Lattice Quantum Field Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geometric Lattice Models and Irrational Conformal Field Theories Romain Couvreur
Geometric lattice models and irrational conformal field theories Romain Couvreur To cite this version: Romain Couvreur. Geometric lattice models and irrational conformal field theories. Mathematical Physics [math-ph]. Sorbonne Université, 2019. English. NNT : 2019SORUS062. tel-02569051v2 HAL Id: tel-02569051 https://hal.archives-ouvertes.fr/tel-02569051v2 Submitted on 21 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité : Physique École doctorale no564: Physique en Île-de-France réalisée au Laboratoire de Physique Théorique - ENS et à l’Institut de Physique Théorique - CEA sous la direction de Jesper Jacobsen et Hubert Saleur présentée par Romain Couvreur pour obtenir le grade de : DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Geometric lattice models and irrational conformal field theories soutenue le 25 juin 2019 devant le jury composé de : M. Paul Fendley Rapporteur M. Ilya Gruzberg Rapporteur M. Jean-Bernard Zuber Examinateur Mme Olalla Castro-Alvaredo Examinatrice M. Benoit Estienne Examinateur M. Jesper Lykke Jacobsen Directeur de thèse M. Hubert Saleur Membre invité (co-directeur) Geometric lattice models and irrational conformal field theories Abstract: In this thesis we study several aspects of two-dimensional lattice models of statistical physics with non-unitary features. -
Perturbative Algebraic Quantum Field Theory at Finite Temperature
Perturbative Algebraic Quantum Field Theory at Finite Temperature Dissertation zur Erlangung des Doktorgrades des Fachbereichs Physik der Universität Hamburg vorgelegt von Falk Lindner aus Zittau Hamburg 2013 Gutachter der Dissertation: Prof. Dr. K. Fredenhagen Prof. Dr. D. Bahns Gutachter der Disputation: Prof. Dr. K. Fredenhagen Prof. Dr. J. Louis Datum der Disputation: 01. 07. 2013 Vorsitzende des Prüfungsausschusses: Prof. Dr. C. Hagner Vorsitzender des Promotionsausschusses: Prof. Dr. P. Hauschildt Dekan der Fakultät für Mathematik, Informatik und Naturwissenschaften: Prof. Dr. H. Graener Zusammenfassung Der algebraische Zugang zur perturbativen Quantenfeldtheorie in der Minkowskiraum- zeit wird vorgestellt, wobei ein Schwerpunkt auf die inhärente Zustandsunabhängig- keit des Formalismus gelegt wird. Des Weiteren wird der Zustandsraum der pertur- bativen QFT eingehend untersucht. Die Dynamik wechselwirkender Theorien wird durch ein neues Verfahren konstruiert, das die Gültigkeit des Zeitschichtaxioms in der kausalen Störungstheorie systematisch ausnutzt. Dies beleuchtet einen bisher un- bekannten Zusammenhang zwischen dem statistischen Zugang der Quantenmechanik und der perturbativen Quantenfeldtheorie. Die entwickelten Methoden werden zur ex- pliziten Konstruktion von KMS- und Vakuumzuständen des wechselwirkenden, mas- siven Klein-Gordon Feldes benutzt und damit mögliche Infrarotdivergenzen der Theo- rie, also insbesondere der wechselwirkenden Wightman- und zeitgeordneten Funktio- nen des wechselwirkenden Feldes ausgeschlossen. Abstract We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the in- herent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. -
Condensed Matter Physics with Light and Atoms: Strongly Correlated Cold Fermions in Optical Lattices
Condensed Matter Physics With Light And Atoms: Strongly Correlated Cold Fermions in Optical Lattices. Antoine Georges Centre de Physique Th´eorique, Ecole Polytechnique, 91128 Palaiseau Cedex, France Lectures given at the Enrico Fermi Summer School on ”Ultracold Fermi Gases” organized by M. Inguscio, W. Ketterle and C. Salomon (Varenna, Italy, June 2006) Summary. — Various topics at the interface between condensed matter physics and the physics of ultra-cold fermionic atoms in optical lattices are discussed. The lec- tures start with basic considerations on energy scales, and on the regimes in which a description by an effective Hubbard model is valid. Qualitative ideas about the Mott transition are then presented, both for bosons and fermions, as well as mean-field theories of this phenomenon. Antiferromagnetism of the fermionic Hubbard model at half-filling is briefly reviewed. The possibility that interaction effects facilitate adiabatic cooling is discussed, and the importance of using entropy as a thermometer is emphasized. Geometrical frustration of the lattice, by suppressing spin long-range order, helps revealing genuine Mott physics and exploring unconventional quantum magnetism. The importance of measurement techniques to probe quasiparticle ex- arXiv:cond-mat/0702122v1 [cond-mat.str-el] 5 Feb 2007 citations in cold fermionic systems is emphasized, and a recent proposal based on stimulated Raman scattering briefly reviewed. The unconventional nature of these excitations in cuprate superconductors is emphasized. c Societ`aItaliana di Fisica 1 2 A. Georges 1. – Introduction: a novel condensed matter physics. The remarkable recent advances in handling ultra-cold atomic gases have given birth to a new field: condensed matter physics with light and atoms. -
Regularization and Renormalization of Non-Perturbative Quantum Electrodynamics Via the Dyson-Schwinger Equations
University of Adelaide School of Chemistry and Physics Doctor of Philosophy Regularization and Renormalization of Non-Perturbative Quantum Electrodynamics via the Dyson-Schwinger Equations by Tom Sizer Supervisors: Professor A. G. Williams and Dr A. Kızılers¨u March 2014 Contents 1 Introduction 1 1.1 Introduction................................... 1 1.2 Dyson-SchwingerEquations . .. .. 2 1.3 Renormalization................................. 4 1.4 Dynamical Chiral Symmetry Breaking . 5 1.5 ChapterOutline................................. 5 1.6 Notation..................................... 7 2 Canonical QED 9 2.1 Canonically Quantized QED . 9 2.2 FeynmanRules ................................. 12 2.3 Analysis of Divergences & Weinberg’s Theorem . 14 2.4 ElectronPropagatorandSelf-Energy . 17 2.5 PhotonPropagatorandPolarizationTensor . 18 2.6 ProperVertex.................................. 20 2.7 Ward-TakahashiIdentity . 21 2.8 Skeleton Expansion and Dyson-Schwinger Equations . 22 2.9 Renormalization................................. 25 2.10 RenormalizedPerturbationTheory . 27 2.11 Outline Proof of Renormalizability of QED . 28 3 Functional QED 31 3.1 FullGreen’sFunctions ............................. 31 3.2 GeneratingFunctionals............................. 33 3.3 AbstractDyson-SchwingerEquations . 34 3.4 Connected and One-Particle Irreducible Green’s Functions . 35 3.5 Euclidean Field Theory . 39 3.6 QEDviaFunctionalIntegrals . 40 3.7 Regularization.................................. 42 3.7.1 Cutoff Regularization . 42 3.7.2 Pauli-Villars Regularization . 42 i 3.7.3 Lattice Regularization . 43 3.7.4 Dimensional Regularization . 44 3.8 RenormalizationoftheDSEs ......................... 45 3.9 RenormalizationGroup............................. 49 3.10BrokenScaleInvariance ............................ 53 4 The Choice of Vertex 55 4.1 Unrenormalized Quenched Formalism . 55 4.2 RainbowQED.................................. 57 4.2.1 Self-Energy Derivations . 58 4.2.2 Analytic Approximations . 60 4.2.3 Numerical Solutions . 62 4.3 Rainbow QED with a 4-Fermion Interaction . -
Simulating Quantum Field Theory with A
Simulating quantum field theory with a quantum computer PoS(LATTICE2018)024 John Preskill∗ Institute for Quantum Information and Matter Walter Burke Institute for Theoretical Physics California Institute of Technology, Pasadena CA 91125, USA E-mail: [email protected] Forthcoming exascale digital computers will further advance our knowledge of quantum chromo- dynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic collisions, or the properties of hadronic matter at nonzero temperature and chemical potential. Digital computers may never be able to achieve accurate simulations of such phenomena in QCD and other strongly-coupled field theories; quantum computers will do so eventually, though I’m not sure when. Progress toward quantum simulation of quantum field theory will require the collaborative efforts of quantumists and field theorists, and though the physics payoff may still be far away, it’s worthwhile to get started now. Today’s research can hasten the arrival of a new era in which quantum simulation fuels rapid progress in fundamental physics. The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018 22-28 July, 2018 Michigan State University, East Lansing, Michigan, USA. ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Simulating quantum field theory with a quantum computer John Preskill 1. Introduction My talk at Lattice 2018 had two main parts. In the first part I commented on the near-term prospects for useful applications of quantum computing. -
Lattice Vibration As a Knob for Novel Quantum Criticality: Emergence Of
Lattice vibration as a knob for novel quantum criticality : Emergence of supersymmetry from spin-lattice coupling SangEun Han,1, ∗ Junhyun Lee,2, ∗ and Eun-Gook Moon1, y 1Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea 2Department of Physics, Condensed Matter Theory Center and the Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA (Dated: November 6, 2019) Control of quantum coherence in many-body system is one of the key issues in modern condensed matter. Conventional wisdom is that lattice vibration is an innate source of decoherence, and amounts of research have been conducted to eliminate lattice effects. Challenging this wisdom, here we show that lattice vibration may not be a decoherence source but an impetus of a novel coherent quantum many-body state. We demonstrate the possibility by studying the transverse-field Ising model on a chain with renormalization group and density-matrix renormalization group method, and theoretically discover a stable N = 1 supersymmetric quantum criticality with central charge c = 3=2. Thus, we propose an Ising spin chain with strong spin-lattice coupling as a candidate to observe supersymmetry. Generic precursor conditions of novel quantum criticality are obtained by generalizing the Larkin-Pikin criterion of thermal transitions. Our work provides a new perspective that lattice vibration may be a knob for exotic quantum many-body states. Quantum states on a lattice inevitably couple to lattice vibration, and the coupling is known to be one of the hxˆ main sources of decoherence of quantum states. To be ~si+1 z specific, let us consider a spin system on a lattice whose z s i+1 i Hamiltonian may be schematically written by, ~si -Js 0 0 H = Hspin + Hphonon + gHs−l; i+1 2 u 0 γ 0 where Hspin=phonon is for a pure spin/phonon system, and Mω Hs−l is for the spin-lattice coupling. -
Quantum Mechanics of Topological Solitons
Imperial College London Department of Physics Quantum mechanics of topological solitons David J. Weir September 2011 Supervised by Arttu Rajantie Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Physics of Imperial College London and the Diploma of Imperial College London 1 Declaration I herewith certify that all material in this dissertation which is not my own work has been properly acknowledged. David J. Weir 3 Abstract Topological solitons { are of broad interest in physics. They are objects with localised energy and stability ensured by their topological properties. It is possible to create them during phase transitions which break some sym- metry in a frustrated system. They are ubiquitous in condensed matter, ranging from monopole excitations in spin ices to vortices in superconduc- tors. In such situations, their behaviour has been extensively studied. Less well understood and yet equally interesting are the symmetry-breaking phase transitions that could produce topological defects is the early universe. Grand unified theories generically admit the creation of cosmic strings and monopoles, amongst other objects. There is no reason to expect that the behaviour of such objects should be classical or, indeed, supersymmetric, so to fully understand the behaviour of these theories it is necessary to study the quantum properties of the associated topological defects. Unfortunately, the standard analytical tools for studying quantum field theory { including perturbation theory { do not work so well when applied to topological defects. Motivated by this realisation, this thesis presents numerical techniques for the study of topological solitons in quantum field theory. Calculations are carried out nonperturbatively within the framework of lattice Monte Carlo simulations. -
Quantum Field Theory: Where We Are 3
Quantum Field Theory: Where We Are Klaus Fredenhagen1, Karl-Henning Rehren2, and Erhard Seiler3 1 II. Institut f¨ur Theoretische Physik, Universit¨at Hamburg, 22761 Hamburg, Germany [email protected] 2 Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen, 37077 G¨ottingen, Germany [email protected] 3 Max-Planck-Institut f¨ur Physik, 80805 M¨unchen, Germany [email protected] Summary. We comment on the present status, the concepts and their limitations, and the successes and open problems of the various approaches to a relativistic quantum theory of elementary particles, with a hindsight to questions concerning quantum gravity and string theory. arXiv:hep-th/0603155v1 20 Mar 2006 1 Introduction Quantum field theory aims at a synthesis of quantum physics with the prin- ciples of classical field theory, in particular the principle of locality. Its main Contribution to: An Assessment of Current Paradigms in the Physics of Fun- damental Phenomena, to be published by Springer Verlag (2006). 2 Klaus Fredenhagen, Karl-Henning Rehren, and Erhard Seiler realm is the theory of elementary particles where it led to a far reaching under- standing of the structure of physics at subatomic scales with an often amaz- ingly good agreement between theoretical predictions and experiments. Typ- ical observables in QFT are current densities or energy flow densities which correspond to what is measured in particle physics detectors. The original aim of QFT was to compute expectation values and correlation functions of the observables, and to derive scattering cross sections in high-energy physics. In the course of development, QFT has widened its scope, notably towards the inclusion of gravitational interactions. -
Lattice Field Theory Study of Magnetic Catalysis in Graphene
W&M ScholarWorks Arts & Sciences Articles Arts and Sciences 4-24-2017 Lattice field theory study of magnetic catalysis in graphene Carleton DeTar Christopher Winterowd Savvas Zafeiropoulos College of William and Mary, [email protected] Follow this and additional works at: https://scholarworks.wm.edu/aspubs Recommended Citation DeTar, Carleton; Winterowd, Christopher; and Zafeiropoulos, Savvas, Lattice field theory study of magnetic catalysis in graphene (2017). PHYSICAL REVIEW B, 95(16). 10.1103/PhysRevB.95.165442 This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. This is the accepted manuscript made available via CHORUS. The article has been published as: Lattice field theory study of magnetic catalysis in graphene Carleton DeTar, Christopher Winterowd, and Savvas Zafeiropoulos Phys. Rev. B 95, 165442 — Published 24 April 2017 DOI: 10.1103/PhysRevB.95.165442 Lattice Field Theory Study of Magnetic Catalysis in Graphene Carleton DeTar,1 Christopher Winterowd,1 and Savvas Zafeiropoulos2, 3, 4 1Department of Physics and Astronomy University of Utah, Salt Lake City, Utah 84112, USA 2Institut f¨urTheoretische Physik - Johann Wolfgang Goethe-Universit¨at Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany 3Jefferson Laboratory 12000 Jefferson Avenue, Newport News, Virginia 23606, USA 4Department of Physics College of William and Mary, Williamsburg, Virgina 23187-8795, USA (Dated: March 16, 2017) We discuss the simulation of the low-energy effective field theory (EFT) for graphene in the presence of an external magnetic field. -
CDT Quantum Toroidal Spacetimes: an Overview
universe Review CDT Quantum Toroidal Spacetimes: An Overview Jan Ambjorn 1,2,* , Zbigniew Drogosz 3 , Jakub Gizbert-Studnicki 3, Andrzej Görlich 3, Jerzy Jurkiewicz 3 and Dániel Nèmeth 3 1 The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark 2 Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands 3 Institute of Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL 30-348 Kraków, Poland; [email protected] (Z.D.); [email protected] (J.G.-S.); [email protected] (A.G.); [email protected] (J.J.); [email protected] (D.N.) * Correspondence: [email protected] Abstract: Lattice formulations of gravity can be used to study non-perturbative aspects of quantum gravity. Causal Dynamical Triangulations (CDT) is a lattice model of gravity that has been used in this way. It has a built-in time foliation but is coordinate-independent in the spatial directions. The higher-order phase transitions observed in the model may be used to define a continuum limit of the lattice theory. Some aspects of the transitions are better studied when the topology of space is toroidal rather than spherical. In addition, a toroidal spatial topology allows us to understand more easily the nature of typical quantum fluctuations of the geometry. In particular, this topology makes it possible to use massless scalar fields that are solutions to Laplace’s equation with special boundary conditions as coordinates that capture the fractal structure of the quantum geometry. -
Arxiv:1701.03368V2 [Hep-Lat] 12 May 2021 Hspofrle Ntetcnqeo Inrtasomto [30–33] Transformation Wigner of Technique Supercon the Without U Theory
Chiral Separation Effect in lattice regularization Z.V.Khaidukov and M.A. Zubkov∗ Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow, 117259, Russia (Dated: May 13, 2021) We consider Chiral Separation Effect (CSE) in the lattice regularized quantum field theory. We discuss two types of regularization - with and without exact chiral symmetry. In the latter case this effect is described by its conventional expression for the massless fermions. This is illustrated by the two particular cases - of Wilson fermions and of the conventional overlap fermions. At the same time in the presence of the exact chiral symmetry the CSE disappears. This is illustrated by the naive lattice fermions, when the contributions of the fermion doublers cancel each other. Another example is the modified version of the overlap regularization proposed recently, where there is the exact chiral symmetry, but as a price for this the fermion doublers become zeros of the Green function. In this case the contribution to the CSE of zeros and poles of the Green function cancel each other. I. INTRODUCTION The family of the non - dissipative transport effects has been widely discussed recently both in the context of the high energy physics and in the context of condensed matter theory [1–8]. The possible appearance of such effects in the recently discovered Dirac and Weyl semimetals has been considered [9–15]. The chiral separation effect (CSE) [16] is one of the members of this family. It manifests itself in the equilibrium theory with massless Dirac fermion, where in the presence of external magnetic field (corresponding to the field strength Fij ) and the ordinary chemical potential µ the axial current appears given by 1 jk = ǫijk0µF (1) 5 −4π2 ij In the context of the high energy physics the possibility to observe CSE was discussed, in particular, in relation to the relativistic heavy - ion collisions (see, for example, [17–19] and references therein). -
Quantum Computing for QCD?
Quantum Computing for QCD? Yannick Meurice The University of Iowa [email protected] With Alexei Bazavov, Sam Foreman, Erik Gustafson, Yuzhi Liu, Philipp Preiss, Shan-Wen Tsai, Judah Unmuth-Yockey, Li-Ping Yang, Johannes Zeiher, and Jin Zhang Supported by the Department of Energy USQCD, BNL, 4/27/19 Yannick Meurice (U. of Iowa) Quantum Computing for QCD? USQCD, BNL, 4/27/19 1 / 56 Content of the talk Quantum Computing (QC) for QCD: what do we want to do? Strategy: big goals with enough intermediate steps explore as many paths as possible leave room for serendipity Tensor tools: QC friends and competitors (RG) Quantum simulations experiments (analog): cold atoms, ions ... Quantum computations (digital): IBM, IonQ, Rigetti, ... Abelian Higgs model with cold atom ladders Benchmark for real time scattering (arXiv:1901.05944, PRD in press with Erik Gustafson and Judah Unmuth-Yockey) Symmetry preserving truncations (YM, arxiv:1903.01918) Quantum Joule experiments (arXiv:1903.01414, with Jin Zhang and Shan-Wen Tsai) Pitch for a quantum center for theoretical physics (HEP, NP, ...) Conclusions Yannick Meurice (U. of Iowa) Quantum Computing for QCD? USQCD, BNL, 4/27/19 2 / 56 Computing with quantum devices (Feynman 82)? The number of transistors on a chip doubled almost every two years for more than 30 years At some point, the miniaturization involves quantum mechanics Capacitors are smaller but they are still on (charged) or off (uncharged) Figure: Moore’s law, source: qubits: jΨi = αj0i + βj1i is a Wikipedia superposition of the two possibilities. Can we use quantum devices to explore large Hilbert spaces? Yes, if the interactions are localized (generalization of Trotter product Figure: Quantum circuit for the formula, Lloyd 96) quantum Ising model (E.