una semplice risoluzione mediante il detto metodo del problema classico della duplicazione del cubo, risoluzione che a quanto io sappia non è stata finora notata. Un’altra applicazione è un metodo da me dato per la risoluzione grafica delle equazioni di 3 grado, che completa il noto procedimento di Lill. Il problema di cui si tratta è il seguente: Costruire un quadrato di cui due lati opposti passino rispettivamente per due punti dati, e i due vertici situati sui rimanenti lati stiano rispettivamente su due rette date. Siano A, B i due punti dati: r, s le due rette date. Indichiamo con X, Y i vertici del quadrato da costruirsi, giacenti rispettivamente sulle rette r, s. Un lato del quadrato sarà allora XY. Supponiamo che il secondo lato del quadrato uscente da X passi per A e il secondo lato uscente da Y passi per B.] Appendix A: Margherita Beloch Piazzolla: “Alcune applicazioni del... 379 noticed construction, through the paper folding method, of a parabola with tangents is founded. That is, taking the (straight) edge of a sheet of paper as a directrix of the parabola, and marking the focus at the given distance, it is enough to hold fast the focus and refold the paper on itself so that the folded edge would pass through the focus: the fold of the paper will give a tangent to the parabola, and this way, one can construct all of the tangents. [As Beloch defines it, a symmetric point is the image of the focus P of the parabola after performing the folding of a piece of paper (on which the parabola and P are drawn) along a tangent to the parabola. The collection of all the symmetric points is the directrix (this was also noted by Row; see Sect. 4.2.2.2).] To find a common tangent to the two parabolas (given the directrixes and the foci), it is enough then to fold the paper in such a way that the two given lines (i.e., the directrices) would pass, after folding, through the two given points (i.e., the foci), respectively (which could be achieved by using a transparent piece of paper). The explained operation may be done with the same ease and accuracy with an ordinary drawing, passing a line through two points; this will allow one to find the (real) solutions to the problem.5

p. 188:

The problem concerns, as mentioned above, the graphic solution of equations of the third degree, starting from the data graphic process of Lill,6 and offering a new

5[The original text: Si consideri la parabola avente per fuoco il punto A, e per tangente nel vertice la retta r di cui per proprietà nota la retta (incognita) XY è tangente. Similmente si consideri la parabola avente per fuoco il punto B, e per tangente nel vertice la retta s, di cui per la stessa proprietà la retta XY è tangente. Questa retta si può quindi costruire come una delle tangenti comuni alle due parabole, e determinare quindi i punti X, Y e in conseguenza il quadrato richiesto. Siccome due parabole hanno tre tangenti comuni, il problema ammette tre soluzioni, tra cui certo una reale. Le dette tangenti si possono trovare in modo semplicissimo col suddetto metodo del ripiegamento della carta. Basta all’uopo costruire la direttrice di ognuna delle due parabole, e siano rispettivamente d1 e d2, e ricordare la proprietà che il luogo dei punti simmetrici del fuoco rispetto alle varie tangenti della parabola è la direttrice, proprietà su cui si fonda la nota costruzione d’una parabola per tangenti col metodo del ripiegamento della carta. Prendendo cioè l’orlo (rettilineo) d’un foglio di carta come direttrice della parabola, e segnando il fuoco alla data distanza da questa, basta tener fermo il fuoco e ripiegare la carta su se stessa in modo che l’orlo ripiegato venga a passare per il fuoco: la piega della carta darà una tangente della parabola, e questa quindi si potrà costruire per tangenti. Per trovare una tangente comune alle due parabole basta dunque ripiegare la carta in modo che le due rette date nel ripiegarsi vengano a passare rispettivamente per i due punti dati (ciò che si potrà ottenere usando un foglio di carta trasparente). L’operazione spiegata si potrà eseguire con la stessa facilità e precisione con cui, nel disegno comune, si fa passare una riga per due dati punti, e permetterà di trovare le soluzioni (reali) del problema.] 6Cf. Felix Klein, Elementarmathematik vom höheren Standpunkte aus, II, p. 267, (Berlin, Springer 1925). 380 Appendix A: Margherita Beloch Piazzolla: “Alcune applicazioni del... and simple construction, which certainly follows from that which precedes it, and to which I shall have occasion to return. Another application concerns the classical problem of duplicating the cube, which, as is known, cannot be solved with straightedge and compass. To my knowledge, the construction I give here has not yet been noticed. Take the two lines r, s as orthogonal to each other, and O as their common [intersection] point. Assuming that the point A of the general problem lies on s, and the point B lies on r, and applying the construction mentioned above, one can determine the edge XY of the required square, namely, given the known distances OA ¼ a, OB ¼ b, one can determine the unknown distances OX ¼ x and OY ¼ y (hence solving the problem of the two mean proportionals) with the paper folding method, something that Sundara Row thought to be impossible.7 It is well known that: OA : OX ¼ OX : OY ¼ OY : OB,

Namely, a : x ¼ x : y ¼ y : b. If one takes b ¼ 2a, one obtains

x2 ¼ ay, y2 ¼ 2ax,

and the first equation is equivalent to y ¼ x2/a;

p. 189:

Substituting the second, [we obtain]: x4/a2 ¼ 2ax; and since x is different then 0, we obtain: x3 ¼ 2a3. Namely, the segment x that is constructed for b ¼ 2a is the side of the cube of a double volume, like that of a.

7Row, p. 112. [The original text: II problema interessa anche, come sopra accennato, la risoluzione grafica delle equazioni di 3 grado, partendo dai dati del procedimento grafico di Lill, ed offrendo una nuova e semplice costruzione, che segue senz’altro da ciò che precede, e su cui avrò occasione di ritornare. Un’altra applicazione è quella relativa al problema classico della duplicazione del cubo, il quale, come è noto, non si può risolvere con riga e compasso. A quanto io sappia la costruzione che dò non è stata finora notata. Si prendano le due rette r, s tra loro ortogonali e sia O il loro punto comune. Supposto che il punto A del problema generale giaccia su s e il punto B giaccia su r, e applicando la costruzione sopra indicata, si potrà determinare il lato XY del quadrato richiesto, date le distanze (note), OA ¼ a, OB ¼ b, si potranno determinare le distanze (incognite) OX ¼ x e OY ¼ y, (risolvere cioè il problema delle due medie proporzionali) col metodo del ripiegamento della carta ciò che lo stesso Sundara Row riteneva impossibile.] Appendix B: Deleuze, Leibniz and the Unmathematical Fold

The fold, as can be seen in this book, and especially in Chaps. 1 and 6, introduces a double movement: on the one hand, it introduces the “becoming” of an (often marginal) mathematical object inside mathematics, which is, at the same time, marginalized in mathematical discourse; on the other hand, it also represents a certain way in which mathematics is in a process of becoming. What all of this indicates is that the structure of mathematics is constantly in a state of becoming. In the introduction, I followed Derrida and his logic of supplementarity, but there is another philosopher who also thought of the fold as an endless process of becoming—Gilles Deleuze, in his book The Fold: Leibniz and the Baroque. Stating this right from the outset, what I certainly do not intend to thoroughly explore in this appendix is how Deleuze re-conceptualized Leibniz’s thought about the fold, presenting it as having an evident connection to Leibniz’s mathematical concepts and his thoughts on mathematics. Rather, what I aim to briefly survey is Leibniz’s thoughts on the possible connections between the fold and mathematics. Before going into the latter in detail, however, let me begin by briefly surveying the Deleuzian approach and what I see as its essential flaw. Deleuze presents the fold of the Baroque, and along with it, the Leibnizian fold, not only as that which opposes linearity and reduction to basic, finite elements, but also as an event, always in a process of transformation, of unfolding itself; the fold enables differentiation via transformation, but without forcing or forming discontinuity. As Laurence Bouquiaux notes, according to Deleuze, “[t]he [Leibnizian] fold is the metaphor that is appropriate in the phenomenal order—to think of all the degrees of elasticity and fluidity of bodies, to think of these machines of nature, indefinitely folded back on themselves [...]”.8 What is the connection then of the fold to mathematics, or in particular, to the mathematics developed by Leibniz? As Simon Duffy remarks: The reconstruction of Leibniz’s metaphysics that Deleuze provides in The Fold draws upon not only the mathematics developed by Leibniz but also upon developments in mathematics

8Bouquiaux (2005, p. 54).

© Springer International Publishing AG, part of Springer Nature 2018 381 M. Friedman, A History of Folding in Mathematics, Science Networks. Historical Studies 59, https://doi.org/10.1007/978-3-319-72487-4 382 Appendix B: Deleuze, Leibniz and the Unmathematical Fold

made by a number of Leibniz’s contemporaries and a number of subsequent developments in mathematics, the rudiments of which can be more or less located in Leibniz’s own work. Deleuze then retrospectively maps these developments back onto the structure of Leibniz’s metaphysics in order to bring together the different aspects of Leibniz’s metaphysics with the variety of mathematical themes that run throughout his work.9 Although Duffy takes a sympathetic approach to the Deleuzian project, one can already see with respect to the quote cited above that not only is there a “retrospec- tive” mapping, but also that Deleuze “draws upon [...] subsequent developments in mathematics [...]”. This double movement, of a retrospective projection and, at the same time, an “uncovering” of a precursory character to Leibniz’s writing, is an anachronistic move I would like to avoid when discussing Leibniz’s possible mathematical approach to folding. To give an example of this anachronistic approach that transforms Leibniz and his concepts into precursors of the later development of mathematics, Samuel Levey argues that Leibniz’sreflections on the fold within Pacidius to Philalethes (which I will discuss later in this appendix) are, in fact, a precursor to the mathematical concept of the fractal. Levey even indicates that for Leibniz himself, his “folded tunic [...] would fall intermediately between a two-dimensional surface and a solid”.10 This is absurd given the fact that the concept of the fractal (or non-integer) dimension was not defined at the time Leibniz was writing. Moreover, it was originally Deleuze who indicated the same move when discussing the inflection point of a curve, as “the pure Event of the line,”11 that is, as the unfolding of the line, which he then states “moves through virtual transformations.”12 These transformations are then either to be seen, according to Deleuze, in René Thom’s catastrophe theory or with the Koch curve and Mandelbrot’s fractal dimension. Each of these examples, catastrophe theory, continuous curves without any tangent or fractal dimension, was only developed beginning from the end of the nineteenth century and, in particular, during the twentieth century. Thom does discuss the term “unfolding” in his works, appearing, for example, as a technical term (albeit not only as such),13 as the “unfolding of a singularity” or a map, indicating that there is an interplay between unfolding a singularity and the emergence of new singularities, which in turn call for additional unfolding. When Thom discusses morphogenesis and the appropriate models to describe it, starting from the second half of his book Structural Stability and Morphogenesis, unfolding prompts a “creat[ion] [of] successive transitional regimes.”14 But Deleuze’s remarks regarding this are strange: “Rene Thom’s trans- formations refer in this sense to a morphology of living matter, providing seven

9Duffy (2010, p. 144). 10Levey (2003, p. 400). 11Deleuze (1993, p. 15). 12Ibid., p. 16. 13See. e.g.: Thom (1975, p. 31). 14Ibid., p. 289. Appendix B: Deleuze, Leibniz and the Unmathematical Fold 383 elementary events: the fold; the crease; the dovetail; the butterfly; the hyperbolic, elliptical, and parabolic umbilicus.”15 However, the fact that there are only seven basic types of elementary catastrophe is true only under the assumption that the space we deal with is four-dimensional and the transformations of its processes are calculable.16 Not only does the inscribing of a specific dimension to our world stand in opposition to the Deleuzian project, but also Deleuze’s implicit approval that there is a finite number of “elementary events.” A similar critique can be made regarding the Koch curve and Mandelbrot’s fractals. While, according to Deleuze, the Koch curve presents the way in which “we go from fold to fold and not from point to point,”17 Koch himself did not describe his curve as folded. By contrast, Koch presented the curve geometrically on the background of the purely analytical example of Weierstrass, of a continuous curve with no tangents.18 Mandelbrot’s mathematization of fractal forms not only used the novel digital technologies and mathematical concepts available in the twentieth century, but can also be seen as undermining the Deleuzian project itself: i.e., Mandelbrot attempts to mathematize forms, which during the Baroque were considered, as I will later claim, as inherently resisting this mathematization. Obviously, a more thorough analysis of the Deleuzian conception is needed, and especially the connection Deleuze hinted at between the fold and differential calcu- lus. But as I stated above, what this appendix is concerned with is the image of mathematics—or of mathematical concepts, such as space—that Leibniz presents with his reflections on folding. Hence, I will now briefly survey Leibniz’s thoughts on the possible connections between the fold and mathematics. As I will argue, Leibniz did not try to mathematize the fold or to take it as a mathematical operation, or as a technique that would lead to or prompt operations within mathematics, as Deleuze proposes, for example, with the notion of the enveloping curve.19 Indeed, although Leibniz did deal mathematically with enveloping curves, he never consid- ered them as connected either to folds in general or to folds of drapery in particular. Leibniz’s papers on enveloping curves are few,20 and as Steven Engelsman notes, “the envelope articles [of Leibniz] only constitute an isolated episode in the devel- opment of partial differentiation. They failed to have any effect [...]. Even Leibniz himself hardly referred to them again. Thus there was no significant follow up at all.”21 Hence, to emphasize again, the Leibnizian fold is above all a metaphor, and in no way strictly a mathematical concept.

15Deleuze (1993, p. 16). 16Thom (1975, Chap. 5). As is obvious from Thom’s treatment, once one deals with maps from a five-dimensional space (or with n-dimensional space, when n > 5), more complex singularities and catastrophe appear. 17Deleuze (1993, p. 17). 18Koch (1906, pp. 145–146). 19Deleuze (1993, pp. 19, 22). 20Leibniz (1692, 1694). For an analysis of Leibniz’s investigations of these curves, see: Serres (1968, pp. 193–200) and Engelsman (1984, pp. 22–30). 21Engelsman (1984, pp. 29–30): Cf. also: Bos (1974, pp. 40–42). 384 Appendix B: Deleuze, Leibniz and the Unmathematical Fold

Before examining how Leibniz did refer to folding, what is initially important to emphasize is the way in which the fold was regarded in the Baroque epoch compared to the Renaissance. Max Bense claims that: The simple, continuous linear arrangement of objects commonly used in Renaissance painting to create clear, simple ratios of proportion and symmetry [...] is replaced in the Baroque by a non-linear, continuous, curved arrangement of objects, and from this results what some describe as the emphatically asymmetrical character of baroque composition.22 Here, Bense pursues a line of thought originally laid down by Heinrich Wölfflin, who notes that “the surfaces and folds of the garment [of the sculptures of Bernini] are not only of their very nature restless, but are fundamentally envisaged with an eye to the plastically indeterminate [Platisch-Unbegrenzte]. [...]. The highlights of the folds dash away like lizards [...].”23 In other words, the fold in the Baroque transforms from an object that follows the rules of “proportion and symmetry”,asin the Renaissance, into something that escapes any linear determination and limitation, being the “limitless [das Grenzlose],” and does not come to a standstill.24 While in the Renaissance, as we saw in Chap. 2, Dürer offered a possible geometrical mathematization of the fold—and not only with his nets, but also with folds of drapery—the Baroqueian conception resisted this proposal.25 The folded drapes in the Baroque point towards other, non-linear curves (e.g., parabolas, or non-algebraic ones).26 But these Baroqueian folds, though being a “sign of a rupture with Renais- sance space,”27 have not led—at least in Leibniz’s thought—to the development of new mathematical tools, or new operations within mathematics. This can be clearly seen in Michel Serres’s book Le Système de Leibniz et ses modèles mathématiques,28 where Leibniz’s fold as a mathematical operation or concept is not even mentioned once.29

22Bense (1949, p. 107) (translation taken from: Blümle 2016, p. 84). 23Wölfflin (1950, p. 57) (cursive by M.F.). German original in: Wölfflin (1917, p. 62). 24Wölfflin (1888, p. 21). This aligns with the conception that Deleuze proposes, see, e.g., in: Deleuze (1993, p. 121). See Seppi (2016, p. 57): “Deleuze breaks with the paradigm of linearity in order to replace one kind of line with another—the straight line of the classical age with the curved line or fold of the Baroque—a substitution which also exchanges one kind of philosopher for another, and thus exchanges two types of reason: René Descartes’s with Leibniz’s.” See also: Seppi (2017). 25Taking this into account, it is unclear why Deleuze mentions Dürer’s folding of nets at all (Deleuze 1993, p. 147, footnote 8), since Dürer is certainly considered a representative of the Renaissance. See also the discussion in Sect. 2.1.2 and: Heuer (2011, p. 256): “For Deleuze [...] folding provides a model of the world [...] which cannot (because of this flux) be pinned to any representational code [...].” 26See: Blümle (2016), for an analysis that shows the possible mathematical forms and curves in El Greco’s Annunciations; indeed, one may depict non-linear curves in El Greco’s paintings, and Blümle claims that “the counter-fold, the infinite undulating form and the double fans are rendered visible in the two Annunciations [...].” (ibid., p. 90). See also: ibid., p. 94. 27Deleuze (1993, p. 121). 28See: Serres (1968). 29Given the fact that Deleuze relied heavily on Serres’s study in the development of his own ideas about the fold in Leibniz, this is particularly strange. Appendix B: Deleuze, Leibniz and the Unmathematical Fold 385

Leibniz therefore does not talk about the fold as a mathematical object, or as an object that can be mathematized; on the contrary, the fold, for Leibniz, is what resists the attempt to found everything on presupposed, unchangeable basic units. Hence, as a metaphor, it certainly stands as an opposition to the axiomatic approach or a binary approach. This can be mainly seen in the famous passage from Leibniz’s 1676 dialog Pacidius to Philalethes: [...] the division of the continuum must not be considered to be like the division of sand into grains, but like that of a sheet of paper or tunic into folds. And so although there occur some folds smaller than others infinite in number, a body is never thereby dissolved into points or minima. [...] It is just as if we suppose a tunic to be scored with folds multiplied to infinity in such a way that there is no fold so small that it is not subdivided by a new fold [...] And the tunic cannot be said to be resolved all the way down into points; instead, although some folds are smaller than others to infinity, bodies are always extended and points never become parts, but always remain mere extrema.30 Leibniz also makes other references to the fold (I will return to another one later), though they are few, and while most of them do not refer explicitly to spatial concepts, they nevertheless repeat the understanding of an infinite process.31 What the fold enables, one could say, is the thinking about this infinite process, but one that cannot be described with a finite collection of mathematical laws. Clearly, with Leibniz’s account of continuity, the body does not dissolve itself into a collection of points or minimal elements: there are folds which would always become smaller and smaller, a fold within folds, and one can never claim that a tunic is divided into points. Against the mathematical point, the atom of Gassendi, the Cartesian cogito,32 against all the concepts and terms that exclude the infinite enveloping and the unfolding of indefinite processes—against these, Leibniz posits the folds, which form (themselves) without any rupture, discontinuity or cessation. These folds within folds, stemming seemingly from an ever-shrinking number,33 unfold them- selves without any apparent regulative law, an absence that may be seen as the loss of a point of reference. Bouquiaux claims that this loss of the point of reference also reflects Leibniz’s investigations of conic sections, and hence his reflections on the principle of continuity.34 The non-appearance of this law does not mean, however, that there is no mathematical law to describe such folds: the seemingly irregular phenomena, for which only chaos reigns, have a mathematical geometrical

30Leibniz (2001, pp. 185–187). 31See: Lærke (2015, pp. 1196–1198), for a list of most of the appearances of the fold in Leibniz’s texts. Lærke’s paper is, in a way, essential for seeing how Deleuze re-conceptualized Leibniz’s fold. For example, Lærke presents the Deleuzian-Leibnizian fold as that which can also be seen in the Leibnizian differential calculus (ibid., pp. 1200–1204). As indicated above, Leibniz himself did not use the metaphor of the fold to describe these mathematical concepts. 32See: Leibniz (2001, p. 185). 33See: Bredekamp (2008, p. 15). 34See: Bouquiaux (2005, p. 54). See also Deleuze’s reference to Leibniz’s “ambiguous sign” in: Deleuze (1993, pp. 15, 21), indicating that there is a continuous family of all the (complex) conic sections. See also: Grosholz (2007, pp. 208–213). 386 Appendix B: Deleuze, Leibniz and the Unmathematical Fold explanation, but one that only God can understand, while the reason of the human being is (still) limited in its capability of discovering such regularity.35 Following Horst Bredekamp, one could say that the image that the folds of the tunic suggests (similar to the Leibnizian view regarding irrational numbers)36 is an image of a folded, twisted, even deformed and convoluted, contingent Baroque space, lacking all regularity. This conception obviously contrasts and stands opposed to well- constructed Cartesian space. The folds, as the incalculable, imply that “a trans- mathematical instance comes into force, which enabled an overview of the infinite”.37 Jumping almost forty years from Leibniz’s 1676 Pacidius to Philalethes to 1714, Leibniz’s essay Principes de la nature et de la grâce also shows, in an essential, though different way, how the fold was thought of in an un-mathematical way.38 In this essay, Leibniz refers to the impossibility of a calculation that would allow us to grasp the beauty of music39; several passages before this, he notes that: “One could learn the beauty of the universe in each soul if one could unfold all of its folds, which develop perceptibly only with time [si l’on pouvoit déplier tous ses replis, qui ne se développent sensiblement qu’avec le temps]. But since each distinct perception of the soul includes an infinity of confused perceptions which envelop the entire universe, the soul itself does not know the things which it perceives [...].”40 In addition, Leibniz notes, concerning the death of a Monad, that: “Thus, abandoning their masks or their rags, they merely return, but to a finer stage [...]. Not only souls, therefore, but animals as well, cannot be generated or perish; they are only devel- oped, enveloped, reclothed, stripped, transformed [ils ne sont que développés, enveloppés, revêtus, dépouillés, transformés]”.41 For Leibniz, the folding and unfolding of a cloth and of fabric were taken as a metaphor for a process of change, of a continuous transformation. Materiality as well as music, as enveloping, folded and unfolded, may be taken then as what resists calculation42 via the human, finite mathematical machinery.43 These

35I follow here: Albus (2001, pp. 148–157). 36Bredekamp (2008, p. 100). 37Ibid., p. 105. 38Note, moreover, Lærke (2015, p. 1196): “This stubbornly synchronic view of Leibniz’s philo- sophical enterprise is, from the historical point of view, an obvious flaw in [...] Deleuze’s [approach].” 39Leibniz (1989, p. 641): “Music charms us, although its beauty consists only in the agreement of numbers and in the counting, which we do not perceive but which the soul nevertheless continues to carry out, of the beats or vibrations of sounding bodies which coincide at certain intervals.” 40Ibid., p. 640 (translation changed by M.F.) 41Ibid., p. 638. 42See also: Deleuze (1993, pp. 77, 79). 43Describing the mathematical methods used by Leibniz to describe the “two levels” of the world— folds of the soul and pleats of matter, Deleuze (ibid., p. 101) indicates that these methods were differential calculus (i.e., calculus of differential relations) and the calculus of minimum and maximum (with the help of the coordinate system). However, Leibniz did not mathematically treat the fold with either of these methods. Appendix B: Deleuze, Leibniz and the Unmathematical Fold 387 transformations, such as the enveloping of the folded drapery, are described by Leibniz as a continuous process of metamorphosis,44 as a continuous process of covering and uncovering, of the convolution of space, which may not be conceptu- alized mathematically. As a phenomenon of nature, Leibniz does not indicate how the folds that become ever smaller might eventually be described through future laws of geometry and mathematics; it seems that he implicitly suggested that the current mathematical tools he had at his disposal were in no way sufficient for such a task. Indeed, one may claim—as Deleuze does—that Leibniz presents, with his introduc- tion and development of infinitesimal calculus, a metaphysics of the Baroqueian infinite fold,45 accompanied by the loss of the “good form,” i.e., the circle46 and its fixed center, and its replacement by a mathematics that emphasizes a dynamic model of space. Certainly, Leibniz proposed an alternative conception of space to Newton’s “absolute space,” that is, to his “space as container,”47 as Max Jammer puts it, but, as I have claimed, the Leibnizian conception of space hardly considered the fold as a mathematical object, which may possibly be found within such an alternative conception of space.48 The fold may be seen as an image either of nature in a process of metamorphosis, as folded or of space as convoluted, but this image was not thought of or conceptualized as a mathematical concept during Leibniz’s epoch.

44Leibniz (1989, p. 638): “[...] there is metamorphosis. Animals change, take on, and put off, only parts; in nutrition this takes place little by little and through minute, insensible particles, but continually [...]”. 45Deleuze (1993, pp. 34–35). 46I refer here to Kepler’s discovery of the laws of planetary motion at the beginning of the seventeenth century; Kepler showed that the orbit of a planet is an ellipse and not a circle. 47See: Jammer (1954, pp. xiv–xv) (in the forward by Einstein) and Chap. 5. Obviously, Jammer presents a traditional, “grand” narrative, ascribing the invention of absolute space to the Scientific Revolution, and advocating the conception that container space was developed only after the Renaissance. One of the aims of this book is, as mentioned in Chap. 6, following Deleuze’s and Guatarri’s distinction between “state sciences” and “minor sciences,” to undermine these “grand narratives” and present, in addition, complementary, “minor” and marginalized accounts of geom- etry and space. 48Recall that in Vacca’s article on the history of the mathematics of folding, he cites Leibniz’s idea that tailors should have their own geometry (Vacca 1930, p. 45). Vacca, however, did not specify what Leibniz actually meant by this. References

Abbott EA, Square A (1884) Flatland: a romance of many dimensions. Seeley, London Addabbo C (2015) Il “Libellusaurolico e la tassellazione dello spazio, PhD. Dissertation, University of Pisa Agazzi R, Pasquali P (1973) Scritti inediti e rari (ed: Grazzini M). Scuola, Brescia Agostini A (1924) De Viribus Quantitatis di Luca Pacioli. Period Mat 4:165–192 Ahrens W (1901) Mathematische Unterhaltungen und Spiele. B. G. Teubner, Leipzig Ahrens W (1902) Mathematische Spiele. In: Meyer WF (ed) Enzyklopädie der mathematischen Wissenschaften. B. G. Teubner, Leipzig, pp 1080–1093 Ahrens W (1907) Mathematische Spiele. B. G. Teubner, Leipzig Ahrens W (1916) Mathematische Spiele, 3rd edn. B. G. Teubner, Leipzig Ahrens, W (1918) Mathematische Unterhaltungen und Spiele, 2nd edn (improved and expanded), vol 2. B. G. Teubner, Leipzig Aiyengar PVD (1909) A manual of kindergarten. Genesa Press, Madras Alberti GA (1747) I giochi numerici. B. Borghi, Bologna Albisetti JC (2009) Froebel crosses the Alps: introducing the kindergarten in Italy. Hist Educ Q 49 (2):159–169 Albus V (2001) Weltbild und Metapher. Untersuchungen zur Philosophie im 18. Jahrhundert. Königshausen & Neumann, Würzburg Aleksandrov AD (1950) Vypuklye mnogogranniki [Russian: Convex Polyhedra]. Gosudarstv Izdat Tekhn-Teor Lit, Moskow-Leningrad Alexejeff W, Gordan P (1900) Übereinstimmung der Formeln der Chemie und der Invariantentheorie. Z Phys Chem 35:610–633 Allender T (2016) Learning femininity in colonial India, 1820–1932. Manchester University Press, Manchester Alperin RC (2000) A mathematical theory of constructions and numbers. NY J Math 6:119–133 Alperin RC, Lang RJ (2009) One-, two-, and multi-fold origami axioms. In: Lang RJ (ed) Origami4: 4th international meeting of origami science, mathematics, and education. A K Peters, Natick, pp 371–393 Alpers S (1982) Art history and its exclusions: the example of Dutch art. In: Broude N, Garrard MD (eds) Feminism and art history: questioning the litany. Harper & Row, Boulder, pp 183–199 Andersen K (2007) The geometry of an art. The history of the mathematical theory of perspective from Alberti to Monge. Springer, New York Andrews N (2016) Albrecht Dürer’s personal Underweysung der Messung. Word Image 32 (4):409–429

© Springer International Publishing AG, part of Springer Nature 2018 389 M. Friedman, A History of Folding in Mathematics, Science Networks. Historical Studies 59, https://doi.org/10.1007/978-3-319-72487-4 390 References

Archibald RC (1950) The first translation of Euclid’s elements into English and its source. Am Math Mon 57(7):443–452 Arcozzi N (2012) Beltrami’s models of non-Euclidean geometry. In: Coen S (ed) Mathematicians in Bologna 1861–1960. Springer, Birkhäuser, Basel, pp 1–29 Arfe Juan de (1795 [1585]) De Varia commensuración para la escultura y arquitectura, 7th edn. Plácido Barco Lopez, Madrid Aristotle (1928–1952) Complete works (ed, trans: Ross WD), vol 1–12. Oxford University Press, Oxford Aronhold S (1863) Ueber ein fundamentale Begründung der Invariantentheorie. J Reine Angew Mat 62:281–345 Auvinet J (2016) Récréations mathématiques, géométrie de situation... De nouveaux outils pour enseigner les mathématiques à la fin du XIXe siècle. Conference paper of: history and pedagogy of mathematics, July 2016, Montpellier. https://hal.archives-ouvertes.fr/hal-01349265 Bach FT (1996) Struktur und Erscheinung: Untersuchungen zu Dürers graphischer Kunst. Gebr. Mann, Berlin Baeyer Adolf von (1885) Ueber Polyacetylenverbindungen. Zweite Mittheilung. Ber Deutsch Chem 1520 Ges 18:2269–2281 Bahadur R (ed) (1914) Second supplement to who’s who in India: brought up to 1914. Newul Kishore Press, Lucknow Baker R, Christenson C, Orde H (2004) Collected papers of Bernhard Riemann (1826–1866). Kendrick Press, Heber City Bakker N (2017) Happiness, play, and bourgeois morality: the early years of Froebel schooling in the Netherlands, 1858–1904. In: May H, Nawrotzki K, Prochner L (eds) Kindergarten narratives on Froebelian education: transnational investigations. Bloomsbury Academic, London, pp 35–50 Ball K (1892a) Paper folding and cutting. The Prang Educational Company, Boston Ball WWR (1892b) Mathematical recreations and essays. Macmillan, London Barany MJ (2010) Translating Euclid’s diagrams into English, 1551–1571. In: Heeffer A, Van Dyck M (eds) Philosophical aspects of symbolic reasoning in early modern mathematics. College Publications, London, pp 125–163 Barbaro D (1569) La pratica della perspettiva. Borgominieri, Venice Barbin É (2007) Les Récréations: des mathématiques à la marge. Science 30:22–25 Barbin É, Guitart R (2016) Des récréations pour enseigner les mathématiques avec Lucas, Fourrey, Laisant. Conference paper of: history and pedagogy of mathematics, July 2016, Montpellier. https://hal.archives-ouvertes.fr/hal-01349272 Barnes JL, Gardner MF (1942) Transients in linear systems studied by the Laplace transformation, Lumped-constant systems, vol 1. Wiley/Chapman & Hall, New York/London Baron F (ed) (1978) Joachim Camerarius: (1500–1574). Beiträge zur Geschichte des Humanismus im Zeitalter der Reformation. Fink, Munich Barrow-Green J (2006) ‘Much necessary for all sortes of men’: 450 years of Euclid’s elements in English. BSHM Bull 21(1):2–25 Barrow-Green J (2011) Wranglers in exile. In: Mathematics in Victorian Britain. Oxford University Press, Oxford, pp 121–152 Barrow-Green J (2015) ‘Clebsch took notice of me’: Olaus Henrici and surface models. In: Oberwolfach report 47/2015 of the workshop: history of mathematics: models and visualization in the mathematical and physical sciences, pp 2788–2791 Barth E, Niederley W (1877) Des Kindes erstes Beschäftigungsbuch. praktische Anleitung zur Selbstbeschäftigung für jüngere Kinder. Velhagen & Klasing, Bielefeld Belhoste B, Taton R (1992) L’invention d’une langue des figures. In: Dhombres J (ed) L’École normale de l’an III. Leçons de mathématiques: Laplace-Lagrange – Monge, vol 1. Éditions Rue d’Ulm, Paris, pp 269–303 Beloch MP (1909) Sulle trasformazioni birazionali nello spazio. Annu Mat 16:27–68 References 391

Beloch MP (1930) La matematica in relazione alle sue applicazioni e al suo valore educativo. S. A. Industrie Grahiche, Ferrara Beloch MP (1934a) Alcune applicazioni del metodo del ripiegamento della carta di Sundara-Row. Atti dell’Acc. di Scienze, Mediche. Nat Mat Ferrara Serie II 11:186–189 Beloch MP (1934b) Elementi di fotogrammetria terrestri ed aerea. Cedam, Padova Beloch MP (1936a) Sul metodo del ripiegamento della carta per la risoluzione dei problemi geometrici. Period Mat Ser IV 16:104–108 Beloch MP (1936b) Sulla risoluzione dei problemi di terzo e quarto grado col metodo del ripiegamento della carta. In: Scritti Matematici offerti a Luigi Berzolari (Pubblicato dall’Istituto matematico della R. Università di Pavia), pp 93–95 Beloch MP (1953a) Lezioni di Mathematica Complementare. In: Orzalesi E (ed) Publicazioni dell’Istituto di Geometria della’Universita Ferrara, Ferrara Beloch MP (1953b) Geometria Descrittiva, 2nd edn. University of Ferrara, Ferrara Beloch MP (1967a [1934]) Sulla Importanze Della Roentgen-fotogrammetria. In: Atti dell’Ace. delle Scienze Mediche e Naturali di Ferrara (reprinted in: Beloch MP (1967) Opere Scelte. Cedam, Padova, pp 83–84) Beloch MP (1967b [1947]) Sulla semplicita e precision delle costruzioni grafiche. In: Archivio Internazionale di Fotograrmmetria IX, Fasc. II, Part II (reprinted in: Beloch MP, Opere Scelte. Cedam, Pavia, pp 36–37) Beloch MP (1967c) Opere Scelte. Cedam, Padova Beltrami E (1867) Delle variabili complesse sopra una superificie qualunque. In: Opere matematiche di Eugenio Beltrami, vol 1. Mapli, Milan, pp 318–353 Beltrami E (1868–1869) Teoria fondamentale degli spazii di curvatura costante. In: Opere matematiche di Eugenio Beltrami, vol 1. Mapli, Milan, pp 406–429 Beltrami E (1868) Saggio di interpretazione della geometria non-euclidea. In: Opere matematiche di Eugenio Beltrami, vol 1. Mapli, Milan, pp 374–405 Beltrami E (1872) Sulla superficie di rotazione che serve di tipo alle superficie pseudosferiche. In: Opere matematiche di Eugenio Beltrami, vol 2. Mapli, Milan, pp 394–409 Benis-Sinaceur H (1987) Structure et concept dans l'épistémologie mathématique de Jean Cavaillès. Rev Hist Sci 40(1):5–30 Bense M (1949) Konturen einer Geistesgeschichte der Mathematik. Die Mathematik in der Kunst, vol 2. Claassen & Goverts, Hamburg Berger M (1995) Frauen in der Geschichte des Kindergartens. Brandes & Apsel, Frankfurt am Main Berger M (2002) Ronge, Bertha. In: Biographisch-Bibliographisches Kirchenlexikon, Band XX. T. Bautz, Spalten, Nordhausen 1225–1229 Berger M (2006) Heerwart, Eleonore. In: Marwinski F (ed) Lebenswege in Thüringen. Dritte Sammlung. Historische Kommission für Thüringen e.V., Weimar, pp 147–151 Bern M, Hayes B (1996) The complexity of flat origami. In: Proceeding SODA ’96 proceedings of the seventh annual ACM-SIAM symposium on discrete algorithms. SIAM, Philadelphia, pp 175–183 Bern M, Demaine ED, Eppstein D, Hayes B (2001) A disk-packing algorithm for an origami magic trick. In: Hull T (ed) Origami3: Proceedings of the 3rd international meeting of origami science, math, and education (OSME 2001). A K Peters, Natick, pp 17–28 Bern M, Demaine ED, Eppstein D, Kuo E, Mantler A, Snoeyink J (2003) Ununfoldable polyhedra with convex faces. Comput Geom 24(2):51–62 Berndt BC, Rankin RA (1995) Ramanujan: letters and commentary, history of mathematics, vol 9. American Mathematical Society, London Bernstein F (1920a) Die Integralgleichung der elliptischen Thetanullfunktion. Sitzungsber Preuss Akad Wissensch 735–747 Bernstein F (1920b) Die Integralgleichung der elliptischen Thetanullfunktion. Zweite Note: Allgemeine Lösung. Kon Ned Akad Wetensch Proc 23(1):817–823 Bernstein F, Doetsch G (1922a) Über die Integralgleichung der elliptischen Thetafunktion. Jahresbericht Dtsch Mat Vereinigung 31:148–153 392 References

Bernstein F, Doetsch G (1922b) Die Integralgleichung der elliptischen Thetanullfunktion. Dritte Note. Nachr Ges Wiss Göttingen Mat-Phys Klass 1922:32–46 Bernstein F, Doetsch G (1927) Probleme aus der Theorie der Wärmeleitung. IV. Mitteilung. Die räumliche Fortsetzung des Temperaturablaufs (Bolometerproblem). Mat Zeitsch 26:89–98 Berzelius JJ (1814) Essay on the cause of chemical proportions, and on some circumstances relating to them: together with a short and easy method of expressing them. Ann Philos 3:51–62 Betsch G (2014) Geodätische auf einem 1-schaligen Rotationshyperboloid. Anmerkungen zu einem konkreten mathematischen Modell. In: Ludwig D, Weber C, Zauzig O (eds) Das Materielle Modell. Objektgeschichten aus der wissenschaftlichen Praxis. Wilhelm Fink, Paderborn, pp 227–233 Bilinski S (1960) Über die Rhombenisoeder. Glasnik Mat Fiz Astr 15:251–263 Billingsley H (1570) The elements of Geometrie. John Day, London Blumenthal O (1935) Lebensgeschichte. In: Hilbert D (ed) Gesammelte Abbhandlungen. Band III. Analysis. Grundlagen der Mathematik, Physik, Lebensgeschichte. Springer, Berlin, pp 388–429 Blümle C (2006) Souveränität im Bild. Anthonis van Dycks Reiterporträt Karls I. In: Bredekamp H, Schneider P (eds) Visuelle Argumentationen Die Mysterien der Repräsentation und die Berechenbarkeit der Welt. Wilhelm Fink, Munich, pp 79–101 Blümle C (2016) Infinite folds: El Greco and Deleuze’s operative function of the fold. In: Friedman M, Schäffner W (eds) On folding. Towards a new field of interdisciplinary research. transcript, Bielefeld, pp 77–91 Böhm A (1771) Rectis Parallelis Dissertatiuncula. Acta Philosophico-Medica Societatis Academicae Scientiarum Principalis Hassiacae 1–5 Boi L, Giacardi L, Tazzioli R (1998) La découverte de la géometrie non euclidienne sur la pseudosphère. Albert Blanchard, Paris Boldt R (1999) Einige Gedanken über das Fröbelverständnis von Eleonore Heerwart. In: Heiland H, Neumann K, Gebel M (eds) Friedrich Fröbel. Aspekte international vergleichender Historiographie. Beltz, Weinheim, pp 160–169 Boldt R (2001) Neuere Ergebnisse der Heerwart-Forschung. In: Heiland H, Gutjahr E, Neumann K (eds) Fröbel-Forschung in der Diskussion: Internationale Ergebnisse zu methodologischen und rezeptionsgeschichtlichen Fragen. Beltz, Weinheim, pp 57–72 Boldt R (2003) Eleonore Heerwart über die Gaben und Beschäftigungen Friedrich Fröbels. In: Heiland H, Neumann K (eds) Fröbels Pädagogik. verstehen, interpretieren, weiterführen. Könighausen & Neumann, Würzburg, pp 104–119 Boole Stott A (1900) On certain series of sections of the regular four dimensional hypersolids. Verh K Akad Wetenschappen Amst 7(3):1–21 Boole Stott A (1907) On models of 3-dimensional sections of regular hypersolids in space of 4 dimensions. Report of the Annual Meeting British association for the Advancement of Science, vol 77, pp 460–461 Boole Stott A (1910) Geometrical deduction of semiregular from regular polytopes and space fillings. Verh K Akad Wetenschappen Amst 11(1):3–24 Bos HJM (1974) Differentials, higher order differentials and the derivative in the Leibnizian Calculus. Arch Hist Exact Sci 14:1–90 Bos HJM (2001) Redefining geometrical exactness. Descartes’ transformation of the early modern concept of construction. Springer, New York Bossi V (2008) Magic and card tricks in Luca Paciolo’s De Viribus Quantitatis. In: Demaine E, Demaine M, Tom R (eds) A lifetime of puzzles. A K Peters, Wellesley, pp 123–129 Bouquiaux L (2005) Plis et enveloppements chez Leibniz. In: Cormann G, Laoureux S, Piéron J (eds) Différence et identité. Georg Olms, Hildesheim, pp 39–56 Bouton CL (1901/1902) Nim, a game with a complete mathematical theory. Ann Math 3 (1/4):35–39 (2nd series) Bovelles Charles de (1510) Libellus de Mathematicis corporibus. Henri Estienne, Paris Bovelles Charles de (1511) Geometrie en Françoys. Henri Estienne, Paris Bovelles Charles de (1551) Geometrie Practique. Regnaud Chaudiere, Paris References 393

Brander I (1885) The Hobart School, Madras. J Natl Indian Assoc 170:94–95 Braswell-Means L (1991) The vulnerability of Volvelles in manuscript codices. Manuscripta 35 (1):43–54 Brechenmacher F, Jouve G, Mazliak L, Tazzioli R (eds) (2016) Images of Italian mathematics in France. The Latin Sisters, from Risorgimento to Fascism. Birkhäuser, Basel Bredekamp H (2008) Die Fenster der Monade. Gottfried Wilhelm Leibniz’ Theater der Natur und Kunst, 2nd edn. Akademie Verlag, Berlin Brehony KJ (2000a) The kindergarten in 1851–1918. In: Wollons R (ed) Kindergartens and cultures: the global diffusion of an idea. Yale University Press, New Haven, pp 59–86 Brehony KJ (2000b) English revisionists Fröbelians and schooling of the urban poor. In: Hilton M, Hirsch P (eds) Practical visionaries: women, education and social progress, 1790–1930. Routledge, London, pp 183–199 Bressanini D, Toniato S (2011) I giochi matematici di fra’ Luca Pacioli. Dedalo, Bari Brill A (1874) Carton-Modelle von Flächen tweeter Ordnung. L. Brill, Darmstadt Brill A (ed) (1880) Mathematische Modelle angefertigt im mathematischen Institut des k. Polytechnikums zu München. Munich University, Munich Brill L (1882) Nachtrag zum Catalog mathematischer Modelle, 2nd edn. Brill, Darmstadt Brill L (1885) Catalog mathematischer Modelle für den höheren mathematischen Unterricht, 3rd edn. Brill, Darmstadt Brill A (1887) Über die Modellsammlung des mathematischen Seminars der Universität Tübingen (Vortrag vom 7. November 1886). Math Naturwiss Mitt 2:69–80 Brill L (1888) Katalog mathematischer Modelle für den höheren mathematischen Unterricht, 4th edn. Brill, Darmstadt Brill L (1892) Katalog mathematischer Modelle für den höheren mathematischen Unterricht, 5th edn. Brill, Darmstadt Brill D (1984a) Asides. Justin’s origami trisection. Br Origami 107:14 Brill D (1984b) Abe’s trisection. Br Origami 108:9 Broecke SV (2000) The use of visual media in renaissance cosmography: the cosmography of Peter Apian and Gemma Frisius. Paedagog Hist 36(1):130–150 Brosterman N (1997) Inventing Kindergarten. Harry N. Abrams, New York Bruck R (ed) (1905) Das Skizzenbuch von Albrecht Dürer. Heitz, Straßburg Burckhardt JJ (2013) Die Symmetrie der Kristalle: Von René-Just Haüy zur kristallographischen Schule in Zürich. Birkhäuser, Basel Burmann H-W, Krämer S, Patterson SJ (2001) Die Sammlung Mathematischer Modelle und Instrumente des Mathematischen Instituts. In: Hoffmann D, Maack-Rheinländer K (eds) ‘Ganz für das Studium angelegt’: die Museen, Sammlungen und Gärten der Universität Göttingen. Wallstein Verlag, Göttingen, pp 175–181 Cabanne P (1971) Dialogues with Marcel Duchamp (trans: Padgett R). Da Capo Press, London Cajori F (1896) A history of elementary mathematics, with hints on methods of teaching. Macmil- lan, London Cajori F (1929) Generalisations in geometry as seen in the history of developable surfaces. Am Math Mon 36(8):431–437 Calcar E van (1863) De Kleine Papierwerkers. Wat men van een stukje papier al maken kan. Het vouwen. K. H. Schadd, Amsterdam Canovi L (1986) Origami. In: Izzo S (ed) Scienza e gioco, Proceedings of the conference scienza e gioco, Roma, 1985. Sansoni, Firenze, pp 311–319 Cantor G (1878) Ein Beitrag zur Mannigfaltigkeitslehre. J Angew Math (Crelles J) 84:242–258 Capelo AC, Ferrari M (1982) La ‘cuffia’ di Beltrami: storia e descrizione. Boll Stor Sci Mat 2 (2):233–247 Capristo A (2016) French Mathematicians at the Bologna Congress (1928). Between participation and boycott. In: Brechenmacher F et al (eds) Images of Italian mathematics in France. The Latin Sisters, from Risorgimento to Fascism. Birkhäuser, Basel, pp 289–309 394 References

Carey HM (2003) What is the folded Almanac?: the form and function of a key manuscript source for astro-medical practice in later medieval England. Soc Hist Med 16(3):481–509 Cassell (ed) (1881) Cassell’s book of in-door amusements, card games and Fireside Fun, 3rd edn. Cassell, Petter, Galpin, London Cassina U (1950) L’area di una superficie curva nel carteggio inedito di Genocchi con Schwarz ed Hermite. Ist Lomb Accad Sci Lett Rend Sci 83:311–328 Cassina U (1953) Giovanni Vacca. La vita e le opere. Rend Ist Lomb Sci Lett Parte Generale 86 (3):185–200 (3rd series, vol 17) Cavaillès J (1938) Méthode axiomatique et formalisme – Essai sur le problème du fondement des mathématiques. Hermann, Paris Cavaillès J, Lautman A (1946) La pensée mathématique. Séance du 4 février 1939. Bull Soc Fr Philos 40(1):1–39. English translation in: https://www.urbanomic.com/document/mathemati cal-thought/ (trans: Mackay R). Last accessed 9 May 2017 Cavalieri B, d’Aviso U (1682) Trattato della Sfera e Prattiche, per vso de essa di fare la figura Celeste. Mascardi, Rome Cayley A (1849) On the triple tangent planes of surfaces of the third order. Camb Dublin Math J 4:118–138 Cerda EA, Mahadevan L, Pasini JM (2004) The elements of draping. Proc Natl Acad Sci 101 (7):1806–1810 Cesari L (1956) Surface area. Princeton University Press, Princeton Chemineau M (2012) Fortunes de “La Nature”: 1873–1914. LIT, Berlin Chemla K (2014) Explorations in the history of mathematical recreations: an introduction. Hist Math 41:367–376 Choquet G (1964) L’enseignement de la géométrie. Hermann, Paris Cioffarelli G (1987) Il Trattato della Sfera di Bonaventura Cavalieri nelle edizioni di Urbano Daviso. Boll Scoria Sci Mat 7(1):3–59 Clark JS, Hicks MD, Perry WS (1898) Teacher’s manual, Part I, for Prang elementary course in art instruction. The Rang Educational, Boston Clemens R, Graham T (2007) Introduction to manuscript studies. Cornell University Press, Ithaca Clifford WK (1878) Extract of a letter to Mr. Sylvester from Prof. Clifford of University College, London. Am J Math 1(2):126–128 Conservatoire National des Arts et Metiers (1882) Catalogue des Collections. Dunod Editeur, Paris Coolidge JL (1947) A history of geometrical methods. Clarendon, Oxford Corry L (2004) Modern algebra and the rise of mathematical structures, 2nd edn. Birkhäuser, Basel Coxeter HSMD (1987) Alicia Boole Stott. In: Campbell P, Grinstein L (eds) Women of mathe- matics: a bio bibliographic sourcebook. Greenwood Press, Westport, pp 220–224 Cowley JL (1752) Geometry made easy. Mechel, London Cowley JL (1758) An appendix to Euclid’s Elements. Watkins, London Cramer G (1750) Introduction à l’analyse des lignes courbes algébriques. Cramer & Cl. Philibert, Geneva Dackerman S (ed) (2011) Prints and the Pursuit of knowledge in early modern Europe. Yale University Press, New Haven Darboux G, Hoüel J, Tannery J (eds) (1885) Bulletin des Sciences Mathematiques, vol 11, first part. Gauthier-Villars, Paris Daston LJ (1986) The Physicalist tradition in early nineteenth century French geometry. Stud Hist Philos Sci Part A 17(3):269–295 Deakin MAB (1981) The development of the Laplace transform, 1737–1937 I. Euler to Spitzer, 1737–1880. Arch Hist Exact Sci 25(4):343–390 Deakin MAB (1982) The development of the Laplace transform, 1737–1937 II. Poincaré to Doetsch, 1880–1937. Arch Hist Exact Sci 26(4):351–381 Décaillot A-M (2014) Les Récréations Mathématiques d’Édouard Lucas: quelques éclairages. Hist Math 41(4):506–517 References 395

Dee J (1975) The mathematical preface to the elements of geometrie of Euclid of Megara (1570). Science History Publications, New York Deleuze G (1993) The fold. Leibniz and the Baroque (trans: Conley T). The Athlone Press, London Deleuze G, Guattari F (1987) A thousand plateaus: capitalism and schizophrenia (trans: Massumi B). University of Minnesota Press, Minneapolis Demaine ED, Demaine ML (2002) Recent results in computational origami. In: Hull T (ed) Origami3: Proceedings of the 3rd international meeting of origami science, math, and education (OSME 2001). A K Peters, Natick, pp 3–16 Demaine ED, O’Rourke J (2007) Geometric folding algorithms: linkages, origami, polyhedra. Cambridge University Press, Cambridge Demaine ED, Demaine ML, Lubiw A (1999) Folding and one straight cut suffice. In: Proceedings of the 10th annual ACM-SIAM symposium on discrete algorithm. ACM/SIAM, New York, pp 891–892 Demaine ED, Demaine ML, Lubiw A (2000a) Folding and cutting paper. In: Proceedings of 1998 Japan conference discrete of computational geometry, Lecture Notes in Computer Science, vol 1763. Springer, Berlin, pp 104–117 Demaine ED, Demaine ML, Mitchell JSB (2000b) Folding flat Silhouettes and wrapping polyhedral packages: new results in computational origami. Comput Geom 16(1):3–21 Derrida J (1981) Positions (trans: Bass A). The University of Chicago Press, Chicago Derrida J (1997) Of grammatology (trans: Spivak GC). The Johns Hopkins University Press, Baltimore Derrida J (2005) On touching – Jean-Luc Nancy (trans: Irizarry C). Stanford University Press, Stanford Descartes R (1925) La Géométrie (trans: Smith DE, Latham ML). The Open Court, Chicago Dickson LE (1914) Algebraic invariants. Wiley, New York Diderot D (1821) Oeuvres de Denis Diderot, Salons, vol I. Brière, Paris Diderot D, d’Alembert J le R (1751) Encyclopédie, ou Dictionnaire raisonné des sciences, des arts et des métiers, vol 1. Briasson, Paris Dieudonné J (1981) History of functional analysis. North Holland, New York Dodgson CL (1885) Euclid and his modern rivals, 2nd edn. Macmillan, London Doetsch G (1923) Die Integrodifferentialgleichungen vom Faltungstypus. Math Ann 89:192–207 Doetsch G (1927) Überblick über Gegenstand und Methode der Funktionalanalysis. Jahresber Dtsch Math Ver 36:1–30 Doetsch G (1937) Theorie und Anwendung der Laplace-Transformation. Springer, Berlin Dombkowski K (2002) Kindergarten teacher training in England and the United States 1850–1918. Hist Educ 31(5):475–489 Dominguez-Torres A (2015) A history of the convolution operation. IEEE Pulse (January/ February). http://pulse.embs.org/january-2015/history-convolution-operation/. Last accessed 7 Dec 2016 Doran S (2013) The culture of yellow- or, the visual politics of late modernity. Bloomsbury, New York Drenth Annemieke van, Essen Mineke van (2004) The position of Dutch and American women in early twentieth century educational sciences. Different roots but similar outcomes. In: MacDonald AA, Huussen AH (eds) Scholarly environments: centres of learning and institu- tional contexts, 1560–1960. Peeters, Leuven, pp 151–167 Dubreuil J (1647) Seconde partie de la perspective pratique qui donne une grande facilité à trouver les apparences de tous les corps solides, tant reguliers qu’irreguliers ... veuve de François L’Anglois dit Chartres, Paris Dudeney HE (1967) 536 Puzzles & curious problems. In: Gardner M (ed). Scribner’s Sons, New York Duffy S (2010) Deleuze, Leibniz and projective geometry in the fold. Angelaki J Theor Hum 15 (2):129–147 396 References

Dunod, Conservatoire national des arts et métiers (ed) (1882) Catalogue des collections, 7th edn. Dunod, Paris Dupin C (1822) Considérations générales sur les applications de la géométrie. Impr. de Fain, Paris Dürer A (1528) Vier Bücher von menschlicher Proportion. Hieronymus Formschneider, Nuremberg Dürer A (1532) Institutionum Geometricarum. Christian Wechel, Paris Dürer A (1977 [1525]) The Painter’s manual (trans with comments: Strauss WL). Abaris Books, New York Dürer A (1995) Géométrie (presentation, trans and comments: Peiffer J). Seuil, Paris Dyck Walter von (1892) Katalog mathematischer und mathematisch-physikalischer Modelle, Apparate und Instrumente (Nebst Nachtrag. Mit einem Vorwort von Joachim Fischer). Munich (Reprint: 1994, Hildesheim. Georg Olms Verlag) Eagleton C (2010) Monks, manuscripts and sundials: the Navicula in medieval England. Brill, Leiden Elm HA (2015 [1882]) Kindergarten. Fest-Geschenk für die Kinder zur Feier des 100 jährigen Geburtstags von Friedrich Fröbel. Thüringer Landesmuseum Heidecksburg, Rudolstadt Emsmann H (1880) Zum vieraxigen Coordinatensysteme. In: Hoffmann JCV (ed) Zeitschrift für mathematischen und naturwissenschaftlichen Unterricht. Teubner, Leipzig, pp 253–261 Enea MR (2009) Il carteggio Beltrami-Chelini (1863–1873). Mimesis, Milano Eneström GH (1905) Bibliotheca mathematica. B. G. Teubner, Leipzig d’Enfert R (2003a) ‘Manuel (Travail)’: préparer au métier ou éduquer? In: Denis D, Kahn P (eds) L’École républicaine et la question des savoirs. CNRS Editions, Paris, pp 199–220 d’Enfert R (2003b) Inventer une géométrie pour l’école primaire au XIXe siècle. Tréma IUFM Montp 22:41–49 Engelsman SB (1984) Families of curves and the origins of partial differentiations. North-Holland, Leiden Epple M (1998) Orbits of asteroids, a braid, and the first ink invariant. Math Intell 20(1):45–52 Epple M (1999) Die Entstehung der Knotentheorie: Kontexte und Konstruktionen einer modernen mathematischen Theorie. Springer, Braunschweig Epple M, Krauthausen K (2010) Zur Notation topologischer Objekte: Interview mit Moritz Epple. In: Krauthausen K, Nasim OW (eds) Notieren, Skizzieren: Schreiben und Zeichnen als Verfahren des Entwurfs. Diaphanes, Zürich, pp 119–138 Esveldt Steven van (ed) (1746) Aanhangzel van de volmaakte Hollandsche keuken-meid. Esveldt, Amsterdam Euclid (1908a) The thirteen books of the elements, vol 1: Books 1–2 (trans: Heath TL). The University Press, Cambridge Euclid (1908b) The thirteen books of the elements, vol 2: Books 3–9 (trans: Heath TL). The University Press, Cambridge Euler L (1772) De solidis quorum superficiem in planum explicare licet (E419). Novi Commentarii Acad Sci Imperiatis Petropolitanae 16:3–34 Evenden-Kenyon E (2008) Patents, pictures and patronage: John Day and the Tudor Book Trade. Ashgate, Hampshire Eves HW (1969) In mathematical circles: Quadrants I and II. Prindle, Weber & Schmidt, Boston Febvre L, Martin H-J (1976) The coming of the book. The impact of printing 1450–1800 (trans: Gerard D). NLB, London Felfe R (2015) Naturform und bildnerische Prozesse. Walter de Gruyter GmbH, Berlin Field JV (1997) Rediscovering the Archimedean Polyhedra: Piero della Francesca, Luca Pacioli, Leonardo da Vinci, Albrecht Dürer, Daniele Barbaro, and Johannes Kepler. Arch Hist Exact Sci 50(3):241–289 Field JV (2005) The invention of infinity: mathematics and art in the renaissance, 2nd edn. Oxford University Press, Oxford Fischer G (ed) (1986) Mathematical models: from the collections of universities and museums, 2 vol. Friedr. Vieweg and Sohn, Braunschweig References 397

Fischmann E (1985) A reconstruction of the first experiements in stereochemistry. Janus 72:131–156 Fisher CS (1966) The death of a mathematical theory: a study in the sociology of knowledge. Arch Hist Exact Sci 3(2):137–159 Flachsmeyer J (2008) Origami und Mathematik. Papier falten – Formen gestalten. Heldermann Verlag, Lemgo Flachsmeyer J (2016) Zu ‘Adolf Hurwitz faltet’. Math Semesterber 63(2):195–200 Foucault M (1972) The archaeology of knowledge and the discourse on language (trans: Smith AMS). Pantheon, New York Fourrey E (1924) Procédés originaux de constructions géométriques. géométrie du pliage. Libraire Vuibert, Paris Francœur L-B (1804) Traite élémentaire de mécanique. Courcier, Paris Francœur L-B (1809) Cours complet de mathématiques pures, vol 1. Bernard, Paris Francœur L-B (1828) Cours complet de mathématiques pures, 3rd edn, vol 1. Bernard, Paris Francoeur E (1997) The forgotten tool: the design and use of molecular models. Soc Stud Sci 27 (1):7–40 Francoeur E (2000) Beyond dematerialization and inscription. Does the materiality of molecular models really matter? HYLE: Int J Philos Chem 6(1):63–84 Friedman M (2016) Two beginnings of geometry and folding: Hermann Wiener and Sundara Row. J Br Soc Hist Math 31(1):52–68 Friedman M (2017) A failed encounter in mathematics and chemistry: the folded models of van ‘t Hoff and Sachse. Theory Sci 38(3):359–386 Friedman M, Rougetet L (2017) Folding in Recreational Mathematics during the 17th–18th Centuries: Between Geometry and Entertainment. Acta Baltica Historiae et Philosophiae Scientiarum 5(2):5–34. Frigerio E (2017) Beloch e Huzita, private communication, email from 26.4.2017 Frigerio E, Huzita H (1989) A possible example of system expansion in origami geometry. In: Huzita H (ed) Proceedings of the 1st international meeting of origami, science and technology. Comune di Ferrara and Centro Origami Diffusion, Ferrara, pp 53–69 Fröbel F (1826) Die Menschenerziehung. Wienbrack, Keilhau Fröbel F (1874) Gesammelte pädagogische Schriften. In: Lange W (ed), vol 2. Enslin, Berlin Fröbel, Auerbach B (1847) (BN 365, Bl 1–2, hier: 2–2R u 1–1R, undat. Entwurf 1 Bl 8 2 S. auf 2–2R, mit undatierter Literaturliste/Spielmaterialien 1 Bl 8 1 ½ p), February 1847. http://bbf. dipf.de/editionen/froebel/fb1847-02-23-01.html Fröbel F, Hoffmann E (1947) Fröbels Theorie des Spiels III, 2nd edn. Julius Beltz, Weimar Fröbel, von Marenholtz-Bülow B (1851) (Marienthal) (BlM, Abschriften/Kasten 2/F 1058/70/Bl 727–730, Abschr. 2 B fol. 8 p), November 1851. http://bbf.dipf.de/editionen/froebel/fb1851-11- 21-01.html Fröbel, Woepcke L (1845) (Marienthal) v.21./28.7.1845 (Keilhau) (BN 699, Bl 1–8, 3 datierte Entwürfe fol. a) BN 699, Bl 1–4R; b) BN 699, Bl 5–6R; c) BN 699, Bl 7–8R; BN 58, Bl 1–24, undat. Abschrift 12 B 8 48 p), July 1845. http://bbf.dipf.de/editionen/froebel/fb1845-07-21-01. html Fuller (1879) The kindergarten. J Natl Indian Assoc 103:362–377 Funke F (1999) Buchkunde: Ein Überblick über die Geschichte des Buches. K.G. Saur, Munich Fushimi K (1979) Origami geometry, Haga’s theorem (in Japanese). Sugaku Seminar 18(1):40–41 Fushimi K (1980) Trisection of an angle by H. Abe. Science of Origami, A Supplement to Saiensu (the Japanese version of Scientific American), p 8 Gambini G, Pepe L (1982) La raccolta Montesano di opuscoli nella biblioteca dell’Istituto Matematico dell’Università di Ferrara. Istituto di Matematica, Ferrara Ghersi I (1913) Matematica dilettevole e curiosa. Hoepli, Milano Giacardi LM (2015) Models in mathematics teaching in Italy (1850–1950). In: Bruter C (ed) Proceedings of second ESMA conference, mathematics and art III. Cassini, Paris, pp 9–33 Giegher M (1629) Li tre trattati. Guareschi, Padova 398 References

Glas E (1986) On the dynamics of mathematical change in the case of Monge and the French revolution. Stud Hist Philos Sci Part A 17(3):249–268 Glas E (2002) Socially conditioned mathematical change: the case of the French revolution. Stud Hist Philos Sci Part A 33(4):709–728 Gleason A (1988) Angle trisection, the heptagon and the triskaidecagon. Am Math Mon 95 (3):185–194 Goldammer H (1874) Fröbels Beschäftigungen für das vorschulplichtige Alter. Habel, Berlin Goodman J (ed, trans) (1995) Diderot: on art, The Salon of 1765 and notes on painting, vol 1. Yale University Press, New Haven Gordan PA (1868) Beweis, dass jede Covariante und Invariante einer binären Form eine ganze Function mit numerischen Coefficienten einer endlichen Anzahl solcher Formen ist. J Reine Angew Math 69:323–354 Gordan PA (1875) Über das Formensystem binaerer Formen. B. G. Teubner, Leipzig Gordan PA (1887) Vorlesungen über Invariantentheorie, 2 Band: binäre Formen. In: Kerschensteiner G (ed). B. G. Teubner, Leipzig Gordan PA (1893) Ueber einen Satz von Hilbert. Math Ann 42:132–142 Gordan PA (1899) Neuer Beweis des Hilbertschen Satzes über homogene Funktionen. Nachr Ges Wiss Göttingen, Math-Phys Klasse 1899:240–242 Gouk P (1988) The ivory sundials of Nuremberg 1500–1700. Whipple Museum of the History of Science, Cambridge Grabiner JV (1977) Mathematics in America: the first hundred years. In: Tarwater D (ed) The bicentennial tribute to American mathematics, 1776–1976. Mathematical Association of Amer- ica, Washington, DC, pp 9–24 Grace J, Young A (1903) The algebra of invariants. Cambridge University Press, Cambridge Grattan-Guinness I (1972) A mathematical union: William Henry and Grace Chisholm Young. Ann Sci 20(2):105–186 Grattan-Guinness I (1990) Convolutions in French mathematics, 1800–1840. Science networks: historical studies, vol 1. Birkhäuser, Basel Grazzini M (1973) Il problema dell’educazione infantile in Italia alla fine dell’800 e il Congresso Pedagogico Nazionale del 1898. In: Agazzi R, Pasquali P (eds) Scritti inediti e rari. Scuola, Brescia, pp 11–57 Greco G, Mazzucchi S, Pagani E (2016) Peano on definition of surface area. Atti Accad Naz Lincei Cl Sci Fis Mat Nat 27:251–286 Greenberg MJ (1974) Euclidean and non-Euclidean geometries: development and history. W. H. Freeman, San Francisco Grimm J, Grimm W (1971) Deutsches Wörterbuch von Jacob und Wilhelm Grimm, 16 vol in 32 sub-volumes, Lepizig. http://woerterbuchnetz.de/DWB/ Grosholz ER (2007) Representation and productive ambiguity in mathematics and the sciences. Oxford University Press, Oxford Grünbaum B (2010) The Bilinski dodecahedron and assorted parallelohedra, zonohedra, monohedra, isozonohedra, and otherhedra. Math Intell 32(4):5–15 Grunert J (1827) Einfacher Beweis der von Cauchy und Euler Gefundenen Sätze von Figurennetzen und Polyedern. J Reine Angew Math 2:367 Guérin P (2015) Molteni, ‘La projection faite homme’. Res Photogr 188:1–4 Guerraggio A, Natasi P (2006) Italian mathematics between the two world wars. Birkhäuser, Basel Gumbert JP (1994) Über Faltbücher, vornehmlich Almanache. In: Rück P, Boghardt M (eds) Rationalisierung der Buchherstellung im Mittelalter und in der frühen Neuzeit. Institut für Historische Hilfswissenschaften, Marburg an der Lahn, pp 111–121 Gumbert JP (2016) Bat books. A catalogue of folded manuscripts containing almanacs or other texts. Brepols, Turnhout Gurney M (1877) Kindergarten practice, part II, Froebel’s plane surface. George Philip, London References 399

Hafner I (2008) Space filling with a rhombic dodecahedron of the second kind. http://demonstra tions.wolfram.com/SpaceFillingWithARhombicDodecahedronOfTheSecondKind/. Last accessed 15 Mar 2017 Haga K (2002) Fold paper and enjoy math: origamics. In: Hull T (ed) Origami3: Proceedings of the 3rd international meeting of origami science, math, and education (OSME 2001). A K Peters, Natick, pp 307–328 Hagen JG (1891) Synopsis der höheren Mathematik. Arithmetische und algebraische Analyse, vol 1. F. L. Dames, Berlin Halle JS (1787) Magie, oder die Zauberkräfte der Natur. Johann Thomas Edlen, Trattnern Hantzsch A (1893) Grundriss der Stereochemie. E. Trewendt, Breslau Hantzsch A, Werner A (1890) Über die räumliche Anordnung der Atome in stickstoffhaltigen Molekülen. Ber Dtsch Chem Ges 23:11–30 Hart GW (2000) A color-matching dissection of the rhombic enneacontahedron. Symmetry: Cult Sci 11(1–4):183–199 Hartmann G (2002) Hartmann’s Practika: a manual for making sundials and astrolabes with the compass and rule (trans, ed: Lamprey J). Lamprey, Bellvue Hartshorne R (2000) Geometry: Euclid and beyond. Springer, New York Hashagen U (2003) Walther von Dyck (1856–1934): Mathematik, Technik und Wissenschaftsorganisation an der TH München. Franz Steiner Verlag, Stuttgart Hashagen U (2015) Mathematics on display: mathematical models in Fin de Siècle Scientific Culture. In: Oberwolfach report 47/2015 of the workshop: history of mathematics: models and visualization in the mathematical and physical sciences, pp 2838–2841 Hatori K (2011) History of origami in the east and the west before interfusion. In: Wang-Iverson P, Lang RJ, Yim M (eds) Origami 5: 5th international meeting of origami science, mathematics, and education. A K Peters/CRC Press, Boca Raton, pp 3–11 Haur B, May H, Prochner L (2014) Empire, education, and indigenous childhoods. Ashgate, Surrey Haüy RJ (1784) Essai d’une théorie sur la structure des crystaux. Gogué & Neé de la Rochelle, Paris Haüy RJ (1801) Traité de mineralogy, 5 vols. Chez Louis, Paris Haüy RJ (1804–1810) Lehrbuch der Mineralogie, 4 vols (trans: Karsten KJB, Weiss CS). Reclam, Paris Hawkins T (2000) Emergence of the theory of lie groups an essay in the history of mathematics 1869–1926. Springer, New York Hays JN (1981) The rise and fall of Dionysius Lardner. Ann Sci 38:527–542 Heeffer A (2006) Récréations Mathématiques (1624) a study on its authorship, sources and influence. Gibeciere 1:77–167 Heerwart E (1889) Course on paper-cutting. Swan Sonnenschein, London Heerwart E (1894) Course of paper plaiting or mat weaving. Charles & Dible, London Heerwart E (1895) Course of paper-folding: one of Froebel’s occupations for children, at home and in the kindergarten. Charles & Dible, London Heerwart E (1897) Fröbel’s theory and practice. Charles & Dible, London Heidegger M (1981 [1966]) ‘Only a god can save us’: the Spiegel interview (1966) (trans: Richardson WJ). In: Sheehan, Thomas (ed) Heidegger: the man and the thinker. Precedent Press, Chicago, pp 45–67 Heiland H (1990) Zur Marenholtz-Bülow-Forschung. Bildung Erzieh 43(3):325–341 Heiland H (1993) Friedrich Fröbel. Prospects 23(3/4):473–491 Heiland H (1998) Das Spielpädagogik Friedrich Fröbels. Georg Olms, Hildesheim Heiland H (2001) Umrisse einer Fröbel-Historik. In: Heiland H, Gutjahr E, Neumann K (eds) Fröbel-Forschung in der Diskussion. Beltz, Weinheim, pp 16–35 Heiland H (2003) Zur Aktualität von Fröbels Erziehungskonzept. Fröbels Konzeption der Elementarbildung. In: Heiland H, Neumann K (eds) Fröbels Pädagogik. verstehen, interpretieren, weiterführen. Könighausen & Neumann, Würzburg, pp 177–190 Hellinger E, Toeplitz O (1906) Grundlagen für eine Theorie der unendlichen Matrizen. Math Ann 69:289–330 400 References

Henderson DW, Taimina D (2001) Crocheting the hyperbolic plane. Math Intell 23(2):17–28 Henrici O (1879) On congruent figures. Longmans, Green, London Henrici J, Treutlein P (1881) Lehrbuch der Elementar-Geometrie. B. G. Teubner, Leipzig Henry J (2001) Void space, mathematical realism and Francesco Patrizi da Cherso’s use of atomistic arguments. In: Lüthy C, Murdoch JE, Newman WR (eds) Late medieval and early modern corpuscular matter theories. Brill, Leiden, pp 133–161 Hermite C (1883) Cours professé à la Faculté de Sciences, 2nd edn. Hermann, Paris Heron (1912) Heronis Alexandrini Opera (trans, ed: Heiberg JL), vol 4. B. G. Teubner, Leipzig Hessenberg G (1917/1918) Vektorielle Begründung der Differentialgeometrie. Math Ann 78:187–217 Heuer CP (2011) Dürer’s folds. RES: Anthropol Aesthet 59/60:249–265 Hilbert D (1890) Über die Theorie der algebraischen Formen. Math Ann 36:473–534 Hilbert D (1901) Ueber Flächen von Constanter Gaussscher Krümmung. Trans Am Math Soc 2 (1):87–99 Hilbert D (1906) Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Vierte Mitt. Nachr Wiss Gesell Gott Math-Phys Kl 157–227 Hilbert D (1910) Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Vierte Mitt. Sachlich geordnete Inhaltsübersicht der sechs Mitteilungen. Nachr Wiss Gesell Gott Math- Phys Kl 595–618 Hilbert D (1912) Grundzüge einer allgemeinen Theorie der Integralgleichungen. B.G. Teubner, Leipzig Hill MJM (1918) Obituary notice of Olaus Henrici. Proc Lond Math Soc 17(2):xlii–xlix Hinton CH (1888) A new era of thought. Swan Sonnenschein, London Hinton CH (1907) An episode of flatland or how a plane folk discovered the third dimension. Swan Sonnenschein, London Hirschvogel A (1543a) Eigentliche und gründliche Anweisung in die Geometria. Self-published, Nuremberg Hirschvogel A (1543b) Geometria (the accompanying plates book to Hirschvogel, 1543a). Self- published, Nuremberg Hoff JH van’t (1874a) Sur les formules de structure dans l’espace. Arch Neerl Sci Exactes Nat 9:445–454 Hoff JH van’t (1874b) Voorstel tot Uitbreiding der tegenwoordig in de scheikunde gebruikte Structuur-Formules in de ruimte; benevens een daarmee samenhangende opmerkung omtrent het verband tusschen optisch actief Vermogen en Chemische Constitutie van Organische Verbindingen, Utrecht Hoff JH van’t (1875) La chimie dans l’espace. Bazendijk, Rotterdam Hoff JH van’t (1877) Die Lagerung der Atome im Raume (trans: Hermann F). Vieweg, Braunschweig Hoff JH van’t (1887) Dix annees dans l’histoire d’une theorie. Bazendijk, Rotterdam Hoff JH van’t (1894) Die Lagerung der Atome im Raume, 2nd edn. Vieweg, Braunschweig Hoffman D (2001) The computer-aided discovery of new embedded minimal surfaces. In: Wilson R, Gray J (eds) Mathematical conversations. selections from the mathematical intelli- gencer. Springer, New York, pp 342–359 Hoffmann E, Wächter R (1986) Friedrich Fröbel. Ausgewählte Schriften. Briefe und Dokumente über Keilhau. Erster Versuch der sphärischen Erziehung, vol 5. Klett-Cotta, Stuttgart Hofmann JE (1971) Dürers Verhältnis zur Mathematik. In: Albrecht Dürers Umwelt, Festschrift zum 500. Geburtstag Albrecht Dürers. Verein für Geschichte der Stadt Nürnberg, Nürnberg, pp 132–151 Holtzapffel C (1846) Turning and mechanical manipulation. Bradbury and Evans, London Hon G, Goldstein BR (2008) From summetria to symmetry: the making of a revolutionary scientific concept. Springer, New York Horlacher R, Tröhler D (eds) (2010) Sämtliche Briefe an Johann Heinrich Pestalozzi, Kritische Ausgabe, Band 2: 1805–1809. de Gruyter, Zurich References 401

Hours of Catherine of Cleves (ca. 1440) Utrecht. http://www.themorgan.org/collection/hours-of- catherine-of-cleves/346. Last accessed 23 July 2017 Hughes GH (2012) The polygons of Albrecht Dürer – 1525. https://arxiv.org/abs/1205.0080. Last accessed 15 Mar 2017 Hull TC (2009) Configuration spaces for flat vertex folds. In: Lang RJ (ed) Origami4: 4th international meeting of origami science, mathematics, and education. A K Peters, Natick, pp 361–370 Hull TC (2011) Solving cubics with creases: the work of Beloch and Lill. Am Math Mon 118 (4):307–315 Hurwitz A (1985) Die Mathematischen Tagebücher und der übrige handschriftliche Nachlass von Adolf Hurwitz. Zurich, ETH Library. HS 582, 1–30. Available in: http://www.e-manuscripta.ch/ Husserl E (1989) The origin of geometry (trans: Carr D). In: Derrida J (ed) Edmund Husserl’s origin of geometry: an introduction. University of Nebraska Press, Lincoln, pp 157–180 Huzita H (1986) La recente concezione matematica dell’‘origami’ – trisezione dell’angolo. In: Izzo S (ed) Scienza e gioco [Proceedings of the conference scienza e gioco, Roma, 1985]. Sansoni, Firenze, pp 433–441 Huzita H (1987) La Piega è una Linea Retta. Quadrato Magico 16:2–3 Huzita H (1988) L’equazione di terzo grado si può risolvere con il metoda origami. Quadrato Magico 19:5–9 Huzita H (1989a) Axiomatic development of origami geometry. In: Huzita H (ed) Proceedings of the 1st international meeting of origami, science and technology. Comune di Ferrara and Centro Origami Diffusion, Ferrara, pp 143–158 Huzita H (1989b) The trisection of a given angle solved by the geometry of origami. In: Huzita H (ed) Proceedings of the 1st international meeting of origami, science and technology. Comune di Ferrara and Centro Origami Diffusion, Ferrara, pp 195–213 Huzita H, Scimemi B (1989) The algebra of paper-folding (origami). In: Huzita H (ed) Proceedings of the 1st international meeting of origami, science and technology. Comune di Ferrara and Centro Origami Diffusion, Ferrara, pp 215–222 Huzita H, Paparo M, Ranzato L, Ziliani C (eds) (1987) La luna di carta: mostra-convegno internazionale di origami. Centro diffusione origami, Bologna Ingrami G (1904) Elementi di geometria ad uso dei licei. P. Cuppini, Bologna Jacobs J-F (1860) Manuel pratique des jardins d'enfants de Frédéric Frœbel. Hachette, Paris Jacobs J-F (1871) Manuale pratico dei giardini d’infanzia ad uso delle educatrici e delle madri di famiglia (trans: de Castro V). Civelli, Milano Jacoli F (1883) Intorno al problema “Le Noeud de cravate” e ad alcune opere di Urbano d’Aviso Romano. Bull Bibliogr Stor Sci Mat Fisiche 16:445–456 Jammer M (1954) Concepts of space. Harvard University Press, Cambridge Jaouiche K (1986) La théorie des parallèles en pays d’Islam: Contribution à la préhistoire des geometries non-euclidiennes. Vrin, Paris Jayawardena K (1995) The white woman’s other burden: Western women and South Asia during British rule. Routledge, Abingdon Jenkins A (2007) Space and the “March of Mind”. Literature and the physical sciences in Britain, 1815–1850. Oxford University Press, Oxford Johnson D (1957) Paper folding for the mathematics class. National Council of Teachers of Mathematics, Washington, DC Johnston S (1996) The identity of the mathematical practitioner in 16th-century England. In: Hantsche I (ed) Der “mathematicus”: Zur Entwicklung und Bedeutung einer neuen Berufsgruppe in der Zeit Gerhard Mercators. Brockmeyer, Bochum, pp 93–120 Jorissen WP (1893) “Theoretische Chemie”, lecture notes of lectures of: van ‘t Hoff, Jacobus Henricus, notebook IV of the third notebook (Theoretische chemie, 1892–1895) of Collegedictaten van Van ’t Hoff opgenomen door W.P. Jorissen. Archives of the Museum Boerhaave, Leiden 402 References

Jorissen WP (1924) Eenige brieven van Van ’t Hoff (1874–1875). Chem Weekblad 21 (43):495–501 Jovine Betoni D (1976) Storia Della Didattica I. Riuniti, Rome Justin J (1984a) “Pliage et mathématiques” (6e partie). Le Pli 19:2–3 Justin J (1984b) “Pliage et mathématiques” (7e partie). Le Pli 20:2–3 Justin J (1986) Mathematics of origami, Part 9. Br Origami 118:28–30 Justin J (1989a [1984]) Aspects mathématiques du pliage de papier. In: Huzita H (ed) Proceedings of the 1st international meeting of origami science and technology. Comune di Ferrara and Centro Origami Diffusion, Ferrara, pp 263–277 Justin J (1989b [1986]) Résolution par le pliage de l’équation du troisième degré et applications géométriques. In: Huzita H (ed) L’Ouvert: Journal of the APMEP of Alsace and the IREM of Strasbourg, vol 42, pp 9–19; reprinted in: Proceedings of the 1st international meeting of origami science and technology. Comune di Ferrara and Centro Origami Diffusion, Ferrara, pp 251–261 Justin J (1994) Towards a mathematical theory of origami. In: Miura K et al (eds) Proceedings of the 2nd international meeting of origami science and scientific origami. Seian University, Otsu, pp 15–29 Justin J (2000) On a paper by Castelli, Mignosi, Restivo. Theor Inform Appl 34(5):373–377 Justin J, Glen A (2009) Episturmian words: a survey. Theor Inform Appl 43(3):403–442 Justin J, Pirillo G (1992) Intracommutativity properties for groups and semigroups. J Algebra 153 (2):424–443 Justin J, Vuillon L (2000) Return words in sturmian and episturmian words. Theor Inform Appl 34 (5):343–356 Kant I (1781, 1787) Kritik der reinen Vernunft. J.F. Hartknoch, Riga Karr Schmidt S (2005) Adult entertainment: collecting movable books and prints in the renaissance. Movable Book Soc Q 13(3):1, 12–13 Karr Schmidt S (2006a) Art—a user’s guide: interactive and sculptural printmaking in the renais- sance, Ph.D. dissertation, Yale University Karr Schmidt S (2006b) Interactive and sculptural prints: introducing an overlooked early modern genre. Print Q 23:(3):302–304 Karr Schmidt S (2008) Johannes Krabbes Papierastrolabium. In: Heitzmann C (ed) Die Sterne lügen nicht. Harrassowitz Verlag, Wiesbaden, pp 117–121 Karr Schmidt S (2011a) Altered and adorned. In: Nichols K (ed) Using renaissance prints in daily life. Art Institute of Chicago, Chicago Karr Schmidt S (2011b) Georg Hartmann and the development of printed instruments in Nurem- berg. In: Dackerman S (ed) Prints and the pursuit of knowledge in early modern Europe. Yale University Press, New Haven, pp 268–279 Kawasaki T (1994) R(γ)¼I. In: Miura K et al (eds) Proceedings of the 2nd international meeting of origami science and scientific origami. Seian University, Otsu, pp 31–40 Kemp M (1990) The science of art: optical themes in western art from Brunelleschi to Seurat. Yale University Press, London Kempe AB (1877) How to draw a straight line: a lecture on linkages. Macmillan, London Kennedy HC (ed, trans) (1973) Selected works of Giuseppe Peano. University of Toronto Press, Toronto Kennedy HC (1980) Peano. Life and works of Giuseppe Peano. D. Reidel, Dordrecht Kepler J (1997 [1619]) The harmony of the world (trans: Aiton EJ, Duncan AM, Field JV). Memoirs of American Philosophical Society, vol 209 Kergomard P (1886) L’éducation maternelle dans l’école. Hachette, Paris Kidwell PA (1996) American mathematics viewed objectively – the case of geometric models. In: von Calinger R (ed) Vita mathematica: historical research and integration with teaching. Mathematical Association of America, Washington, DC, pp 197–208 Klein F (1872) Vergleichende Betrachtungen über neuere geometrische Forschungen. A. Duchert, Erlangen References 403

Klein F (1893 [1911]) The Evanston Colloquium. Lectures on mathematics. American Mathemat- ical Society, New York Klein F (1895) Vorträge über ausgewählte Fragen der Elementargeometrie. Teubner, Leipzig Klein F (1896) Conferenze sopra alcune questioni di geometria elementare (trans: Guidice F). Rosenberg & Sellier, Torino Klein F (1897) Famous problems of elementary geometry (trans: Beman WW, Smith DE). Ginn, New York Klein F (1921) Gesammelte mathematische Abhandlungen. In: Fricke R, Vermeil H (eds), vol 2. Springer, Berlin Klein F (1925) Elementarmathematik vom Höheren Standpunkte Aus: Zweiter Band: Geometrie, 3rd edn. Springer, Berlin Klein F (1926) Frankreich und die Ecole Polytechnique in den ersten Jahrzehnten des 19. Jahrhunderts. In: ibid., Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, vol 24/25 of: Die Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (Reprint 1979), pp 63–93 Klein F (1979 [1926]) Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, Parts 1 and 2. Springer, Berlin Klein U (1999) Techniques of modelling and paper tools in classical chemistry. In: Morgan MS, Morrison MC (eds) Models as mediators. Cambridge University Press, Cambridge, pp 146–167 Klein U (2003) Experiments, models, paper tools. Stanford University Press, Stanford Klemm HG (1990) Georg Hartmann aus Eggolsheim (1489–1564): Leben und Werk eines fränkischen Mathematikers und Ingenieurs. Gürtler-Druck, Forchheim Knoespel KJ (1987) The narrative matter of mathematics: John Dee’s preface to the elements of Euclid of Megara (1570). Philol Q 66:35–54 Knorr WR (1993) Arithmêtikê stoicheiôsis: on Diophantus and Hero of Alexandria. Hist Math 20 (2):180–192 Koch Helge von (1906) Une méthode géométrique élémentaire pour l’étude de certaines questions de la théorie des courbes planes. Acta Math Stockh 30:145–174 König J, Nedrenco D (2016) Septic equations are solvable by 2-fold origami. Forum Geom 16:193–205 Koreuber M (2015) Emmy Noether, die Noether-Schule und die moderne Algebra. Zur Geschichte einer kulturellen Bewegung. Springer, Berlin Koyré A (1957) From the closed world to the infinite universe. The Johns Hopkins Press, Baltimore Kraus-Boelté M, Kraus J (1892) The kindergarten guide number nine: the 7th and the 8th occupations. Myers, London Krauthausen K (2016) Folding the narrative: the dimensionality of writing in French structuralism (1966–1972). In: Friedman M, Schäffner W (eds) On folding. Towards a new field of interdis- ciplinary research. transcript, Bielefeld, pp 31–48 Krutzsch M (2008) Falttechniken an altägyptischen Handschriften. In: Graf J, Krutzsch M (eds) Ägypten lesbar machen – die klassische Konservierung. Walter de Gruyter, Berlin, pp 71–83 Krutzsch M (2009) Kniffen, Knicken, Falten. Was Objekte erzählen. In: Peltz U, Zorn O (eds) kulturGUTerhaltenRestaurierung archäologischer Schätze an den Staatlichen Museen zu Berlin. Philipp von Zabern, Mainz, pp 111–114 Kügelgen Wilhelm von (1870) Jugenderinnerungen eines alten Mannes. Verlag der Schiller- Buchhandlung, Berlin Kühne A (2002) Augustin Hirschvogel und sein Beitrag zur praktischen Mathematik. In: Gebhardt R (ed) Verfasser und Herausgeber mathematischer Texte der frühen Neuzeit. Adam-Ries-Bund, Annaberg-Buchholz, pp 237–252 Kunze H (1975) Geschichte der Buchillustration in Deutschland. Das 15. Jahrhundert, vol 1. Insel, Leipzig Lachapelle S (2015) Conjuring science. A history of scientific entertainment and stage magic in modern France. Palgrave Macmillan US, New York 404 References

Lærke M (2015) Five figures of folding: Deleuze on Leibniz’s monadological metaphysics. Br J Hist Philos 23(6):1192–1213 Lagarias JC, Zong C (2012) Mysteries in packing regular tetrahedral. Notices AMS 59:1540–1549 Lakatos I (1976) Proofs and refutations. The logic of the mathematical discovery. Cambridge University Press, Cambridge Lambert H (1786) Theorie der Parallellinien. Leipzig Mag Reine Angew Math 137–164, 325–358 Lang RJ (2004) Angle quintisection. Robert J Lang Origami. http://www.langorigami.com/article/ angle-quintisection. Last accessed 14 Mar 2017 Lang RJ (2017) Crease patterns for folders. Robert J Lang Origami. http://www.langorigami.com/ article/crease-patterns-folders. Last accessed 14 Mar 2017 Lange W (1862) Friedrich Fröbels gesammelte pädagogische Schriften. Erste Abteilung: Friedrich Fröbel in seiner Erziehung als Mensch und Pädagoge. Bd. 1: Aus Fröbels Leben und erstem Streben. Autobiographie und kleinere Schriften. Enslin, Berlin Lardner D (1828) The first six books of the elements of Euclid. John Taylor, London Lardner D (1840) A treatise on geometry and its application to the arts, the cabinet cyclopaedia. Longman, London Lautman A (2011) Mathematics, ideas and the physical real (trans: Duffy SB). Continuum, London Lawrence S (2011) Developable surfaces: their history and application. Nexus Netw J 13 (3):701–714 Le Bel JA (1874) Sur des relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions. Bull Soc Chim 22:337–347 Le Goff J-P (1991) Aux confins de l’art et de la science: De prospectiva pingendi de Piero della Francesca. In: Bessot D, Hellegouarch Y, Le Goff J-P (eds) Destin de l’art. Desseins de la science. Actes du colloque A.D.E.R.H.E.M., Université de Caen, Caen, pp 185–254 Lebeaume J (1995) École, technique et Travail manuel. Z’éditions, Nice Lebeaume J (2007) An history of manual work for boys within primary school in France. Bull Inst Vocat Tech Educ 4:92–102 Lebesgue H (1899) Sur quelques surfaces non réglées applicables sur le plan. C R Acad Sci CXXVIII:1502–1505 Lebesgue H (1902) Intégrale, longueur, aire. Ann Mat Pura Appl 7:231–359 Leblanc R (1911) “Manuel (Travail)” du Nouveau dictionnaire de pédagogie et d’instruction primaire. Hachette, Paris Lefèvre W (2003) The limits of pictures cognitive functions of images in practical mechanics – 1400 to 1600. In: Lefèvre W, Renn J, Schoepflin U (eds) The power of images in early modern science. Birkhäuser, Basel, pp 69–88 Legendre S (2014) Foldings and meanders. Aust J Comb 58(2):275–291 Leibniz GW (1692) De linen ex lineis infinitis ordinatim ductis inter se concurrentibus formata, easque omnes tangente, ac de novo in ea re analysis infinitorum usu. In: Gerhardt CI (ed) Leibnizens mathematische Schriften (1858), vol 5. Schmidt, Halle, pp 266–269 Leibniz GW (1694) Nova calculi differentialis applicatio et usus, ad multiplicem linearum constructionem, ex data tangentium conditione. In: Gerhardt CI (ed) Leibnizens mathematische Schriften (1858), vol 5. Schmidt, Halle, pp 301–306 Leibniz GW (1989), Philosophical papers and letters (trans, ed: Loemker LE). Kluwer, Dordrecht Leibniz GW (2001) Labyrinth of the continuum. Writings on the continuum problem, 1672–1686 (trans, ed: Arthur RTW). Yale University Press, New Haven Lenoir T (1998) Inscription practices and materialities of communication. In: Lenoir T (ed) Inscribing science. Scientific texts and the materiality of communication. Stanford Univer- sity Press, Stanford, pp 1–19 Levey S (2003) The interval of motion in Leibniz’s Pacidius Philalethi. Noûs 37(3):371–416 Lietzmann W (1909) Stoff und Methode im mathematischen Unterricht. In: Klein F (ed) Abhandlungen Über Den Mathematischen Unterricht in Deutschland. Veranlasst Durch Die Internationale Mathematische Unterrichtskommission, vol 1(1). B. G. Teubner, Berlin References 405

Lill E (1867a) Résolution graphique des équations numériques d’un degré quelconque à une inconnue. C R Séances Acad Sci 65:854–857 Lill E (1867b) Résolution graphique des équations numériques de tous les degrés à une seule inconnue, et description d’un instrument inventé dans ce but. Nouv Ann Math Ser 2 6:359–362 Lill E (1868) Résolution graphique des équations algébriques qui ont des racines imaginaires, d’après M. Lill. Nouv Ann Math Ser 2 7:363–367 Lilley IM (1967) Friedrich Froebel: a selection from his writings. Cambridge University Press, Cambridge Lindemann F (1927) Olaus Henrici. Jahresb Dtsch Math-Vereinigung 36:157–162 Lindström J (2008) On the origin and early history of functional analysis. UUDM project Report, Uppsala University Lister D (2003/2004) Die Geschichte des Papierfaltens. Eine deutsche Perspektive. Der Falter 35, 37 Lister D (2005) Humiaki Huzita. http://www.britishorigami.info/academic/lister/humiaki_huzita. php. Last accessed 14 Mar 2017 Lister D (2009) Martin Gardner and paperfolding. In: Pegg E Jr, Schoen HA, Rodgers T (eds) Mathematical wizardry for a Gardner. A K Peters, Wellesley, pp 9–27 Lotka AJ (1907) Constructions of conic section by paper-folding. Sch Sci Math 7(7):595–597 Lotka AJ (1912) Constructions of conic section by paper-folding. Sci Am Suppl 73:112 Lucas É (1883a) Récréations mathématiques, 2nd vol. Gauthier-Villars, Paris Lucas É (1883b) Le noeud de cravate. Mathesis: Recueil Math 3:54–56 Lucas É (1891) Théorie des nombres, vol 1. Gauthier-Villars, Paris Lucas É (1895) L’Arithmétique amusante. Gauthier-Villars, Paris Lucas É (1896) Récréations mathématiques, 2nd edn, vol 2. Gauthier-Villars, Paris Luciano E (2012a) Peano and his school between Leibniz and Couturat: the influence in mathe- matics and in international language. In: Krömer R, Chin-Drian Y (eds) New essays on Leibniz reception in science and philosophy of science 1800–2000. Birkhäuser, New York, pp 41–64 Luciano E (2012b) The Enciclopedia delle Matematiche elementari and the contributions of Bolognese mathematicians. In: Coen S (ed) Mathematicians in Bologna 1861–1960. Springer, Basel, pp 343–372 Lutz H (2010) Medien des Entbergens. Falt- und Klappoperationen in der altniederländischen Kunst des späten 14. und frühen 15. Jahrhunderts. In: Engell L, Siegert B, Vogl J (eds) Archiv für Mediengeschichte – Renaissancen. Wilhelm Fink, Munich, pp 27–46 Lyschinska MJ (1880) The kindergarten principle. Isbister, London Mackinnon N (1993) The portrait of Fra Luca Pacioli. Math Gaz 77(479):130–219 MacLeod NL (1892) How to teach paper-folding and cutting. March Brothers, Lebanon Maekawa J (2011) Introduction to the study of tape knots. In: Wang-Iverson P, Lang RJ, Yim M (eds) Origami 5: 5th international meeting of origami science, mathematics, and education. A K Peters/CRC Press, Boca Raton, pp 395–403 Malkevitch J (2013) Milestones in the history of polyhedra. In: Senechal M (ed) Shaping space. Exploring polyhedra in nature, art, and the geometrical imagination. Springer, New York, pp 53–63 Mancosu P (2005) Visualization in logic and mathematics. In: Mancosu P, Jørgensen KF, Pedersen SA (eds) Visualization, explanation and reasoning styles in mathematics. Springer, Dordrecht, pp 13–30 Manders K (2008a) The Euclidean diagram (1995). In: Mancosu P (ed) The philosophy of mathematical practice. Oxford University Press, Oxford, pp 80–133 Manders K (2008b) Diagram-based geometric practice. In: Mancosu P (ed) The philosophy of mathematical practice. Oxford University Press, Oxford, pp 65–79 Mannoni L (2000) The great art of light and shadow: archaeology of the cinema (trans: Crangle R). University of Exeter Press, Exeter 406 References

Marenholtz-Bülow Bertha von (1887) Theoretisches und praktisches Handbuch der Fröbelschen Erziehungslehre. Zweiter Teil: Die Praxis der Frübelschen Erziehungslehre. Mit einem Plan und 115 lith. Tafeln. Wigand, Kassel Marie F-CM (1835) Géométrie stéréographique, ou Reliefs des polyèdres. Bachalier, Paris Martin GE (1998) Geometric constructions. Springer, New York Martin AL (2015) Villain of steam: a life of Dionysius Lardner. Tyndall Scientific, Carlow McLarty C (2012) Hilbert on theology and its discontents: the origin myth of modern mathematics. In: Doxiadis A, Mazur B (eds) Circles disturbed: the interplay of mathematics and narrative. Princeton University Press, Princeton, pp 105–129 Mehrtens H (2004) Mathematical models. In: de Chadarevian S, Hopwood N (eds) Models: the third dimension of science. Stanford University Press, Stanford, pp 276–306 Meinel C (2004) Molecules and croquet balls. In: de Chadarevian S, Hopwood N (eds) Models: the third dimension of science. Stanford University Press, Stanford, pp 242–275 Mendes M (1986) Piegatura della carta (Paperfolding). In: Izzo S (ed) Scienza e gioco (Proceedings of the Conference scienza e gioco, Roma, 1985). Sansoni, Firenze, pp 28–35 Messer P (1986) Problem 1054. Crux Math 12(10):284–285 Meyer W-F (1890) Bericht über den gegenwärtigen Stand der Invariantentheorie. Jahresbericht Dtsch Math-Vereinigung 1:79–292 Mohr E (1918) Die Baeyersche Spannungstheorie und die Struktur des Diamanten. J Prakt Chem 98 (1):315–353 Moktefi A (2011) Geometry. The Euclid debate. In: Flood R, Rice A, Wilson R (eds) Mathematics in Victorian Britain. Oxford University Press, Oxford, pp 321–336 Molteni A (1881) Instructions pratiques sur l’emploi des appareils de projection, Lanternes magiques, fantasmagories, polyoramas, appareils pour l’enseignement, 2nd ed. Deslis Frères, Paris Monge G (1785 [1771]) Mémoire sur les développées, les rayons de courbure, et les différents genres d’inflexions des courbes à double courbure. Mém Divers Sçavans 10:511–550 Morley FV (1924) A note on knots. Am Math Mon 31(5):237–239 Morley F, Morley FV (1933) Inversive geometry. G. Bell and Sons, London Müller-Wunderlich M (1900) Die Fröbelschen Beschäftigungen, 2 Heft: Das Falten. Brandstetter, Leipzig Münkner J (2008) Eingreifen und Begreifen. Handhabungen und Visualisierungen in Flugblättern der Frühen Neuzeit. Erich Schmidt, Berlin Murdoch JE (1984) Album of science. Antiquity and the middle ages. Scribner’s and Sons, New York Murray ER (1903) That symmetrical paper folding and symmetrical work with gifts are a waste of time for both students and children. Child Life 5(17):14–18 Muthiah S (2003) Printer’s ink on Mount Road. The Hindu: Metro Plus Chennai, published on 13.8.2003. http://www.thehindu.com/thehindu/mp/2003/08/13/stories/2003081300140300.htm. Last accessed 1 Nov 2016 Nagy D (1994) EDITORIAL: symmet-origami (symmetry and origami) in art, science, and technology. Symmetry. Cult Sci 5(1):3–12 National Froebel Union (1916) Reports on examiners, examination papers, and examination results for the year 1916. London Noël J-L (1993) Salle d’asile contre jardin d’enfants: Les vicissitudes de la méthode Fröbel en France, 1855–1887. Pedagogica Hist 29:433–458 Noël J-L (1997) L’Invention du jeune enfant au XIXe siècle. Belin, Paris Noether E (1908) Über die Bildung des Formensystems der ternären biquadratischen Form. J Reine Angew Math 134:23–90 Noether E (1910) Zur Invariantentheorie der Formen von n Variabeln. Jahresber Dtsch Math- Vereinigung 19:101–104 Noether E (1911) Zur Invariantentheorie der Formen von n Variabeln. J Reine Angew Math 139:118–154 References 407

Noether E (1916) Ganze rationale Darstellung von Invarianten eines Systems von beliebig vielen Grundformen. Math Ann 77:93–102 Nye MJ (1992) Physics and chemistry: commensurate or incommensurate sciences? In: Nye MJ, Richards JL, Stuewer RH (eds) The invention of physical science: intersections of mathematics, theology and natural philosophy since the seventeenth century. Kluwer, Dordrecht, pp 205–224 Olivier T (1843) RAPPORT au nom du comité des arts mécaniques, sur les polyèdres en carton présentés par M. Dupin. In: Bulletin de la Société d’Encouragement pour l’Industrie Nationale – 1843. 42e année. N. 463–474. Bouchard Huazard, Paris, pp 191–192 Olivier T (1845a) RAPPORT sur les solides en carton de M. Louis Dupin. In: Bulletin de la Société d’Encouragement pour l’Industrie Nationale – 1845. 44e année. N. 487–498, pp 10–11 Olivier T (1845b) Compléments de géométrie descriptive. Carilian-Goeury, Paris Olivier T (1852) Cours de géométrie descriptive / Part 1, Du point, de la droite et du plan. Carilian- Goeury et V. Dalmont, Paris Oswald N (2015) Adolf Hurwitz faltet Papier. Math Semesterber 62(2):123–130 Ozanam J (1723) Récréations mathématiques et physiques, vol 4. Jombert, Paris Ozanam J (1778) Récréations mathématiques et physiques. Jombert, Paris Pacioli L (1997) De viribus quantitatis (trans: Garlaschi M, ed: Marinoni A). Ente Raccolta Viniciana, Milano Palmyre M (1893) L’annee preparatoire de travail manuel. Colin, Paris Panofsky E (1955) The life and art of Albrecht Dürer. Princeton University Press, Princeton Panofsky E (1991) Perspective as symbolic form (trans: Wood CS). Zone Books, New York Panofsky E, Saxl F (1923) Dürers Melencolia I. Teubner, Leipzig Papadopoulos A, Theret G (2014) La théorie des lignes parallèles de Johann Heinrich Lambert. Collection Sciences dans l’Histoire, Librairie Scientifique et Technique Albert Blanchard, Paris Pargeter AR (1959) Plaited Polyhedra. Math Gaz 43(344):88–101 Parshall KVH (1989) Toward a history of nineteenth-century invariant theory. In: Rowe DE, McCleary J (eds) The history of modern mathematics, Ideas and their reception, vol 1. Aca- demic, Boston, pp 157–206 Parshall KVH (1990) One-hundredth anniversary of the death of invariant theory? Math Intell 12:10–16 Parshall KVH (1997) Chemistry through invariant theory? ’s mathematiza- tion of the atomic theory. In: Theerman P, Parshall KVH (eds) Experiencing nature: proceedings of a conference in honor of Allen G. Debus, pp 81–111 Pasquali P (1892) Geometria intuitive senza strumenti. Luigi Buffetti, Lendinara Pasteur L (1848) Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire. Ann Chim Phys 3rd Ser 24(6):442–459 Paternò E (1869) Intorno all’azione del percloruro di fosforo sul clorale. G Sci Nat Econ Palermo 5:117–122 Payne J (1876) A visit to German schools. Henry & King, London Peano G (1890a) Sulla definizione dell’area d’una superficie. Atti R Accad Lincei Rend 6(I):54–57 Peano G (1890b) Sur une courbe, qui remplit toute une aire plane. Math Ann 36:157–160 Peano G (1903) Formulaire mathematique, vol 4. Bocca Freres, Turin Peiffer J (1995) La style mathématique de Dürer et sa conception de la géométrie. In: Dauben J, Folkerts M, Knobloch E, Wußing H (eds) History of mathematics: state of the art. Academic, San Diego, pp 49–61 Peiffer J (1997) Dürers Geometrie als Propädeutik zur Kunst. In: Knobloch E (ed) Wissenschaft— Technik—Kunst, Interpretationen, Strukturen, Wechselwirkungen. Harrasowitz, Wiesbaden, pp 89–103 Peiffer J (2000) La creation d’une Langue mathematique allemande par Albrecht Dürer. In: Chartier R, Corsi P (eds) Sciences et langues en Europe. Éditions EHESS, Paris, pp 77–90 Peiffer J (2004) Projections embodied in technical drawings: Dürer and his followers. In: Lefèvre W (ed) Picturing machines. MIT Press, Cambridge, pp 245–275 408 References

Pellegrino C (1986) Aspetti matematici del Tangram. In: Izzo S (ed) Scienza e gioco (Proceedings of the conference scienza e gioco, Roma, 1985). Sansoni, Firenze, pp 345–367 Pepe L (1989) Remembrance of Prof. Margherita Beloch. In: Proceedings of the 1st international meeting of origami, science and technology. Comune di Ferrara and Centro Origami Diffusion, Ferrara, p xii Picard É (1922) Traité d’analyse, 3rd edn. Gauthier-Villars et fils, Paris Pietsch A (1988) Nachwort. In: Hilbert D, Schmidt E, Pietsch A (eds) Integralgleichungen und Gleichungen mit unendlich vielen Unbekannten. B. G. Teubner, Leipzig, pp 279–303 Pietsch A (2007) History of Banach spaces and linear operators. Birkhäuser, Boston Plummer J (1964) The book of hours of Catherine of Cleves. Pierpont Morgan Library, New York Plutarch (1961) Moralia, vol 9. Loeb Classical Library (trans: Minar EL Jr, Sandbach FH, Helmbold WC). Heinemann, London Polo-Blanco I (2008) Alicia Boole Stott, a geometer in higher dimension. Hist Math 35(2):123–139 Polo-Blanco I (2014) Alicia Boole Stott’s models of sections of polytopes. Lett Mat 2(3):149–154 Powell AA (2016) Fröbel in India, private communication, email from 15.9.2016 Powell AA (2018) Challenging the 3Rs: kindergarten experiments in colonial Madras. In: Rashkow E, Ghosh S, Chakrabarti U (eds) Memory, identity and the colonial encounter in India. Essays in Honour of Peter Robb. Routledge India, Oxon, pp 276–297 Pressley A (2001) Elementary differential geometry. Springer, Heidelberg Ramberg PJ (2000) Pragmatism, belief, and reduction. Stereoformulas and atomic models in early stereochemistry. HYLE. Int J Philos Chem 6(1):35–61 Ramberg PJ (2003) Chemical structure, spatial arrangement: The early history of stereochemistry, 1874–1914. Ashgate, Aldershot Ramberg PJ, Somsen GJ (2001) The Young J. H. van ’t Hoff: the background to the publication of his 1874 pamphlet on the tetrahedral carbon atom, together with a new English translation. Ann Sci 58(1):51–74 Ramsay OB (1975) Molecular models in the early development of stereochemistry. I: The van’t Hoff model; II: the Kekule models and the Baeyer strain theory. In: Ramsay OB (ed) Van ’t Hoff-Le Bel Centennial. American Chemical Society, Washington, DC, pp 74–96 Ramus P (1569) Arithmeticae libri. Episcopius, Basileae Rao BH (1888) First lessons in geometry, 2nd edn. S.P.C.K, Madras Rao CH (1915) The Indian biographical dictionary. Pillar, Madras Rashed R, Vahabzadeh B (1999) Al-Khayyam Mathématicien [in Arabic]. Albert Blanchard, Paris Read J (2003) Froebelian women – networking to promote professional status and educational change in the nineteenth century. Hist Educ 32(1):17–33 Read J (2006) Free play with Froebel: use and abuse of progressive pedagogy in London’s Infant Schools, 1870–c.1904. Paedagog Hist 42(3):299–323 Regier J, Vermeir K (2016) Boundaries, extents and circulations: an introduction to spatiality and the early modern concept of space. In: Vermeir K, Regier J (eds) Boundaries, extents and circulations. Space and spatiality in early modern natural philosophy. Springer, Basel, pp 1–32 Reich K (1973) Die Geschichte der Differentialgeometrie von Gauß bis Riemann (1828–1868). Arch Hist Exact Sci 11(4):273–382 Reich K (1994) Die Entwicklung des Tensorkalküls. Vom absoluten Differentialkalkül zur Relativitätstheorie. Springer, Basel Reich K (2007) Euler’s contribution to differential geometry and its reception. In: Bradley RE, Sandifer E (eds) Leonhard Euler: life, work and legacy. studies in the history and philosophy of mathematics. Elsevier, Amsterdam, pp 479–502 Rheinberger H-J (1997) Toward a history of epistemic things: synthesizing proteins in the test tube. Stanford University Press, Stanford Richards JL (1988) Mathematical visions: the pursuit of geometry in Victorian England. Academic, Boston Richter F (1994) Die Ästhetik geometrischer Körper in der Renaissance. Gerd Hatje, Stuttgart References 409

Riemann B (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen komplexen Größe. In: Gesammelte mathematische Werke und wissenschaftlicher Nachlaß (1892), 2nd edn, pp 3–46 Riemann B (1868) Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. Abh Ges Wiss Göttingen 13:133–150 Rimmele M (2010) Das Triptychon als Metapher, Körper und Ort. Semantisierungen eines Bildträgers. Wilhelm Fink, München Risi Vincenzo de (2015) Introduction. In: de Risi V (ed) Mathematizing space. The objects of geometry from antiquity to the early modern age. Birkhäuser, Cham, pp 1–13 Risi Vincenzo de (2016) Francesco Patrizi’s conceptions of space and geometry. In: Vermeir K, Regier J (eds) Boundaries, extents and circulations. Space and spatiality in early modern natural philosophy. Springer, Basel, pp 55–106 Rivelli A (1897) Stereometria applicata allo sviluppo dei solidi ed alla loro costruzione in carta. Hoepli, Milano Robbin T (2006) Shadows of reality. The fourth dimension in relativity, cubism, and modern thought. Yale University Press, New Haven Rocke AJ (2010) Image and reality: Kekulé, Kopp, and the scientific imagination. University of Chicago Press, Chicago Rockstein M (2006) Die Kette der Tradition. Fröbelrezeption in Thüringen. In: Heiland H, Gebel M, Neumann K (eds) Perspektiven der Fröbelforschung. Königshausen & Neumann, Würzburg, pp 74–78 Ronge B, Ronge J (1855) A practical guide to the English kindergarten. Hodson, London Rosenfeld BA (1988) A history of non-Euclidean geometry. Evolution of the concept of a geometric space (trans: Shenitzer A). Springer, New York Rothman P (1996) Grace Chisholm Young and the division of Laurels. Notes Rec R Soc Lond 50 (1):89–100 Rottmann M (2008) Das digitale Bild als Visualisierungsstrategie der Mathematik. In: Reichle I, Siegel S, Spelten A (eds) Verwandte Bilder: Die Fragen der Bildwissenschaft, 2nd edn. Kadmos, Berlin, pp 281–296 Rougetet L (2014) A prehistory of Nim. Coll Math J 45(5):358–363 Row ST (1893) Geometrical exercises in paper folding. Addison, Madras Row ST (1901) Geometrical exercises in paper folding. Beman WW, Smith DE (eds). The Open Court, Chicago Row ST (1906) Elementary solid geometry, Part I. St. College Press, Trichinopoly Row ST (1907) Elementary solid geometry, Part II: projection. Sri Vani Vilan Press, Srirangam Row ST (1909a) Elementary solid geometry, Part III: polyhedrons. St. College Press, Trichinopoly Row ST (1909b) The Pythagorean problem. J Indian Math Club 1:130–134 Row ST (1909c) Parallel straight lines. J Indian Math Club 1:185–188 Row ST (1914) Geometrical exercises with the straight edge. J Indian Math Club 6:221–223 Rowe DE (2010) Debating Grassmann’s mathematics: Schlegel versus Klein. Math Intell 32 (1):41–48 Rowe DE (2013) Mathematical models as artefacts for research: Felix Klein and the case of Kummer surfaces. Math Semesterber 60(1):1–24 Rupp CA (1924) On a transformation by paper folding. Am Math Mon 31:432–435 Rupprich H (ed) (1969) Dürer: schriftlicher Nachlass, vol 3. Deutsche Verein für Kunstwissenschaft, Berlin Russell CA (1975) The origins of conformational analysis. In: Ramsay OB (ed) Van ’t Hoff-Le Bel Centennial. American Chemical Society, Washington, DC, pp 159–178 Russo L (1998) The definitions of fundamental geometric entities contained in book I of Euclid’s elements. Arch Hist Exact Sci 52(3):195–219 Sachse H (1888) Über die Configuration des Benzolmoleküls. Ber Dtsch Chem Ges 21:2530–2538 Sachse H (1890) Über die geometrischen Isomerien der Hexamethylenederivate. Ber Dtsch Chem Ges 23:1363–1370 410 References

Sachse H (1892) Uber die Konfigurationen der Polymethylenringe. Z Phys Chem 10:203–241 Sachse H (1893) Eine Deutung der Affinität. Z Phys Chem 11:185–219 Sainte-Laguë A (1926) Les réseaux (ou graphes). Mém Sci Math 18:1–64 Sainte-Laguë A (1937) Avec des nombres et des lignes (récréations mathématiques). Vuiberg, Paris Sakarovitch J (2005) Gaspard Monge: Géométrie Descriptive, First Edition (1795). In: Grattan- Guinness I (ed) Landmark writings in western mathematics, 1640–1940. Elsevier Science, Amsterdam, pp 225–241 Sakarovitch J (2009) Gaspard Monge founder of ‘constructive geometry’. In: Kurrer K-E, Lorenz W, Wetzk V (eds) Proceedings of the 3rd international congress on construction history. BTU, Cottbus, pp 1293–1300 Sakarovitch J (2010) Le fascicule de coupe des pierres de Girard Desargues. In: Encyclopédie des métiers: la maçonnerie et la taille de pierre, vol 2. Presses du Compagnonnage, Paris, pp 121–147 Sallas J (2010) Gefaltete Schönheit. Die Kunst des Serviettenbrechens. Freiburg i. Breisgau, Wien Salmon G (1849) On the triple tangent planes to a surface of the third order. Camb Dublin Math J 4:252–260 Sanders PM (1984) Charles de Bovelles’s treatise on the regular polyhedra (Paris, 1511). Ann Sci 41(6):513–566 Sattelmacher A (2013) Geordnete Verhältnisse. Mathematische Anschauungsmodelle im frühen 20. Jahrhundert. In: Heumann VI, Hüntelmann A (eds) Berichte zur Wissenschaftsgeschichte. Sonderheft “Bildtatsachen”, vol 36(4), pp 294–312 Sattelmacher A (2014) Zwischen Ästhetisierung und Historisierung: Die Sammlung geometrischer Modelle des Göttinger mathematischen Instituts. Math Semesterber 61(2):131–143 Sattelmacher A (2016) Präsentieren. Zur Anschauungs- und Warenökonomie mathematischer Modelle. In: Güttler N, Heumann I (eds) Sammlungsökonomien. Vom Wert ökonomischer Dinge. Kadmos, Berlin, pp 131–155 Savineau C (1897) Pliage et découpage du papier. Travaux manuels scolaires. Hachette, Paris Scala A (2017) Anmerkungen zur Genese der Zwiefalt bei Heidegger. In: Friedman M, Seppi A (eds) Martin Heidegger: Die Falte der Sprache. Turia + Kant, Vienna, pp 39–52 Schauwecker-Zimmer H (2006) Fröbelrezeption in Sachsen und Bayern. In: Heiland H, Gebel M, Neumann K (eds) Perspektiven der Fröbelforschung. Königshausen & Neumann, Würzburg, pp 79–83 Schilling M (1911) Catalog mathematischer Modelle für den höheren mathematischen Unterricht. Schilling, Leipzig Schläfli L (1901) Theorie der vielfachen Kontinuität. Springer, Basel Schlegel V (1882) Quelques théorèmes de géométrie à n dimensions. Bull Soc Math Fr 10:172–207 Schlegel V (1883) Theorie der homogen zusammengesetzten Raumgebilde. Nova Acta Leopoldina Carolinium XLIV(4):343–456 (Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher) Schlegel V (1885) Ueber Projektionsmodelle der regelmässigen vier-dimensionalen Körper, Waren Schlegel V (1886) Ueber Entwicklung und Stand der n-dimensionalen Geometrie, mit besonderer Beruecksichtigung der vierdimensionalen. Nova Acta Leopoldina 48:92–96, 108–11, 133–135, 149–152, 160–163 Schlegel V (1888) Ueber den sogenannten vierdimensionalen Raum. H. Riemann, Berlin Schlegel V (1891) Sur une méthode pour représenter dans le plan les solides homogènes à n dimensions. Palermo Rend 5:1–8 Schlegel V (1892) Ueber Projectionen der mehrdimensionalen regelmässigen Körper. Jahresber Dtsch Math-Vereinigung 2:66–69 Schmid W (1539) Das erste Buch der Geometria. Petrejus, Nürnberg Schneider B (2007) Textiles Prozessieren. Diaphanes, Zurich Scholz E (1982a) Herbart’sinfluence on Bernhard Riemann. Hist Math 9(4):413–440 Scholz E (1982b) Riemanns frühe Notizen zum Mannigfaltigkeitsbegriff und zu den Grundlagen der Geometrie. Arch Hist Exact Sci 27(3):213–232 References 411

Scholz E (1999) The concept of manifold, 1850–1950. In: James IM (ed) History of topology. North-Holland, Amsterdam, pp 25–64 Schönbeck J (1985) Hermann Wiener (1857–1939), der Begründer der Spiegelungsgeometrie. Techn. Hochschule, Darmstadt (reprinted in: ibid. (1986) Jahrbuch Überblicke Mathematik. Bibliographisches Institut, Mannheim, pp 81–104) Schouten JA (1924) Der Ricci-Kalkül. Eine Einführung in die neueren Methoden und Probleme der mehrdimensionalen Differentialgeometrie. Springer, Berlin Schouten JA, Struik DJ (1924) Einführung in die neueren Methoden der Differentialgeometrie. P. Noordhoff, Groningen Schouten JA, Struik DJ (1935) Einführung in die neueren Methoden der Differentialgeometrie, 2nd edn. P. Noordhoff, Groningen Schreiber P (1999) A new hypothesis on Dürer’s enigmatic polyhedron in his copper engraving ‘Melencolia I’. Hist Math 26:369–377 Schröder E (1980) Dürer – Kunst und Geometrie. Akademie-Verlag/Birkhäuser, Berlin/Basel Schröder TFC (1987) Die Geschwister Agazzi und Maria Montessori, eine vergleichende Analyse ihrer Erziehungskonzeption. HAAG + HERCHEN, Frankfurt am Main Schur I (1911) Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J Reine Angew Math 140:1–28 Schuster P-K (1991) Melancolia I. Dürers Denkbild, vol 1. Gebr. Mann, Berlin Schwarz HA (1890) Sur une définition erronée de l’aire d’une surface courbe. In: Gesammelte mathematische Abhandlungen, vol 2. Springer, Berlin, pp 309–311, 369–370 Schwarz K (1917) Augustin Hirschvogel: ein deutscher Meister der Renaissance. Bard, Berlin Schwenter D (1636) Deliciae physico-mathematicae, oder mathematische und philosophische Erquickstunden. Dümler, Nürnberg Seppi A (2016) Simply complicated: thinking in folds. In: Friedman M, Schäffner W (eds) On folding. Towards a new field of interdisciplinary research. transcript, Bielefeld, pp 49–76 Seppi A (2017) A line is not a line is not a line: from the capital line of metaphysics to a future ontology of the fold. In: Dorsch S, Vincent J (eds) SpatioTemporalities on the line: represen- tations – practices – dynamics. de Gruyter, Oldenburg Serres M (1968) Le Système de Leibniz et ses modèles mathématiques. Presses Universitaires de France, Paris Serret JA (1868) Cours de calcul différentiel et intégral, vol 2, 1st edn. Gauthier-Villars, Paris Serret JA (1880) Cours de calcul différentiel et intégral, vol 2, 2nd edn. Gauthier-Villars, Paris Sharp J (2016) Folding the regular pentagon. BSHM Bull: J Br Soc Hist Math 31(3):179–188 Shell-Gellasch A (2003) The Olivier string models at West Point. Rittenhouse 17:71–84 Shephard GC (1975) Convex polytopes with convex nets. Math Proc Camb Philos Soc 78 (3):389–403 Sheppard E (2003) Marketing mathematics: Georg Hartmann and Albrecht Dürer, a comparison, Master dissertation in: History of Science, University of Oxford Singmaster D (2008) De Viribus Quantitatis by Luca Pacioli: the first recreational mathematics book. In: Demaine E, Demaine M, Rodgers T (eds) A lifetime of puzzles. A K Peters, Wellesley, pp 77–122 Soëtard M (2003) Fröbels Rezeption in Frankreich. In: Heiland H, Neumann K (eds) Fröbels Pädagogik. verstehen, interpretieren, weiterführen. Könighausen & Neumann, Würzburg, pp 61–67 Sohncke LA (ed) (1854) Bibliotecha Mathematica; Verzeichniss der Bücher über die gesammten Zweige de Mathematik, als; arithmetik, höhere Analysis, construirende und analytische Geometrie, Mechanik, Astronomie und Geodäsie, welche in Deutchland und dem Auslande vom Jahre 1830 bis Mitte des Jahres 1854 – erchienen sind. Wilhelm Engelmann, Leipzig Spek Trienke M van der (2006) Selling a theory: the role of molecular models in J. H. van ’t Hoff’s stereochemistry theory. Ann Sci 63(2):157 –177 Spranger E (1951) Aus Friedrich Fröbels Gedankenwelt. Quelle & Meyer, Heidelberg Staigmüller HCO (1891) Dürer als Mathematiker. K. Hofbuchdrukker, Stuttgart 412 References

Steck M (1948) Dürers Gestaltlehre der Mathematik und der bildenden Künste. Max Niemeyer, Halle Stewart AG (2013) The birth of mass media. In: Bohn B, Saslow JM (eds) A companion to renaissance and baroque art. Wiley, Chichester, pp 253–273 Stifel M (1544) Arithmetica integra. Nürnberg Strickland E (2011) Scienziate d’Italia: diciannove vite per la ricerca. Donzelli, Rome Stringham WI (1880) Regular figures in n-dimensional space. Am J Math 3(1):1–14 Struik DJ (1958) The principal works of Simon Stevin, Mathematics, vol 2. C. V. Swets & Zeitlinger, Amsterdam Suzanne P-H (1809) De la manière d’étudier les mathématiques: Ouvrage destiné à servir de guide auxgeunes gens, à ceux surtout qui aspirent à être admis à l’École normale ou à l’École impériale polytechnique. Bechet, Paris Sylvester JJ (1878) On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, with three appendices. Am J Math 1(2):105–125 Tarski A (1967) The completeness of elementary algebra and geometry. Centre National De La Recherche Scientifique, Institut Blaise Pascal, Paris Taton R (1951) L’Oeuvre scientifique de Monge. Presses Universitaires de France, Paris Thom R (1975) Structural stability and morphogenesis: an outline of a general theory of models (trans: Fowler DH). W. A. Benjamin, Reading Thurston W (1997) Three-dimensional geometry and topology, vol 1. Princeton University Press, Princeton Tit T (1890) La Science amusante, 100 expériences. Larousse, Paris Tit T (1892) La Science amusante (2e série), 100 nouvelles expériences. Larousse, Paris Tit T (1893) La Science amusante (3e série), 100 nouvelles expériences. Larousse, Paris Tit T (1903) La récréation en famille. A. Colin, Paris Tit T (1918) Scientific amusements (trans: Knott CG). Edinburgh University, Edinburgh Tit T (1924a) Jouxjoux en Papier. Paul Lechevalier, Paris Tit T (1924b) Les bons jeudis, 5th edn. Librairie Vuibert, Paris Tobies R (1981) Felix Klein, Biographien hervorragender Naturwissenschaftler, Techniker und Mediziner, vol 50. Teubner, Leipzig Tomšič S (2014) Modelle in der Philosophie: zwischen Platon und Deleuze. In: Balke F, Siegert B, Vogl J (eds) Modelle und Modellierung. Wilhelm Fink Verlag, Paderborn, pp 129–139 Tomšič S (2017a) Mathematical realism and the impossible structure of the real. Psychoanal Perspect 35(1):9–34 Tomšič S (2017b) Das unmögliche Reale der Mathematik: Koyré und Lacan. In: Thanner V, Vogl J, Walzer D (eds) Die Wirklichkeit des Realismus. W. Fink, Paderborn Touchard J (1950) Contribution à l’étude du problème des timbres poste. Can J Math 2:385–398 Treutlein P, Wiener H (1912) Sammlung mathematischer Modelle. B. G. Teubner, Leipzig Turner AJ (1989) Paper, print, and mathematics: Philippe Danfrie and the making of mathematical instruments in late 16th century Paris. In: Blondel C et al (eds) Studies in the history of scientific instruments. Rogers Turner, London, pp 22–42 Turner AJ (1994) Mathematical instruments in antiquity and the middle ages: an introduction. Vade-Mecum, London Vacca G (1930) Della piegatura della carta applicata alla geometria. Periodico Mat Ser IV 10:43–50 Vauvilliers C (ed) (1847) Bulletin de la Société d’Encouragement pour l’Industrie Nationale, 46e année. N 511–522, pp 401–534 da Vinci Leonardo (1478–1519) Codice Atlantico (Hoepli ed). http://www.leonardodigitale.com/ index.php?lang=ENG VM (1876) Vorstellung über die räumliche Lagerung der Atome. Der Naturforscher 9(19) (separate imprint, A.W. Schade, Berlin) Vogl J (2001) Medien-Werden. Galileis Fernrohr. Mediale Historiograph 1:115–123 Volkert K (1986) Die Krise der Anschauung: eine Studie zu formalen und heuristischen Verfahren in der Mathematik seit 1850. Vandenhoek & Ruprecht, Göttingen References 413

Wagemann E-B (1957) Quadrat – Dreieck – Kugel. Julius Beltz, Weinheim Wantzel P (1837) Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle et le compass. J Math Pures Appl 1(2):366–372 Weierstrass K (1895) Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen. In: Königlich Preussischen Akademie der Wissenschaften, Mathematische Werke von , vol 2. Mayer & Mueller, Berlin, pp 71–74 Weintraub ER (1997) Is ‘is a precursor of’ a transitive relation? In: Herrnstein Smith B, Plotnitsky A (eds) Mathematics, science, and postclassical theory. Duke University Press, Durham, pp 173–188 Weiss C-S (1815) Uebersichtliche Darstellung der verschiedenen natürlichen Abtheilungen der Krystallisationssysteme. Abhandlungen der physikalischen Klasse der Königlich-Preussischen Akademie der Wissenschaften in Berlin us den Jahren 1814–1815 (1818), pp 289–336 Weitzel H (2004) A further hypothesis on the polyhedron of A. Dürer’s Engraving Melencolia I. Hist Math 31(1):11–14 Weitzel H (2007) Zum Polyeder auf A. Dürers Stich Melencolia I—ein Nürnberger Skizzenblatt mit Darstellungen archimedischer Körper. Sudhoffs Arch 91(2):129–173 Weitzenböck RW (1956) Der Vierdimensionale Raum. Birkhäuser, Basel Wiegand S (1996) Grace Chisholm Young and William Henry Young: a partnership of Itinerant British mathematicians. In: Pycior HM, Slack N, Abir-Am P (eds) Creative couples in the sciences. Rutgers University Press, New Brunswick, pp 126–140 Wiener H (1882) Hermann Wiener an Felix Klein, 9. Oktober 1882, Klein Nachlass 12. NSUB, Göttingen Wiener H (1885) Reine geometrische Theorie der Darstellung binärer Formen durch Punktgruppen auf der Geraden. L. Brill, Darmstadt Wiener C (1887) Lehrbuch der darstellenden Geometrie, vol 2. Teubner, Leipzig Wiener H (1890a) Die Zusammensetzung zweier endlichen Schraubungen zu einer einzigen. Ber Verh kgl Sächs Ges Wiss Leipzig Math-Phys Cl 42:13–23 Wiener H (1890b) Zur Theorie der Umwendungen. Ber Verh kgl Sächs Ges Wiss Leipzig Math- Phys Cl 42:71–87 Wiener H (1890c) Über geometrische Analysen. Ber Verh kgl Sächs Ges Wiss Leipzig Math-Phys Cl 42:245–267 Wiener H (1891a) Über geometrische Analysen. Fortsetzung. Ber Verh kgl Sächs Ges Wiss Leipzig Math-Phys Cl 43:424–447 Wiener H (1891b) Ueber die aus zwei Spiegelungen zusammengesetzten Verwandtschaften. Ber Verh kgl Sächs Ges Wiss Leipzig Math-Phys Cl 43:644–673 Wiener H (1892) Über Grundlagen und Aufbau der Geometrie. Jahresber DMV 1:45–48 Wiener H (1893a) Herstellung der Platonischen Körper ans Papierstreifen. In: von Dyck W (ed) Katalog mathematischer und mathematisch-physikalischer Modelle, Apparate und Instrumente: Nachtrag. Munich (Reprint: Hildesheim 1994. Georg Olms Verlag), pp 52–54 Wiener H (1893b) 6 Modelle hergestellt aus Draht mit eingespannten Fäden. In: von Dyck W (ed) Katalog mathematischer und mathematisch-physikalischer Modelle, Apparate und Instrumente: Nachtrag. Munich (Reprint: Hildesheim 1994. Georg Olms Verlag), pp 54–55 Wiener H (1894) Weiteres über Grundlagen und Aufbau der Geometrie. Jahresber DMV 3:70–80 Wiener H (1901) Die Einteilung der ebenen Kurven und Kegel dritter Ordnung. Schilling, Halle Wiener H (1905a) Entwicklung geometrischer Formen. In: Krazer A (ed) Verhandlungen des 3. Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904. Teubner, Leipzig, pp 739–750 Wiener H (1905b) Sammlung mathematischer Modelle. B. G. Teubner, Leipzig Wiener H (1906) Abhandlungen zur Sammlung Mathematischer Modelle. Teubner, Leipzig Wiener H (1912) Verzeichnis von H. Wieners und P. Treutleins sammlungen mathematischer Modelle für Hochschulen, höhere Lehranstalten und technische Fachschulen, 2nd edn. B. G. Teubner, Leipzig 414 References

Wiener H (1913) Über den Wert der Anschauungsmittel für die mathematische Ausbildung. Jahresber Dtsch Math-Vereinigung 22:294–297 Wiener N (1933) The Fourier integral and certain of its applications. University Press, Cambridge Wiggin KD, Archibald Smith N (1902) Froebel’s occupations. Gay and Bird, London Willson FN (1902) Review of geometric exercises in paper folding. Sci New Ser 15(377):464–465 Wirth-Steinbrück E (1998) Von ‘Sphärichen Gesetz’ zur Mathematik der ‘Spielgaben’. In: Heiland H, Neumann K (eds) Friedrich Fröbel in internationaler Perspektive. Deutscher Studien, Weinheim, pp 87–96 Wislicenus J (1887) Über die räumliche Anordnung der Atome in organischen Molekülen und ihre Bestimmung in geometrisch-isomeren ungesättigten Verbindungen. Abh Math Phys Cl Kon Sachs Ges Wiss 14:1–77 Wölfflin H (1888) Renaissance und Barock. Eine Untersuchung über Wesen und Entstehung des Barockstils in Italien. Ackermann, Munich Wölfflin H (1917) Kunstgeschichtliche Grundbegriffe: Das Problem der Stilentwicklung in der neueren Kunst, 2nd edn. Bruckmann, Munich Wölfflin H (1950) Principles of art history (trans: Hottinger MD). Dover, New York Woodham-Smith P (1953) History of the Froebel movement in England. In: Lawrence EM (ed) Friedrich Froebel and English education. Philosophical Library, New York, pp 34–94 Wright RP (1868) The elements of plane geometry. Longman, London Yates RC (1941) Tools. A mathematical sketch and model book. Louisiana State University, Baton Rouge Yates FA (1969) Theatre of the world. Routledge/Kegan Paul, London Young GC, Young WH (1905) The first book of geometry. Chelsea Publishing Company, New York Young GC, Young WH (1908) Der kleine Geometer (trans: Bernstein S, Bernstein F). B. G. Teubner, Leipzig Young GC, Young WH (1911) Geometria per i piccoli (trans: Virgilio L). Paravia, Torino Young GC, Young WH (1921) Der kleyner Geometer [in Yiddish] (trans: Olshvanger E). Wostok, Dresden Zinner E (1956) Deutsche und Niederländische Astronomische Instrumente des 11.–18. Jahrhunderts. C.H. Beck, Munich Zinner E (1990) Regiomontanus, his life and work (trans: Brown E). North-Holland, Amsterdam Zorach R (2009) Meditation, idolatry, mathematics: the printed image in Europe around 1500. In: Zorach R, Wayne Cole M (eds) The idol in the age of art. Ashgate, Aldershot, pp 317–342 Index

A Bense, Max, 42, 384 Agazzi, Rosa, 243, 244 Bern, Marshall, 7, 47, 80, 222, 357 Ahrens, Wilhelm, 27, 268, 273–285, 287, 294, Bernstein, Felix, 293, 294, 350–352 297, 301, 302, 337, 375 Berzelius, Jöns Jacob, 202 Alexejeff, W., 345 Bilinear forms, 341–350 Algebraic reasoning, 325, 327 Billingsley, Henry, 25, 67, 73–75 Al-Khayyām, Umar, 21, 93–97 Blintz fold, 60, 220, 221, 224, 227, 307 Analytic geometry, 130, 132, 166, 172, 283, Böhm, Andreas, 21, 93, 96, 97, 290 284, 303, 304 Boole Stott, Alicia, 136–139 Apian, Peter, 54, 55, 58, 75 Brander, Isabelle, 248 Archibald Smith, Nora, 242 Brill, Alexander, 119–121, 123, 204, 205, 365 Archimedean solids, 32, 33, 37, 39, 46, 49, 57, Brill, Ludwig, 133, 165 68–70, 76, 77, 81 Aristotle, 88, 94, 158 Aronhold, Siegfried, 342, 343 C Axiomatization, 10, 18, 19, 27, 28, 153, 173, Canovi, Luisa, 358, 359 203, 273–295, 358–368 Catherine of Cleves, 60 Cavaillès, Jean, 7 Cavalieri, Bonaventura, 308, 309, 313 B Cayley, Arthur, 118, 342, 343 Bach, Friedrich Teja, 42, 43 Cesari, Lamberto, 152 Ball, Katherine, 228, 297–299 Choquet, Gustave, 364 Ball, W.W. Rouse, 228, 298, 299, 321 Clebsch, Alfred, 108, 119, 131, 157, 342, 343 Barbaro, Daniele, 25, 67, 72, 73 Clifford, William Kingdon, 109, 345 Bat books, 59–66 Congruent figures, 65, 108–110, 253, 254, 261 Beloch, Margherita Piazzolla, 2, 9, 21, 23–25, Convolution, 28, 272, 341, 345, 350–354, 387 27, 28, 259, 261, 271, 272, 282, 285, Cowley, John Lodge, 76–80, 127, 128 290, 295, 318–340, 355, 356, 358–362, Cremona, Luigi, 146–148, 204 364–368, 372, 375, 377–387 Crystallography, 206, 211, 214, 215, 226, 233, Beloch’s fold, 318–340, 358, 364, 365, 367, 247, 265, 266 368 Beltrami, Eugenio, 22, 26, 118, 124–180, 204, 371 D Beman, Wooster Woodruff, 177, 262–264, 272, da Vinci, Leonardo, 49, 50, 83 283 d’Aviso, Urbano, 22, 305, 307–309, 313, 321

© Springer International Publishing AG, part of Springer Nature 2018 415 M. Friedman, A History of Folding in Mathematics, Science Networks. Historical Studies 59, https://doi.org/10.1007/978-3-319-72487-4 416 Index de Arfe, Juan, 76 Francoeur, Louis-Benjamin, 26, 93, 98–103, de Bovelles, Charles, 25, 45, 48–66 107, 140, 141, 180, 185, 203 Dee, John, 25, 67, 73–75 Frigerio, Emma, 339, 340, 362, 370 Deleuze, Gilles, 5, 15, 41, 163, 374, 381–387 Fröbel, Friedrich Demaine, Erik D., 7, 23, 24, 222, 357 Anleitung zum Papierfalten, 217, 221, 223, Demaine, Martin L., 222, 357 234, 239, 240, 244, 245 Derrida, Jacques Fröbel’sinfluence in England, 237–243 supplement, 17, 18, 374 Fröbel’sinfluence in France, 233–237 supplementarity of mathematics, 17, 369, Fröbel’sinfluence in Germany, 229–233 381 Fröbel’sinfluence in Italy, 243–247 Descartes, René, 89, 269 Fushimi, Koji, 258, 330, 336, 356 Descriptive geometry, 115–118, 157, 165, 177, 178, 265, 266, 318 Developable surfaces, 158–164 G Diderot, Denis, 100–103 Gauss, Carl Friedrich, 4, 159 Dieudonné, Jean, 348, 349 Ghersi, Italo, 277, 278 Dodgson, Charles L., 111 Giegher, Matthias, 218–220 Doetsch, Gustav, 351–353 Gleason, Andrew, 258 Dorasawmi Aiyengar, P. V., 248, 249 Globus gores, 36, 50, 55, 58, 59, 108 Douglas Wiggin, Kate, 242 Goldammer, Hermann, 225, 229–231 Dubreuil, Jean, 76 Gordan, Paul A., 342–350, 352 Dudeney, Henry Ernest, 278 Grassmann, Hermann, 130–132 Dupin, Charles, 122 Grunert, Johann August, 82 Dupin, Louis, 26, 125–141, 201, 205, 215 Guattari, Felix, 5, 374 Dürer, Albrecht, 7–9, 11, 16, 20, 24–26, 29–83, Gurney, Mary, 237, 239, 255 88, 90, 91, 97, 115, 117, 124–126, 141, 258, 373, 384 Underweysung der Messung, 20, 25, 29, 32, H 33, 39, 58, 258 Haga, Kazuo, 3, 330 Hantzsch, Arthur, 192, 193, 198 Harsdörffer, Georg Philipp, 218 E Hartmann, Georg, 54–57, 66 Elm, Hugo Andreas, 232 Haüy, René Just, 211, 212, 214 Emsmann, H., 140 Hayes, Barry, 6, 357 Epistemological procedure, 8, 136, 141, 194, Heerwart, Eleonore, 219, 237–242, 255, 269 203, 292, 347 Henrici, Olaus, 26, 28, 93, 104–112, 119, Euclid, 12, 13, 18, 33, 54, 67, 70, 74, 76, 78, 85, 120, 174, 253–255, 261, 262, 264, 88, 89, 94, 96, 104, 108–112, 125, 269, 275 251–256, 287, 295–297, 360, 371 Herbart, Johann Friedrich, 150, 151, 233 Euclid’s Elements, 13, 54, 67, 73, 74, 77–79, Hermann, Felix, 186 104, 110–112, 127, 251, 255, 360, 371 Hermite, Charles, 153, 154, 156, 163 Euler, Leonhard, 21, 71, 72, 82, 116, 142, 158, Heron, 11–14, 88, 89 159 Hessenberg, Gerhard, 348 Hilbert, David, 28, 144, 149, 150, 172, 204, 261, 271, 341, 346–351, 353 F Hinton, Charles Howard, 136, 137 Folded drapery, 32, 39, 41–43, 387 Hirschvogel, Augustin, 8, 25, 34, 67–70, 77, Folding of a gnomon, 83–86 82, 125 Folding of a regular pentagon, 14, 15, 297–318 Hoff, Jacobus Henricus van ‘t Four-dimensional regular polytopes, 126, Die Lagerung der Atome im Raume, 140, 132–134, 137 182, 186 Fourrey, Emile, 22, 313 La chimie dans l’espace, 182, 184, 185, Francesca, Piero della, 31, 32, 37, 45, 49, 72 188, 191 Index 417

Hoüel, Jules, 145, 146, 149 Leibniz, Gottfried Wilhelm, 5, 17, 25, 319–323, Hurwitz, Adolf, 9, 27, 233, 273–285, 297, 298, 381–387 302–304, 325, 335, 336, 338, 358, 360, “Le Pli”, 9, 363, 364, 366 364, 366–368, 375 Lill, Eduard, 326, 327, 330–335, 359, 378–380 Hurwitz’s fold, 233, 279, 358, 364, 368 Lill’s method, 326, 330–336, 358, 359, 372 Huzita, Humiaki, 18, 28, 109, 290, 323, 336, Lister, David, 220, 356, 359 339, 340, 356–362, 365–370, 372, 373 Logic of supplementarity, 381 Hyperbolic plane, 125, 143, 144, 150, 204 Lotka, Alfred J., 282–285, 375 Lubiw, Anna, 7, 23, 222, 357 Lucas, Édouard, 274, 277, 305–310, 313, 317, I 321, 369 Ingrami, Giuseppe, 111 Instant geometry, 14, 311 Isomers, 182–184, 187–190, 192, 195–198, M 200, 345 MacLeod, Norma L., 299 Manders, Kenneth, 371 Mannigfaltigkeit, 123, 141, 150, 151, 180, 215 J Marie, François-Charles Michel, 80, 81, Jacobs, Jean-Francois, 233, 234, 244 127–131 Jacoli, Ferdinand, 307–309 Martin, George E., 23, 340, 356, 368 Jorissen, W. P., 187, 192, 193, 198 Mathematical models, 26, 54, 93, 109, 112, Justin, Jacques, 19, 23, 28, 322, 336, 337, 340, 114–126, 142, 157, 165, 170, 173, 175, 356–359, 361–372 180, 267, 353 Mendes, Michel, 358 Messer, Peter, 2, 3, 365 K Meyer, Wilhelm-Franz, 202, 342, 344 Kawasaki, Toshikazu, 321, 363, 370, 373 Mohr, Ernst, 198–201, 205 Kekulé, August, 182, 192, 194, 195, 198, 202, Molteni, Alfred, 129 209, 345 Monge, Gaspard, 115–117, 122, 129, 159, 173 Kempe, Alfred Bay, 11 Morley, Frank, 313, 314, 317, 318, 321, 347, Kepler, Johannes, 16, 32, 33, 66, 78, 79, 82, 371 170, 387 Müller-Wunderlich, Marie, 229, 231, 232 Kergomard, Pauline, 227, 233, 235 Murray, Elsie R., 237, 242, 243 Klein, Felix, 9, 27, 117–124, 126, 162, 165, 166, 173, 177, 180, 201, 202, 233, 254, 262–266, 272, 273, 275, 285, 287, N 293–295, 321, 327, 328, 332, 341, 345, Napkin folding, 60, 90, 217, 218, 220, 221, 227 368, 379 National Indian Association, 248 Knotting of a regular pentagon, 175, 305–318 Nets of polyhedra, 50, 57, 58, 77, 80–83, 126, Koyré, Alexandre, 89 130–136, 246 Kraus-Boelté, Maria, 228, 237 Noether, Emmy, 345–347 Kraus, John, 237 Non-Euclidean geometry, 97, 113, 142, 145

L O Lambert, Heinrich, 21, 96, 97, 290, 329, 330 Olivier, Théodore, 117, 118, 121, 122, 128, 130 Lange, Wichard, 207, 215 O’Rourke, Joseph, 6, 23, 24, 223, 357 Lang, Robert J., 357, 367–370 Ozanam, Jacques, 77, 90 Lardner, Dionysius, 23, 24, 26, 93, 104–112, 140, 141, 321 Lautman, Albert, 7, 349 P Le Bel, Joseph Achille, 181 Pacioli, Luca, 9, 16, 25, 26, 30, 32, 38, 45, Lebesgue, Henri, 157, 164 49–67, 71, 72, 75, 83–87, 90, 93, 105, Legendre, Adrien-Marie, 90, 103, 107, 108, 225, 226, 299, 315, 316, 371 185, 307 De Viribus Quantitatis, 9, 49, 85 418 Index

Palmyre, Martin, 236 S Panofsky, Erwin, 30, 31, 37, 43–49, 71, 81 Sachse, Hermann, 26, 126, 180–203, 205, 228, Paper instruments, 25, 45, 49–66, 74, 87, 89, 345, 371 90, 117, 125 Sainte-Laguë, André, 307 Parallel postulate, 21, 94–98, 143, 290, 361 Sallas, John, 60, 90, 218–220 Pasquali, Pietro, 243–247, 297–298, 301, 309, Salmon, George, 118 310, 320, 321 Savineau, C., 233, 236, 237, 310 Pasteur, Louis, 181, 182 Schilling, Martin, 120, 121, 133, 135 Paternò, Emmanuele, 182 Schläfli, Ludwig, 82, 131, 132 Patrizi, Francesco, 89, 90, 96 Schlegel, Victor, 26, 82, 125–141, 176, 204, Peano, Giuseppe, 125, 126, 152–155, 157, 163, 268 319–322 Schmid, Wolfgang, 25, 53–59, 67–70 Pellegrino, Consolato, 358, 359 Schouten, Jan Arnoldus, 348 Pepe, Luigi, 319, 340, 359 Schwenter, Daniel, 70, 91 Perspective, 8, 9, 16, 19–29, 31–33, 37, 41, Scimemi, Benedetto, 340, 359, 361, 362, 373 43–49, 54, 58, 59, 69, 70, 72, 73, 75–77, Serret, Joseph Alfred, 152, 153, 155, 156 81–83, 89, 123, 124, 127, 141, 171, 172, Smith, David Eugene, 177, 262, 272 174, 175, 201, 244, 251, 257, 265, 273, Stereochemistry, 126, 181, 187, 192, 194 277 Stifel, Michael, 76 Perspective machine, 9, 29, 47, 48, 75, 76, 81, Stringham, Washington Irving, 132, 135, 136, 89 139 Pestalozzi, Johann Heinrich, 207, 211, 228, Structural chemistry, 186 233, 251 Struik, Dirk Jan, 77, 348 Picard, Émile, 164, 165 Suzanne, Pierre-Henri, 93, 98–103 Platonic solids, 33–35, 37, 45, 50, 52, 53, 67, Sylvester, James Joseph, 342, 343, 345 68, 70–72, 74, 76, 77, 79, 131, 166, 167, Symmetry, 10, 26, 30, 32, 35, 77, 90, 91, 93, 170, 175, 252 98, 100–112, 138, 140, 141, 170, 175, Polyhedral sundials, 55, 56 176, 184, 185, 211, 214, 227, 231, 243, Proto-topological, 45, 47, 72, 82 251, 253, 259–261, 268, 299, 335, 359, 364, 374, 384

R Ramus, Peter, 76 T Rao, B. Hanumantha, 260–262, 264–269 Technical object, 5, 30, 58, 76, 194, 203, 275 Recreational mathematics, 9, 17, 22, 27, 60, 86, Technical procedure, 26, 81, 87, 91, 139, 141, 87, 90, 91, 256, 268, 273–275, 277, 278, 152, 246, 266, 268, 277, 344, 347, 374 287, 307, 311, 316–318, 328, 356, 372, Tit, Tom, 310–316 375 Treutlein, Peter, 121, 171, 174 Reflection, 8, 9, 14, 25, 31, 58, 65, 95, 96, 140, Trisection of an angle, 1, 245, 257, 356, 362, 171, 173–176, 274, 314, 320, 322, 339, 363 361, 364, 372, 382, 383, 385 Trisectrix, 1, 11, 14 Regiomontanus, 54 Riemann, Bernhard, 130, 141, 142, 148, 150–152, 204, 341 U Rivelli, Alfonso, 81, 246, 247 Umkehrung, 140, 141 Ronge, Bertha, 228, 237, 238, 247 Umstülpung, 139–141, 176, 204 Ronge, Johannes, 239 Row, Sundara Tandalam, 2, 19, 22–24, 27, 28, 107, 108, 111, 113, 118, 124, 126, 131, V 206, 216, 226, 233, 247, 249, 250, Vacca, Giovanni, 22, 23, 104, 321–325, 328, 253–269, 271–321, 323, 326–328, 330, 330, 337, 376, 389 334, 340, 359, 364, 372, 374, 375, van Calcar, Elise, 229 377–380 van Esveldt, Steven, 220 Rupp, C. A., 272–285, 334, 338, 375 Virgilio, Luisa, 294 Index 419 von Baeyer, Adolf, 195 Werner, Alfred, 192, 193 von Dyck, Walter., 120, 133–135, 157, Wiener, Christian, 26, 108, 118, 119, 126, 152, 163–166, 172, 176, 177, 180, 263, 267, 157, 204, 261, 266, 371, 372 274, 275 Wiener, Hermann, 22, 26, 119, 126, 152, 158, von Kügelgen, Wilhelm, 221 161–180, 261, 262, 272, 273 von Marenholtz-Bülow, Bertha, 217, 223, half turn [Umwendung], 173–175 228–232, 234 Wiener, Norbert, 352 Wright, Richard P., 26, 93, 110

W Wantzel, Pierre, 2, 3, 33 Y Weierstrass, Karl, 108, 124, 161–163, 204, Young, Grace Chisholm 383 The First Book of Geometry, 285–293, 295, Weiss, Christian Samuel, 208, 211, 212, 214, 328 215 flat pattern, 291, 292