Advanced Algebra Unit-7:Basic Theory of Field Extensions Simple Extension, Algebraic and Transcedental Extensions

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Algebra Unit-7:Basic Theory of Field Extensions Simple Extension, Algebraic and Transcedental Extensions ADVANCED ALGEBRA UNIT-7:BASIC THEORY OF FIELD EXTENSIONS SIMPLE EXTENSION, ALGEBRAIC AND TRANSCEDENTAL EXTENSIONS Dr. SHIVANGI UPADHYAY ACADEMIC CONSULTANT UTTRAKHAND OPEN UNIVERSITY HALDWANI(UTTRAKHAND) [email protected] Dr. Shivangi Upadhyay Advanced Algebra 1 / 19 Overview 1 Basic theory of Field Extension Some Basic Definitions 2 Field Extension Theorem 3 Simple Field Extension Definition 4 Algebraic and Transcedental Extension Algebraic Extension Transcedental Extension Example Theorem Dr. Shivangi Upadhyay Advanced Algebra 2 / 19 Basic theory of Field Extension Field Extension Definitions A Field F is said to be embedded in a field K if F is isomorphic onto a subset of the field K . If R is a ring, we define a polynomial p(x) with coefficient in R as 2 n p(x) = a0 + a1x + a2x + ::::::: + anx ; 8ai 2 R If ai = 0 for all i, then it is known as a zero polynomial. The set of all such polynomials is denoted by R[x] and known as polynomial ring over R. Dr. Shivangi Upadhyay Advanced Algebra 3 / 19 Field Extension Field Extension Definition Let F be a field then a field K is called an extension field of F if K contains F as a subfield. Dr. Shivangi Upadhyay Advanced Algebra 4 / 19 Field Extension Dr. Shivangi Upadhyay Advanced Algebra 5 / 19 Field Extension Example The field of complex numbers CC is an extension field of the field of real numbers R;R; and RR in turn is an extension field of the field of rational numbers Q:Q: Clearly then, C=QC=Q is also a field extension. The field p n p o p n p o Q( 2) = a + b 2 a; b 2 Q ;Q( 2) = a + b 2 a; b 2 Q ; is an extension field of Q;Qp; also clearlyp a simple extension. The degree is 2 because f1; 2gf1; 2g can serve as a basis. Dr. Shivangi Upadhyay Advanced Algebra 5 / 19 Field Extension Theorem Degree of Extension Given three fields arranged in a tower, say K a subfield of L which is in turn a subfield of M, then there is a simple relation between the degrees of the three extensions L=K ; M=L and M=K : [M : K ] = [M : L] · [L : K ]:[M : K ] = [M : L] · [L : K ]: Proof. Suppose that K ; L and M form a tower of fields as in the degree formula above and that both d = [L : K ] and e = [M : L] are finite. we may select a basis fu1; :::; ud g for L over K , and a basis fw1; :::; weg for M over L. Dr. Shivangi Upadhyay Advanced Algebra 6 / 19 Field Extension Theorem We will show that the elements umwn; for m ranging through 1; 2; :::; d and n ranging through 1; 2; :::; e; form a basis for M=K Since there are precisely de of them, this proves that the dimension of M=K is de, which is the desired result. First we check that they span M=K . If x is any element of M, then since the wn form a basis for M over L, we can find elements an in L such that e X Pe x = anwn = a1w1 + ··· + aewe:x = n=1 anwn = a1w1 +···+aewe: n=1 Then, since the um form a basis for L over K , we can find elements bm, n 2 K such that for each n d X Pd an = bm;num = b1;nu1 + ··· + bd;nud :an = m=1 bm;num = m=1 b1;nu1 + ··· + bd;nud : Dr. Shivangi Upadhyay Advanced Algebra 7 / 19 Field Extension Theorem Then using the distributive law and associativity of multiplication in M we have e d ! e d X X X X x = bm;num wn = bm;n(umwn);x = n=1 m=1 n=1 m=1 Pe Pd Pe Pd n=1 m=1 bm;num wn = n=1 m=1 bm;n(umwn); which shows that x is a linear combination of the umwn with coefficients from K ; in other words they span M over K : Secondly we must check that they are linearly independent over K . So assume that e d X X Pe Pd 0 = bm;n(umwn)0 = n=1 m=1 bm;n(umwn) n=1 m=1 for some coefficients bm; n in K . Dr. Shivangi Upadhyay Advanced Algebra 8 / 19 Field Extension Theorem Using distributivity and associativity again, we can group the terms as e d ! X X Pe Pd 0 = bm;num wn;0 = n=1 m=1 bm;num wn; n=1 m=1 and we see that the terms in parentheses must be zero, because they are elements of L, and the wn are linearly independent over L. That is, d X Pd 0 = bm;num0 = m=1 bm;num m=1 for each n. Then, since the bm; n coefficients are in K , and the um are linearly independent over K . We must have that bm; n = 0 for all m and all n. This shows that the elements umwn are linearly independent over K. This concludes the proof. Dr. Shivangi Upadhyay Advanced Algebra 9 / 19 Simple Field Extension Simple Field Extension Definitions A field extension L=K is called a simple extension if there exists an element θinL with L = K (θ):L = K (θ): The element θ is called a primitive element, or generating element, for the extension; we also say that L is generated over K by θ. Dr. Shivangi Upadhyay Advanced Algebra 10 / 19 Simple Field Extension Example C : R (generated by i) p p p p Q( 2 2): Q (generated by 2 2); more generally any number field (i.e., a finite extension of Q) is a simple extension Q(α) for some α. p p p p For example, Q( 3; 7) is generated by 3 + 7: F(X): F (generated by X). Dr. Shivangi Upadhyay Advanced Algebra 11 / 19 Algebraic and Transcedental Extension Algebraic and Transcedental Extension Algebraic Extension An embedding of M into N is called an algebraic extension if for every x in N there is a formula p with parameters in M, such that p(x) is true and the set fy 2 N j p(y)gfy 2 N j p(y)g is finite. Dr. Shivangi Upadhyay Advanced Algebra 12 / 19 Algebraic and Transcedental Extension Transcedental Extension A transcendental extension of a field k is a field extension that is not an algebraic extension. An extension K =k is transcendental if and only if the field K contains elements that are transcendental over k, that is, elements that are not roots of any non-zero polynomial with coefficients in k. Dr. Shivangi Upadhyay Advanced Algebra 13 / 19 Algebraic and Transcedental Extension Examples The field extension R=Q, that is the field of real numbers as an extension of the field of rational numbersp is transcendental while the field extensions C=R and Q( 2)=Q are algebraic, where C is the field of complex numbers. Dr. Shivangi Upadhyay Advanced Algebra 14 / 19 Algebraic and Transcedental Extension Theorem Dr. Shivangi Upadhyay Advanced Algebra 15 / 19 Algebraic and Transcedental Extension Theorem Dr. Shivangi Upadhyay Advanced Algebra 16 / 19 Algebraic and Transcedental Extension Theorem Dr. Shivangi Upadhyay Advanced Algebra 17 / 19 Algebraic and Transcedental Extension Theorem Dr. Shivangi Upadhyay Advanced Algebra 18 / 19 Algebraic and Transcedental Extension THANK YOU Dr. Shivangi Upadhyay Advanced Algebra 19 / 19.
Recommended publications
  • Section V.1. Field Extensions
    V.1. Field Extensions 1 Section V.1. Field Extensions Note. In this section, we define extension fields, algebraic extensions, and tran- scendental extensions. We treat an extension field F as a vector space over the subfield K. This requires a brief review of the material in Sections IV.1 and IV.2 (though if time is limited, we may try to skip these sections). We start with the definition of vector space from Section IV.1. Definition IV.1.1. Let R be a ring. A (left) R-module is an additive abelian group A together with a function mapping R A A (the image of (r, a) being × → denoted ra) such that for all r, a R and a,b A: ∈ ∈ (i) r(a + b)= ra + rb; (ii) (r + s)a = ra + sa; (iii) r(sa)=(rs)a. If R has an identity 1R and (iv) 1Ra = a for all a A, ∈ then A is a unitary R-module. If R is a division ring, then a unitary R-module is called a (left) vector space. Note. A right R-module and vector space is similarly defined using a function mapping A R A. × → Definition V.1.1. A field F is an extension field of field K provided that K is a subfield of F . V.1. Field Extensions 2 Note. With R = K (the ring [or field] of “scalars”) and A = F (the additive abelian group of “vectors”), we see that F is a vector space over K. Definition. Let field F be an extension field of field K.
    [Show full text]
  • Section X.51. Separable Extensions
    X.51 Separable Extensions 1 Section X.51. Separable Extensions Note. Let E be a finite field extension of F . Recall that [E : F ] is the degree of E as a vector space over F . For example, [Q(√2, √3) : Q] = 4 since a basis for Q(√2, √3) over Q is 1, √2, √3, √6 . Recall that the number of isomorphisms of { } E onto a subfield of F leaving F fixed is the index of E over F , denoted E : F . { } We are interested in when [E : F ]= E : F . When this equality holds (again, for { } finite extensions) E is called a separable extension of F . Definition 51.1. Let f(x) F [x]. An element α of F such that f(α) = 0 is a zero ∈ of f(x) of multiplicity ν if ν is the greatest integer such that (x α)ν is a factor of − f(x) in F [x]. Note. I find the following result unintuitive and surprising! The backbone of the (brief) proof is the Conjugation Isomorphism Theorem and the Isomorphism Extension Theorem. Theorem 51.2. Let f(x) be irreducible in F [x]. Then all zeros of f(x) in F have the same multiplicity. Note. The following follows from the Factor Theorem (Corollary 23.3) and Theo- rem 51.2. X.51 Separable Extensions 2 Corollary 51.3. If f(x) is irreducible in F [x], then f(x) has a factorization in F [x] of the form ν a Y(x αi) , i − where the αi are the distinct zeros of f(x) in F and a F .
    [Show full text]
  • Math 545: Problem Set 6
    Math 545: Problem Set 6 Due Wednesday, March 4 1. Suppose that K is an arbitrary field, and consider K(t), the rational function field in one variable over K. Show that if f(X) 2 K[t][X] is reducible over K(t), then in fact f(X) is reducible over K[t]. [Hint: Note that just as Q is the fraction field of Z, so is K(t) the fraction field of K[t]. Carefully adapt the proof given in class for the analogous statement concerning f(X) 2 Z[X]. You will need to define the notion of a primitive polynomial in this new context, and prove a version of Gauss's Lemma.] 2. (A Generalized Eisenstein Criterion) Let R be an integral domain, and p ⊂ R a prime ideal. Suppose that n n−1 p(X) = X + rn−1X + ··· + r1X + r0 2 R[X] 2 satisfies r0; r1; : : : ; rn−1 2 p, and r0 2= p (i.e. p(X) is Eisenstein for p). Prove that p(X) is irreducible in R[X]. 3. This problem is designed to convince you that the Primitive Element Theorem fails in characteristic p > 0. Let K = Fp(S; T ) be the field of rational functions in two variables S; T with coefficients in the finite field with p elements. a) Prove that Xp −S is irreducible in K[X]. [Hint: Use the previous two problems and the fact that K = Fp(T )(S).] Hence p p p Fp( S; T ) = K[X]=(X − S) pp is a field extension of K of degree p (here S denotes thep coset p p p X+(X −S)).
    [Show full text]
  • MATH 4140/MATH 5140: Abstract Algebra II
    MATH 4140/MATH 5140: Abstract Algebra II Farid Aliniaeifard April 30, 2018 Contents 1 Rings and Isomorphism (See Chapter 3 of the textbook) 2 1.1 Definitions and examples . .2 1.2 Units and Zero-divisors . .6 1.3 Useful facts about fields and integral domains . .6 1.4 Homomorphism and isomorphism . .7 2 Polynomials Arithmetic and the Division algorithm 9 3 Ideals and Quotient Rings 11 3.1 Finitely Generated Ideals . 12 3.2 Congruence . 13 3.3 Quotient Ring . 13 4 The Structure of R=I When I Is Prime or Maximal 16 5 EPU 17 p 6 Z[ d], an integral domain which is not a UFD 22 7 The field of quotients of an integral domain 24 8 If R is a UDF, so is R[x] 26 9 Vector Spaces 28 10 Simple Extensions 30 11 Algebraic Extensions 33 12 Splitting Fields 35 13 Separability 38 14 Finite Fields 40 15 The Galois Group 43 1 16 The Fundamental Theorem of Galois Theory 45 16.1 Galois Extensions . 47 17 Solvability by Radicals 51 17.1 Solvable groups . 51 18 Roots of Unity 52 19 Representation Theory 53 19.1 G-modules and Group algebras . 54 19.2 Action of a group on a set yields a G-module . 54 20 Reducibility 57 21 Inner product space 58 22 Maschke's Theorem 59 1 Rings and Isomorphism (See Chapter 3 of the text- book) 1.1 Definitions and examples Definition. A ring is a nonempty set R equipped with two operations (usually written as addition (+) and multiplication(.) and we denote the ring with its operations by (R,+,.)) that satisfy the following axioms.
    [Show full text]
  • FIELD EXTENSION REVIEW SHEET 1. Polynomials and Roots Suppose
    FIELD EXTENSION REVIEW SHEET MATH 435 SPRING 2011 1. Polynomials and roots Suppose that k is a field. Then for any element x (possibly in some field extension, possibly an indeterminate), we use • k[x] to denote the smallest ring containing both k and x. • k(x) to denote the smallest field containing both k and x. Given finitely many elements, x1; : : : ; xn, we can also construct k[x1; : : : ; xn] or k(x1; : : : ; xn) analogously. Likewise, we can perform similar constructions for infinite collections of ele- ments (which we denote similarly). Notice that sometimes Q[x] = Q(x) depending on what x is. For example: Exercise 1.1. Prove that Q[i] = Q(i). Now, suppose K is a field, and p(x) 2 K[x] is an irreducible polynomial. Then p(x) is also prime (since K[x] is a PID) and so K[x]=hp(x)i is automatically an integral domain. Exercise 1.2. Prove that K[x]=hp(x)i is a field by proving that hp(x)i is maximal (use the fact that K[x] is a PID). Definition 1.3. An extension field of k is another field K such that k ⊆ K. Given an irreducible p(x) 2 K[x] we view K[x]=hp(x)i as an extension field of k. In particular, one always has an injection k ! K[x]=hp(x)i which sends a 7! a + hp(x)i. We then identify k with its image in K[x]=hp(x)i. Exercise 1.4. Suppose that k ⊆ E is a field extension and α 2 E is a root of an irreducible polynomial p(x) 2 k[x].
    [Show full text]
  • DISCRIMINANTS in TOWERS Let a Be a Dedekind Domain with Fraction
    DISCRIMINANTS IN TOWERS JOSEPH RABINOFF Let A be a Dedekind domain with fraction field F, let K=F be a finite separable ex- tension field, and let B be the integral closure of A in K. In this note, we will define the discriminant ideal B=A and the relative ideal norm NB=A(b). The goal is to prove the formula D [L:K] C=A = NB=A C=B B=A , D D ·D where C is the integral closure of B in a finite separable extension field L=K. See Theo- rem 6.1. The main tool we will use is localizations, and in some sense the main purpose of this note is to demonstrate the utility of localizations in algebraic number theory via the discriminants in towers formula. Our treatment is self-contained in that it only uses results from Samuel’s Algebraic Theory of Numbers, cited as [Samuel]. Remark. All finite extensions of a perfect field are separable, so one can replace “Let K=F be a separable extension” by “suppose F is perfect” here and throughout. Note that Samuel generally assumes the base has characteristic zero when it suffices to assume that an extension is separable. We will use the more general fact, while quoting [Samuel] for the proof. 1. Notation and review. Here we fix some notations and recall some facts proved in [Samuel]. Let K=F be a finite field extension of degree n, and let x1,..., xn K. We define 2 n D x1,..., xn det TrK=F xi x j .
    [Show full text]
  • Galois Theory of Cyclotomic Extensions
    Galois Theory of Cyclotomic Extensions Winter School 2014, IISER Bhopal Romie Banerjee, Prahlad Vaidyanathan I. Introduction 1. Course Description The goal of the course is to provide an introduction to algebraic number theory, which is essentially concerned with understanding algebraic field extensions of the field of ra- tional numbers, Q. We will begin by reviewing Galois theory: 1.1. Rings and Ideals, Field Extensions 1.2. Galois Groups, Galois Correspondence 1.3. Cyclotomic extensions We then discuss Ramification theory: 1.1. Dedekind Domains 1.2. Inertia groups 1.3. Ramification in Cyclotomic Extensions 1.4. Valuations This will finally lead to a proof of the Kronecker-Weber Theorem, which states that If Q ⊂ L is a finite Galois extension whose Galois group is abelian, then 9n 2 N such that th L ⊂ Q(ζn), where ζn denotes a primitive n root of unity 2. Pre-requisites A first course in Galois theory. Some useful books are : 2.1. Ian Stewart, Galois Theory (3rd Ed.), Chapman & Hall (2004) 2.2. D.J.H. Garling, A Course in Galois Theory, Camridge University Press (1986) 2.3. D.S. Dummit, R.M. Foote, Abstract Algebra (2nd Ed.), John Wiley and Sons (2002) 2 3. Reference Material 3.1. M.J. Greenberg, An Elementary Proof of the Kronecker-Weber Theorem, The American Mathematical Monthly, Vol. 81, No. 6 (Jun.-Jul. 1974), pp. 601-607. 3.2. S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, Mass. (1970) 3.3. J. Neukrich, Algebraic Number Theory, Springer (1999) 4. Pre-requisites 4.1. Definition: (i) Rings (ii) Commutative Ring (iii) Units in a ring (iv) Field 4.2.
    [Show full text]
  • On Cubic Galois Field Extensions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Number Theory 130 (2010) 307–317 Contents lists available at ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt On cubic Galois field extensions Lothar Häberle Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69121 Heidelberg, Germany article info abstract Article history: We study Morton’s characterization of cubic Galois extensions Received 19 December 2008 F /K by a generic polynomial depending on a single parameter Revised 30 August 2009 s ∈ K .Weshowhowsuchans can be calculated with the Communicated by David Goss coefficients of an arbitrary cubic polynomial over K the roots of which generate F .ForK = Q we classify the parameters s Keywords: Z Cubic Galois and cubic Galois polynomials over , respectively, according to Cyclic cubic the discriminant of the extension field, and we present a simple Number field criterion to decide if two fields given by two s-parameters or Conductor defining polynomials are equal or not. Kummer theory © 2009 Elsevier Inc. All rights reserved. 1. Introduction Morton develops, in [9], a Kummer theory for abelian field extensions of exponent 3 of ground fields K with char K = 2 not necessarily containing the third roots of unity. Thereby he shows that each cubic Galois extension F /K can be defined by a polynomial 3 1 2 1 2 1 3 2 gs(X) := X + (1 − s)X − s + 2s + 9 X + s + s + 7s − 1 ∈ K [X], s ∈ K , (1) 2 4 8 with discriminant (s2 + s + 7)2.
    [Show full text]
  • Galois Theory at Work: Concrete Examples
    GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples p p Example 1.1. The field extension Q( 2; 3)=Q is Galois of degree 4, so its Galoisp group phas order 4. The elementsp of the Galoisp groupp are determinedp by their values on 2 and 3. The Q-conjugates of 2 and 3 are ± 2 and ± 3, so we get at most four possible automorphisms in the Galois group. Seep Table1.p Since the Galois group has order 4, these 4 possible assignments of values to σ( 2) and σ( 3) all really exist. p p σ(p 2) σ(p 3) p2 p3 p2 −p 3 −p2 p3 − 2 − 3 Table 1. p p Each nonidentity automorphismp p in Table1 has order 2. Since Gal( Qp( 2p; 3)=Q) con- tains 3 elements of order 2, Q( 2; 3) has 3 subfields Ki suchp that [Q( 2p; 3) : Ki] = 2, orp equivalently [Ki : Q] = 4=2 = 2. Two such fields are Q( 2) and Q( 3). A third is Q( 6) and that completes the list. Here is a diagram of all the subfields. p p Q( 2; 3) p p p Q( 2) Q( 3) Q( 6) Q p Inp Table1, the subgroup fixing Q( 2) is the first and secondp row, the subgroup fixing Q( 3) isp the firstp and thirdp p row, and the subgroup fixing Q( 6) is the first and fourth row (since (− 2)(− 3) = p2 3).p p p The effect of Gal(pQ( 2;p 3)=Q) on 2 + 3 is given in Table2.
    [Show full text]
  • QUATERNION ALGEBRAS with the SAME SUBFIELDS 1. Introduction
    QUATERNION ALGEBRAS WITH THE SAME SUBFIELDS SKIP GARIBALDI AND DAVID J. SALTMAN Abstract. G. Prasad and A. Rapinchuk asked if two quaternion divi- sion F -algebras that have the same subfields are necessarily isomorphic. The answer is known to be “no” for some very large fields. We prove that the answer is “yes” if F is an extension of a global field K so that F/K is unirational and has zero unramified Brauer group. We also prove a similar result for Pfister forms and give an application to tractable fields. 1. Introduction Gopal Prasad and Andrei Rapinchuk asked the following question in Re- mark 5.4 of their paper [PR]: If two quaternion division algebras over a field F have the same (1.1) maximal subfields, are the algebras necessarily isomorphic? The answer is “no” for some fields F , see 2 below. The answer is “yes” if F is a global field by the Albert-Brauer-Hasse-Minkowski§ Theorem [NSW, 8.1.17]. Prasad and Rapinchuk note that the answer is unknown even for fields like Q(x). We prove that the answer is “yes” for this field: Theorem 1.2. Let F be a field of characteristic = 2 that is transparent. 6 If D1 and D2 are quaternion division algebras over F that have the same maximal subfields, then D1 and D2 are isomorphic. The term “transparent” is defined in 6 below. Every retract rational extension of a local, global, real-closed, or§ algebraically closed field is trans- parent; in particular K(x1,...,xn) is transparent for every global field K of characteristic = 2 and every n.
    [Show full text]
  • Algebraic Number Theory Lecture Notes
    Algebraic Number Theory Lecture Notes Lecturer: Bianca Viray; written, partially edited by Josh Swanson January 4, 2016 Abstract The following notes were taking during a course on Algebraic Number Theorem at the University of Washington in Fall 2015. Please send any corrections to [email protected]. Thanks! Contents September 30th, 2015: Introduction|Number Fields, Integrality, Discriminants...........2 October 2nd, 2015: Rings of Integers are Dedekind Domains......................4 October 5th, 2015: Dedekind Domains, the Group of Fractional Ideals, and Unique Factorization.6 October 7th, 2015: Dedekind Domains, Localizations, and DVR's...................8 October 9th, 2015: The ef Theorem, Ramification, Relative Discriminants.............. 11 October 12th, 2015: Discriminant Criterion for Ramification...................... 13 October 14th, 2015: Draft......................................... 15 October 16th, 2015: Draft......................................... 17 October 19th, 2015: Draft......................................... 18 October 21st, 2015: Draft......................................... 20 October 23rd, 2015: Draft......................................... 22 October 26th, 2015: Draft......................................... 24 October 29th, 2015: Draft......................................... 26 October 30th, 2015: Draft......................................... 28 November 2nd, 2015: Draft........................................ 30 November 4th, 2015: Draft........................................ 33 November 6th, 2015: Draft.......................................
    [Show full text]
  • The Discriminant MAT4250 — Høst 2013
    The discriminant MAT4250 — Høst 2013 The discriminant First and raw version 0.1 — 23. september 2013 klokken 13:45 One of the most significant invariant of an algebraic number field is the discriminant. One is tempted to say, apart from the degree, the most fundamental invariant. In simplest case of a quadratic equation, the discriminant tells us the behavior of solution, and of course, even its square roots gives us the solutions. To some extent the same is true for cubic equations, and the higher the degree of an equation less the influence of the discriminant is, but it always plays an important role. For a field extension we shall define a discriminant for any basis. Of course this depends on the basis, but in a very perspicuous way. In the case of a number field, the ring of algebraic integers A is a free module over Z,andifthebasisesareconfined to be Z-basis for A,thediscriminantisanintegerindependentofthethebasis,isan invariant of the number field. The discriminant serves several purposes at. Its main main feature is that it tells us in which primes a number fields ramify, or more generally, in which prime ideals an extension ramifies. Additionally the discriminant is a valuable tool to find Z-basis for the ring A of algebraic integers in a number field. To describe A is in general a difficult task, and the discriminant is some times helpful. In relative situation, the situation is somehow more complicated, and the discrimi- nant is well-defined just as an ideal. The discriminant of a basis The scenario is the usual one: A denotes a Dedekind ring with quotient field K,andL afinite,separableextensionofK.
    [Show full text]