Stereoselective Cyclopropanation Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Stereoselective Cyclopropanation Reactions Chem. Rev. 2003, 103, 977−1050 977 Stereoselective Cyclopropanation Reactions He´le`ne Lebel,* Jean-Franc¸ois Marcoux, Carmela Molinaro, and Andre´ B. Charette* De´partement de Chimie, Universite´ de Montre´al, Montre´al, Que´bec, Canada H3C 3J7 Received August 30, 2002 Contents cyclopropane-containing unnatural products have been prepared to test the bonding features of this I. Introduction 977 class of highly strained cycloalkanes3 and to study II. Halomethylmetal (Zn, Sm, Al)-Mediated 977 enzyme mechanism or inhibition.4 Cyclopropanes Cyclopropanation Reactions have also been used as versatile synthetic intermedi- A. Introduction 977 ates in the synthesis of more functionalized cyclo- B. Relative Diastereoselection 980 alkanes5,6 and acyclic compounds.7 In recent years, 1. Cyclic Alkenes 980 most of the synthetic efforts have focused on the 2. Acyclic Alkenes 983 enantioselective synthesis of cyclopropanes.8 This has C. Chiral Auxiliaries 989 remained a challenge ever since it was found that D. Stoichiometric Chiral Ligands 992 the members of the pyrethroid class of compounds 9 E. Chiral Catalysts 994 were effective insecticides. New and more efficient III. Transition Metal-Catalyzed Decomposition of 995 methods for the preparation of these entities in Diazoalkanes enantiomerically pure form are still evolving, and this A. Introduction 995 review will focus mainly on the new methods that have appeared in the literature since 1989. It will B. Intermolecular Cyclopropanation 996 elaborate on only three types of stereoselective cyclo- 1. Diazomethane 996 propanation reactions from olefins: the halomethyl- 2. Diazoalkanes Bearing an 997 metal-mediated cyclopropanation reactions (eq 1), the Electron-Withdrawing Group (N2CH- transition metal-catalyzed decomposition of diazo (EWG)) compounds (eq 2), and the nucleophilic addition-ring 3. Diazoalkanes Bearing Two 1006 closure sequence (eqs 3 and 4). These three processes Electron-Withdrawing Groups (N2C- (EWG) ) will be examined in the context of diastereo- and 2 enantiocontrol. In the last section of the review, other 4. Aryl- and Vinyldiazoester Reagents 1006 methods commonly used to make chiral, nonracemic C. Intramolecular Cyclopropanation 1008 cyclopropanes will be briefly outlined. 1. Diastereoselective Intramolecular 1008 Cyclopropanation of Chiral Substrates 2. Enantioselective Intramolecular 1011 Cyclopropanation: Chiral Catalysts IV. Michael-Initiated Ring Closure 1016 A. Introduction 1016 B. Relative Diastereoselection (Addition to Chiral 1018 Substrates) C. Removable Chiral Auxiliaries 1026 1. Chiral Michael Acceptors 1026 2. Chiral Nucleophiles 1031 D. Stoichiometric and Catalytic Promoters 1036 V. Other Methods 1036 A. Enzymatic Methods 1036 B. Chiral Stoichiometric Carbenes 1037 C. Other Ring-Closing Reactions of Chiral 1039 Precursors VI. References 1041 II. Halomethylmetal (Zn, Sm, Al)-Mediated Cyclopropanation Reactions I. Introduction A. Introduction Organic chemists have always been fascinated by The observation that diiodomethane reacts with the cyclopropane subunit.1 The smallest cycloalkane zinc to give an iodomethylzinc species was first is found as a basic structural element in a wide range reported in 1929 by Emschwiller.10 However, about of naturally occurring compounds.2 Moreover, many 30 years later, Simmons and Smith11 were the first 10.1021/cr010007e CCC: $44.00 © 2003 American Chemical Society Published on Web 04/09/2003 978 Chemical Reviews, 2003, Vol. 103, No. 4 Lebel et al. He´le`ne Lebel received her B.Sc. degree in biochemistry from the Universite´ Carmela Molinaro received her B.Sc. degree in biochemistry at the Laval in 1993. She performed graduate studies in organic chemistry in Universite´ de Montre´al in 1996 and stayed to study for her M.Sc. and the Chemistry Department of the Universite´ de Montre´al under the Ph.D. degree in organic chemistry (2002) with Professor Andre´ B. Charette. supervision of Professor Andre´ B. Charette as a 1967 Science and She has worked on the characterization of zinc cyclopropanating reagents Engineering NSERC fellow, during which she worked on stereoselective and the development of catalysts for the enantioselective cyclopropanation cyclopropanation reactions. In 1998, she joined the research group of reaction using these reagents. She has since joined the research group Professor Eric Jacobsen at Harvard University as a NSERC postdoctoral of Professor Timothy F. Jamison at the Massachusetts Institute of fellow, where she completed the total enantioselective synthesis of Technology as a FCAR postdoctoral fellow and is working on nickel- taurospongin A. She started her academic career in 1999 in the Chemistry catalyzed coupling reactions. Department of the Universite´ de Montre´al as an assistant professor. Her research activities involve the development of new transition metals containing catalysts that mediate fundamentally interesting and useful organic reactions. She recently developed a new olefination reaction via the transition metal-catalyzed synthesis of salt-free phosphorus ylides. Andre´ B. Charette received his Ph.D. (1987) from the University of Rochester under the supervision of Robert K. Boeckman, Jr., where he completed the total synthesis of the ionophore calcimycin. He then joined the research group of David A. Evans at Harvard University as a NSERC postdoctoral fellow, where he worked on the total synthesis of bryostatin. Jean-Franc¸ois Marcoux received a B.Sc. degree in chemistry from Since 1992, he has been professor at the Universite´ de Montre´al, and he Sherbrooke University, Canada, and went to Universite´ de Montre´alasa is currently the holder of the NSERC/Merck Frosst/Boehringer Ingelheim NSERC and FCAR predoctoral fellow, where he received his Ph.D. degree Research Chair on Stereoselective Drug Synthesis at the Universite´de in 1996. His graduate work, directed toward the development of chiral Montre´al. He has received a number of awards, including the Eli Lilly auxiliaries and catalysts for the stereoselective Simmons−Smith cyclo- Grantee Award, an Alfred P. Sloan Research Fellowship, the Astra Pharma propanation of olefins, was carried out under the mentorship of Professor Award, the Merck Frosst Centre for Therapeutic Research Award, a Andre´ B. Charette. He then joined the laboratory of Professor Stephen Steacie Fellowship, and the Rutherford Medal. His research interests are Buchwald at MIT, Massachusetts, as a NSERC postdoctoral fellow. There in the area of stereoselective synthesis of organic compounds. he was involved in the development of practical catalysts for the palladium- and copper-catalyzed formation of aromatic amines and ethers. He were quickly followed by the development of several currently is a Research Fellow in the department of Process Research at alternative methods to prepare related ZnCH2X spe- Merck & Co., Inc., Rahway, NJ. cies or to activate the zinc metal.14 to appreciate that this reagent (IZnCH2I) could be used for the stereospecific conversion of alkenes to cyclopropanes (eqs 5 and 6).12 The cyclopropanation reactions using these reagents are characteristically stereospecific, proceeding through a “butterfly-type” transition structure.13 One major advantage of the reaction is its excellent chemoselectivity, since it is applicable to a variety of olefins and compatible with several functional groups such as enamines, enol ethers, esters, ketones, etc. (vide infra). Simmons and Smith’s seminal studies Stereoselective Cyclopropanation Reactions Chemical Reviews, 2003, Vol. 103, No. 4 979 Table 1. Important Methods for the Preparation of Cyclopropanating Reagents reactants (ref) reagent Oxidative Addition Zn/activator, XCH2I (14) IZnCH2X(X) Cl, I) Sm/activator, CH2I2 (28) ISmCH2I Alkyl Exchange Et2Zn, CH2I2 (16) EtZnCH2I or Zn(CH2I)2 EtZnI, CH I (19,22a) IZnCH I Figure 2. Chem3D representation of the X-ray crystal 2 2 2 ‚ CF3COOH, Et2Zn, CH2I2 (23) CF3COOZnCH2I structure of the benzo-18-crown-6 IZnCH2I complex. 2,4,6-Cl3C6H2OH, Et2Zn, CH2I2 (24) 2,4,6-Cl3C6H2OZnCH2I C4F9C(O)OCH2I, Et2Zn, hν (26) C4F9C(O)OCH2ZnEt R3Al, CH2I2 (30) R2AlCH2I Nucleophilic Displacement ZnX2,CH2N2 (15) XZnCH2X ZnX2,CH2N2 (1:2) (15) Zn(CH2I)2 Figure 3. Chem3D representation of the X-ray crystal structure of the bis(quinoline)‚Zn(CH2I)2 complex. prepared by mixing equimolar amounts of trifluoro- acetic acid, diethylzinc, and diiodomethane, cyclo- propanates alkenes very effectively.23 Substituted Figure 1. Chem3D representation of the X-ray crystal iodomethylzinc aryloxides are also very effective structure of the bis(iodomethyl)zinc‚diether complex. reagents for the cyclopropanation of unfunctionalized alkenes.24 Shortly after Simmons and Smith’s seminal pub- Several other structures of zinc carbenoids, such 15 25 26 lication, Wittig reported that treatment of zinc as those of MeOZnCH2I and (PhC(O)OCH2)2Zn, iodide with either 1 or 2 equiv of diazomethane was were recently resolved, but these reagents are quite an alternative method to prepare IZnCH2Iorthe unreactive toward alkenes unless they are activated analogous bis(iodomethyl)zinc reagent (Zn(CH2I)2). In (vide infra). 1966, Furukawa and co-workers16 found that a In general, the classical Simmons-Smith reagent similar reactive species could be prepared by substi- in ether has been used in 90% of the zinc-mediated tuting a Zn/Cu couple with ZnEt2, to presumably cyclopropanation reactions. However, the use of the form EtZnCH2I. Denmark has further elaborated on Furukawa version, involving diethylzinc, is preferred
Recommended publications
  • Carbene and Nitrene Transfer Reactions Joseph B
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-19-2014 Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions Joseph B. Gill University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Organic Chemistry Commons Scholar Commons Citation Gill, Joseph B., "Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5484 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions by Joseph B. Gill A dissertation in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry College of Arts and Sciences University of South Florida Major Professor: X. Peter Zhang, Ph.D. Jon Antilla, Ph.D Jianfeng Cai, Ph.D. Edward Turos, Ph.D. Date of Approval: November 19, 2014 Keywords: cyclopropanation, diazoacetate, azide, porphyrin, cobalt. Copyright © 2014, Joseph B. Gill Dedication I dedicate this work to my parents: Larry and Karen, siblings: Jason and Jessica, and my partner: Darnell, for their constant support. Without all of you I would never have made it through this journey. Thank you. Acknowledgments I would like to thank my advisor, Professor X. Peter Zhang, for his support and guidance throughout my time working with him.
    [Show full text]
  • Supporting Information
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021 Supporting Information Synthesis, Oligomerization and Catalytic Studies of a Redox- Active Ni4-Cubane: A detailed Mechanistic Investigation Saroj Kumar Kushvaha, a† Maria Francis, b† Jayasree Kumar, a Ekta Nag, b Prathap Ravichandran, a b a Sudipta Roy* and Kartik Chandra Mondal* aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. bDepartment of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507, India. † Both authors contributed equally. Table of Contents 1. General remarks 2. Syntheses of complexes 1-3 3. Detail characterization of complexes 1-3 4. Computational details 5. X-ray single crystal diffraction of complexes 1-3. 6. Details of catalytic activities of complex 3 6.1. General procedures for the syntheses of aromatic heterocycles (6) and various diazoesters (7) 6.2. Optimization of reaction condition for cyclopropanation of aromatic heterocycles (6) 6.3. General synthetic procedure and characterization data for cyclopropanated aromatic heterocycles (8) 6.4. Determination of relative stereochemistry of 8 7. 1H and 13C NMR spectra of compounds 8a-j 8. Mechanistic investigations and mass spectrometric analysis 9. References S1 1. General remarks All catalytic reactions were performed under Argon atmosphere. The progress of all the catalytic reactions were monitored by thin layer chromatography (TLC, Merck silica gel 60 F 254) upon visualization of the TLC plate under UV light (250 nm). Different charring reagents, such as phosphomolybdic acid/ethanol, ninhydrin/acetic acid solution and iodine were used to visualize various starting materials and products spots on TLC plates.
    [Show full text]
  • Gold-Catalyzed Ethylene Cyclopropanation
    Gold-catalyzed ethylene cyclopropanation Silvia G. Rull, Andrea Olmos* and Pedro J. Pérez* Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2019, 15, 67–71. Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, doi:10.3762/bjoc.15.7 CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, Campus de El Received: 17 October 2018 Carmen 21007 Huelva, Spain Accepted: 11 December 2018 Published: 07 January 2019 Email: Andrea Olmos* - [email protected]; Pedro J. Pérez* - This article is part of the thematic issue "Cyclopropanes and [email protected] cyclopropenes: synthesis and applications". * Corresponding author Guest Editor: M. Tortosa Keywords: © 2019 Rull et al.; licensee Beilstein-Institut. carbene transfer; cyclopropane; cyclopropylcarboxylate; ethylene License and terms: see end of document. cyclopropanation; ethyl diazoacetate; gold catalysis Abstract Ethylene can be directly converted into ethyl 1-cyclopropylcarboxylate upon reaction with ethyl diazoacetate (N2CHCO2Et, EDA) F F in the presence of catalytic amounts of IPrAuCl/NaBAr 4 (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene; BAr 4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate). Introduction Nowadays the olefin cyclopropanation through metal-catalyzed carbene transfer starting from diazo compounds to give olefins constitutes a well-developed tool (Scheme 1a), with an exquisite control of chemo-, enantio- and/or diastereoselectiv- ity being achieved [1,2]. Previous developments have involved a large number of C=C-containing substrates but, to date, the methodology has not been yet employed with the simplest olefin, ethylene, for synthetic purposes [3]. Since diazo compounds bearing a carboxylate substituent are the most Scheme 1: (a) General metal-catalyzed olefin cyclopropanation reac- commonly employed carbene precursors toward olefin cyclo- tion with diazo compounds.
    [Show full text]
  • Organic Synthesis: New Vistas in the Brazilian Landscape
    Anais da Academia Brasileira de Ciências (2018) 90(1 Suppl. 1): 895-941 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170564 www.scielo.br/aabc | www.fb.com/aabcjournal Organic Synthesis: New Vistas in the Brazilian Landscape RONALDO A. PILLI and FRANCISCO F. DE ASSIS Instituto de Química, UNICAMP, Rua José de Castro, s/n, 13083-970 Campinas, SP, Brazil Manuscript received on September 11, 2017; accepted for publication on December 29, 2017 ABSTRACT In this overview, we present our analysis of the future of organic synthesis in Brazil, a highly innovative and strategic area of research which underpins our social and economical progress. Several different topics (automation, catalysis, green chemistry, scalability, methodological studies and total syntheses) were considered to hold promise for the future advance of chemical sciences in Brazil. In order to put it in perspective, contributions from Brazilian laboratories were selected by the citations received and importance for the field and were benchmarked against some of the most important results disclosed by authors worldwide. The picture that emerged reveals a thriving area of research, with new generations of well-trained and productive chemists engaged particularly in the areas of green chemistry and catalysis. In order to fulfill the promise of delivering more efficient and sustainable processes, an integration of the academic and industrial research agendas is to be expected. On the other hand, academic research in automation of chemical processes, a well established topic of investigation in industrial settings, has just recently began in Brazil and more academic laboratories are lining up to contribute.
    [Show full text]
  • And Intermolecular Cyclopropanation by Co(II)- Based Metalloradical Catalysis Xue Xu University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Asymmetric Intra- and Intermolecular Cyclopropanation by Co(II)- Based Metalloradical Catalysis Xue Xu University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Organic Chemistry Commons Scholar Commons Citation Xu, Xue, "Asymmetric Intra- and Intermolecular Cyclopropanation by Co(II)- Based Metalloradical Catalysis" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4262 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Asymmetric Intra- and Intermolecular Cyclopropanation by Co(II)- Based Metalloradical Catalysis by Xue(Snow) Xu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry College of Arts and Sciences University of South Florida Major Professor: X. Peter Zhang, Ph.D. Jon Antilla, Ph.D. Mark L. McLaughlin, Ph.D. Wayne Guida, Ph.D. Date of Defense: June 20th, 2012 Keywords: cobalt, porphyrin, catalysis, cyclopropanation, carbene, diazo Copyright © 2012, Xue Xu DEDICATION I dedicate this dissertation to my parents and my husband, without their caring support, it would not have been possible. ACKNOWLEGEMENTS I need to begin with thanking Dr. Peter Zhang for his continuous guidance and support over the last 5 and half years. Especially for encouraging me to achieving my potential as a researcher and setting an example of dedication to science that is admirable.
    [Show full text]
  • A Transition-Metal-Free & Diazo-Free Styrene Cyclopropanation
    Chemical Science View Article Online EDGE ARTICLE View Journal A transition-metal-free & diazo-free styrene cyclopropanation† Cite this: DOI: 10.1039/c9sc02749a ab a All publication charges for this article Ana G. Herraiz and Marcos G. Suero * have been paid for by the Royal Society of Chemistry An operationally simple and broadly applicable novel cyclopropanation of styrenes using gem-diiodomethyl Received 5th June 2019 carbonyl reagents has been developed. Visible-light triggered the photoinduced generation of iodomethyl Accepted 17th August 2019 carbonyl radicals, able to cyclopropanate a wide array of styrenes with excellent chemoselectivity and DOI: 10.1039/c9sc02749a functional group tolerance. To highlight the utility of our photocyclopropanation, we demonstrated the late-stage functionalization of biomolecule derivatives. rsc.li/chemical-science Introduction activated alkenes and showed an excellent functional group tolerance and chemoselectivity, however, the process was c Over the last few decades, one of the main challenges in the exclusively evaluated for methylene transfer via ( )CH2I. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. synthesis of cyclopropane rings1 – a prevalent structural motif Moreover, Charette and co-workers developed a radical bor- in pharmaceutical agents2 and natural products3 – has been to ocyclopropanation enabled by ow techniques, UVA light and develop robust and general alkene cyclopropanations that avoid xanthone as photocatalyst.11 This reaction involved the gener- the use of
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • Total Synthesis of the Phytopathogen (+)-Fomannosin
    TOTAL SYNTHESIS OF THE PHYTOPATHOGEN (+)-FOMANNOSIN DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Xiaowen Peng, M. S. ***** The Ohio State University 2006 Dissertation Committee: Approved by Professor Leo A. Paquette, Advisor Professor David J. Hart _________________________________ Professor T. V. RajanBabu Advisor Graduate Program in Chemistry ABSTRACT Fomannosin (1) is a sesquiterpene metabolite isolated in 1967 from the medium of the still culture of the wood-rotting fungus, Fomes annosus (Kr.) Karst. It was found to be toxic toward 2-year-old pinus tadae seedlings, Chlorella pyrenoidose, and certain bacteria. Fomannosin features a unique highly strained methylenecyclobutene unit and a reactive doubly unsaturated lactone. It is very sensitive toward both acid and base, posing a considerable challenge to synthetic chemists. The enantioselective total synthesis of (+)-fomannosin was completed in 35 steps starting from known tosylate 13. A zirconocene-mediated ring contraction reaction of vinylated furanosides 20 or 21 was utilized to construct the highly substituted cyclobutane 27. The cyclopentene ring was assembled through a ring-closing metathesis reaction. The lactone ring was then installed by a Knoevenagel condensation of thioester 54. Introduction of the cyclopentanone functionality was accomplished through a dihydroxylation, oxidation and SmI2-mediated -deoxygenation reaction sequence to provide lactones 61 and 62. After the PMB protecting group was removed by trifluoroacetic acid under anhydrous conditions, the first dehydration was effected through the formation of a cyclic ii sulfite. The second dehydration was achieved through the elimination of trifluoromethanesulfonic acid. Deprotection of the TBS ether led to the isolation of (+)- fomannosin.
    [Show full text]
  • Catalytic Cyclopropanation of Polybutadienes
    Erschienen in: Journal of Polymer Science, Part A: Polymer Chemistry ; 48 (2010), 20. - S. 4439-4444 https://dx.doi.org/10.1002/pola.24231 Catalytic Cyclopropanation of Polybutadienes JUAN URBANO,1 BRIGITTE KORTHALS,2 M. MAR DI´AZ-REQUEJO,1 PEDRO J. PE´ REZ,1 STEFAN MECKING2 1Laboratorio de Cata´ lisis Homoge´ nea, Departamento de Quı´mica y Ciencia de los Materiales, Unidad Asociada al CSIC, Centro de Investigacio´ n en Quı´mica Sostenible, Campus de El Carmen s/n, Universidad de Huelva, 21007 Huelva, Spain 2Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany ABSTRACT: Catalytic cyclopropanation of commercial 1,2- or 1,4- bonyl-cyclopropene)]. Catalytic hydrogenation of residual dou- cis-polybutadiene, respectively, with ethyl diazoacetate catalyzed ble bonds of partially cyclopropanated polybutadienes provided by [TpBr3Cu(NCMe)] (TpBr3 ¼ hydrotris(3,4,5-tribromo-1-pyrazo- access to the corresponding saturated polyolefins. Thermal lyl)borate) at room temperature afforded high molecular weight properties are reported. 5 À1 (Mn > 10 mol ) side-chain or main-chain, respectively, carbox- yethyl cyclopropyl-substituted polymers with variable and con- trolled degrees of functionalization. Complete functionalization KEYWORDS: carbene addition; catalysis; functionalization of poly- of 1,4-cis-polybutadiene afforded poly[ethylene-alt-(3-ethoxycar- mers; organometallic catalysis; polar groups; polybutadienes INTRODUCTION Catalytic insertion polymerization of ethyl- polypropylene.6 Examples of catalytic post-polymerization ene and propylene is employed for the production of more reactions on saturated polyolefins are rare. The oxyfunction- than 60 million tons of polyolefins annually.1 These poly- alization of polyethylenes and polypropylenes by metal- mers are hydrocarbons, without any heteroatom-containing based catalysts can afford hydroxyl groups.7 We have functional groups, such as for example ester moieties.
    [Show full text]
  • Recent Advances on Mechanistic Studies on C–H Activation
    Open Chem., 2018; 16: 1001–1058 Review Article Open Access Daniel Gallego*, Edwin A. Baquero Recent Advances on Mechanistic Studies on C–H Activation Catalyzed by Base Metals https:// doi.org/10.1515/chem-2018-0102 received March 26, 2018; accepted June 3, 2018. 1Introduction Abstract: During the last ten years, base metals have Application in organic synthesis of transition metal- become very attractive to the organometallic and catalytic catalyzed cross coupling reactions has been positioned community on activation of C-H bonds for their catalytic as one of the most important breakthroughs during the functionalization. In contrast to the statement that new millennia. The seminal works based on Pd–catalysts base metals differ on their mode of action most of the in the 70’s by Heck, Noyori and Suzuki set a new frontier manuscripts mistakenly rely on well-studied mechanisms between homogeneous catalysis and synthetic organic for precious metals while proposing plausible chemistry [1-5]. Late transition metals, mostly the precious mechanisms. Consequently, few literature examples metals, stand as the most versatile catalytic systems for a are found where a thorough mechanistic investigation variety of functionalization reactions demonstrating their have been conducted with strong support either by robustness in several applications in organic synthesis [6- theoretical calculations or experimentation. Therefore, 12]. Owing to the common interest in the catalysts mode we consider of highly scientific interest reviewing the of action by many research groups, nowadays we have a last advances on mechanistic studies on Fe, Co and Mn wide understanding of the mechanistic aspects of precious on C-H functionalization in order to get a deep insight on metal-catalyzed reactions.
    [Show full text]
  • Experimental and Ab Initio Studies of Formation, Thermolysis, and Molecular and Electronic Structures of 3,6-Diphenyl-1-Propanesulfenimido-1,2,4,5-Tetrazine
    J. Am. Chem. Soc. 2000, 122, 2087-2095 2087 Nucleophile-Induced Intramolecular Dipole 1,5-Transfer and 1,6-Cyclization: Experimental and ab Initio Studies of Formation, Thermolysis, and Molecular and Electronic Structures of 3,6-Diphenyl-1-propanesulfenimido-1,2,4,5-tetrazine Piotr Kaszynski*,† and Victor G. Young, Jr.‡ Contribution from the Organic Materials Research Group, Department of Chemistry, Vanderbilt UniVersity, NashVille, Tennessee 37235, and X-ray Crystallographic Laboratory, Department of Chemistry, UniVersity of Minnesota, Twin Cities, Minnesota 55455 ReceiVed NoVember 1, 1999 Abstract: Reaction of dichlorobenzaldazine (2) with sodium azide followed by 1-propanethiol/Et3N furnished tetrazine ylide 1 as the main product. The structure of this unprecedented ylide was confirmed with single- crystal X-ray analysis [C17H17N5S, monoclinic P21/na) 6.8294(4) Å, b ) 13.6781(9) Å, c ) 17.5898(12) Å, â ) 90.666(1)°, Z ) 4] and favorably compared with the results of ab initio calculations. The mechanisms of formation of the ylide and its thermal decomposition to 2,5-diphenyltetrazine (5) were investigated using ab initio methods and correlated with the experimental observations. The results suggest that formation of 1 involves intramolecular cyclization of a nitrile imine and thermolysis of 1 might generate a sulfenylnitrene. The formation of 1 is considered to be the first example of a potentially more general reaction. Introduction Results and Discussion Intramolecular reactions of 1,3-dipoles provide one of the Synthesis of 1. 3,6-Diphenyl-1-propanesulfenimido-1,2,4,5- most versatile ways to construct heterocyclic rings.1 Among tetrazine (1) was obtained in a one-pot reaction.
    [Show full text]
  • Appendix I: Named Reactions Single-Bond Forming Reactions Co
    Appendix I: Named Reactions 235 / 335 432 / 533 synthesis / / synthesis Covered in Covered Featured in problem set problem Single-bond forming reactions Grignard reaction various Radical couplings hirstutene Conjugate addition / Michael reaction strychnine Stork enamine additions Aldol-type reactions (incl. Mukaiyama aldol) various (aldol / Claisen / Knoevenagel / Mannich / Henry etc.) Asymmetric aldol reactions: Evans / Carreira etc. saframycin A Organocatalytic asymmetric aldol saframycin A Pseudoephedrine glycinamide alkylation saframycin A Prins reaction Prins-pinacol reaction problem set # 2 Morita-Baylis-Hillman reaction McMurry condensation Gabriel synthesis problem set #3 Double-bond forming reactions Wittig reaction prostaglandin Horner-Wadsworth-Emmons reaction prostaglandin Still-Gennari olefination general discussion Julia olefination and heteroaryl variants within the Corey-Winter olefination prostaglandin Peterson olefination synthesis Barton extrusion reaction Tebbe olefination / other methylene-forming reactions tetrodotoxin hirstutene / Selenoxide elimination tetrodotoxin Burgess dehydration problem set # 3 Electrocyclic reactions and related transformations Diels-Alder reaction problem set # 1 Asymmetric Diels-Alder reaction prostaglandin Ene reaction problem set # 3 1,3-dipolar cycloadditions various [2,3] sigmatropic rearrangement various Cope rearrangement periplanone Claisen rearrangement hirstutene Oxidations – Also See Handout # 1 Swern-type oxidations (Swern / Moffatt / Parikh-Doering etc. N1999A2 Jones oxidation
    [Show full text]