Species Status Assessment Report for the Ocala Vetch (Vicia Ocalensis) Version 1.0

Total Page:16

File Type:pdf, Size:1020Kb

Species Status Assessment Report for the Ocala Vetch (Vicia Ocalensis) Version 1.0 FINAL 5/6/19 Species Status Assessment Report for the Ocala Vetch (Vicia ocalensis) Version 1.0 Photo Credit: Tina Nguyen USFWS U.S. Fish and Wildlife Service Region 4 Atlanta, GA 1 ACKNOWLEDGEMENTS This document was prepared by the U.S. Fish and Wildlife Service’s North Florida Ecological Services Field Office (N FL-ESFO), and the Ocala vetch Species Status Assessment Team (Deborah Giglio, USFWS-Region 8 Regional Office; Erin Rivenbark, USFWS Region 4; Heath Rauschenberger, Lourdes Mena, Todd Mecklenborg, USFWS-Region 4 N FL-ESFO)). We solicited peer review, and received and addressed comments from Jay Garcia, Amy Jenkins, and Michael Jenkins. Partner reviews of this document were provided by the Florida Department of Agriculture and Consumer Services, Florida Natural Areas Inventory, and the U.S. Forest Service. We are appreciative of our partners, stakeholders, and peer reviewers for providing comments that resulted in a more robust status assessment and final report. SUGGESTED LITERATURE CITATION OF THIS DOCUMENT U.S. Fish and Wildlife Service. 2019. Species Status Assessment Report for the Ocala Vetch (Vicia ocalensis), Version 1.0. U.S. Fish and Wildlife Service, Southeast Region, Jacksonville, Florida. 54 pp. 2 1.0 EXECUTIVE SUMMARY The Species Status Assessment (SSA) framework (Service 2016, entire) is intended to be an in- depth review of the species’ biology and threats, an evaluation of its biological status, and an assessment of the resources and conditions needed to maintain long-term viability. The intent is for the SSA Report to be easily updated as new information becomes available and to support all functions of the U.S. Fish and Wildlife Service (Service) Endangered Species Program from Candidate Assessment to Listing to Consultations to Recovery. As such, the SSA Report is a living document that may be used to inform decision making under the Act, such as listing, recovery, Section 7, Section 10, and reclassification decisions (the former four decision types are only relevant should the species warrant listing under the Act). Importantly, the SSA Report is not a decisional document; rather, it provides a review of available information strictly related to the biological status of the Ocala vetch (Vicia ocalensis). The listing decision will be made by the Service after reviewing this document and all relevant laws, regulations, and policies, and the results of a proposed decision will be announced in the Federal Register, with appropriate opportunities for public input. Petition History and Previous Federal Actions On April 20, 2010, the Service received a petition from the Center for Biological Diversity (CBD), Alabama Rivers Alliance, Clinch Coalition, Dogwood Alliance, Gulf Restoration Network, Tennessee Forests Council, West Virginia Highlands Conservancy, Tierra Curry, and Noah Greenwald requesting that the Service consider for listing as either endangered or threatened 404 species in the southeastern United States, including the Ocala vetch (CBD 2010, pp. 1123–1124), that were ranked as G1 or G2 by the organization NatureServe; as near threatened or worse by the International Union for Conservation of Nature; or as a species of concern, threatened, or endangered by the American Fisheries Society. The Service issued 90- day findings on September 27, 2011 (76 FR 59836), in response to the petition and concluded that the petition presented substantial information indicating that the listing of 374 species (including the Ocala vetch) under the Act “may be warranted.” On June 17, 2014, CBD filed a complaint against the Service to compel the Service to issue a 12-month finding as to whether the listing of the Ocala vetch is warranted, not warranted, or warranted but precluded. The complaint was resolved on September 22, 2014, when the U.S. District Court approved a settlement agreement between the Service and CBD, including a commitment for the Service to submit a 12-month finding for the Ocala vetch to the Federal Register by September 30, 2019. Background The Ocala vetch (Vicia ocalensis) is an herbaceous, relatively robust perennial vine found in marshy, shoreline habitats in southeastern Marion County and northern Lake County, Florida. The Ocala vetch has nearly hairless stems attaining lengths of 1.2 m (3.9 ft) or more. The deciduous leaves are alternate and pinnately compound with four to six lateral leaflets and single terminal tendril. The leaflets are linear to linear-oblong or linear-elliptic, 3-5 cm (1.2-2 in) long and 3-6 cm (1.2-2.4 in) broad, with apices rounded and mucronate. Flowers are borne in long- staked axillary racemes each bearing up to 18 flowers. The flowers are 10-12 mm (0.4-0.5 in) long, with lavender blue to white petals and a faintly striped banner petal. The fruit is a single pod per flower and is a flattened legume 4-4.5 cm (1.6-1.8 in) long and 6-8 cm (2.4-3.1 in) wide. 3 Each legume contains 8-12 seeds (Godfrey and Kral 1958, pp. 257-258; Wunderlin and Hansen 2011, p. 460). The Ocala vetch is considered to be a distinct species. It has 14 chromosomes and is considered a diploid because its genus, Vicia, base chromosome number is seven for (Les. 2017, pp. 195-196). Although the Four Leaf vetch (Vicia acutifolia Elliott) and the Florida vetch (Vicia floridana S. Watson) are genetically similar, the Ocala vetch differs in having two satellite pairs of chromosomes, whereas the Four Leaf vetch and Florida vetch only have one satellite pair (Les. 2017, pp. 195-196). In addition, the Ocala vetch is morphologically distinguished from Four Leaf vetch and Florida vetch by its much more robust stature and its significantly larger leaflets, flowers, fruits, and seeds (Godfrey and Kral 1958, pp. 257-258; Wunderlin and Hansen 2011, p. 460). The Ocala vetch requires sunlight, carbon dioxide, water, soil and essential nutrients to survive and grow. It produces flowers from March to June and requires insect pollination for seed production (Oleas et al. 2018, p. 203; Les 2017, pp. 195). Confirmed pollinators include: honey bees (Apis mellifera), bumblebees (Bombus spp.), and hoverflies (Toxomerus spp.) (Adams et al. 2010, p. 82). Other observed floral visitors documented on the Ocala vetch include: sweat bees (Augochloropsis metallica), carpenter bees (Xylocopa virginica), and three unidentified butterflies species (Peterson 2018, p. 9). Ocala vetch seeds are gravity dispersed into organic material found at the base of support plants. Ocala vetch presence is positively associated with sawgrass (Cladium jamaicense), wax myrtle (Myrica cerifera), and cabbage palm (sabal palmetto) and negatively correlated with invasive nonnative species such as water hyacinth (Eichhornia crassipes) (Oleas et al. 2018, p. 207, 209). Seed germination is apparently dependent upon the availability of organic matter that accumulates in areas such as cabbage palm boots, basal areas of sawgrass, and/or fallen debris (Fig. 7-1). Ocala vetch can form a mat-like appearance on top of other vegetation in sunny, open areas and do not extend into areas of shade (Figure. 7-2). It can germinate in areas of dappled shade, as long as sufficient germination substrate is present. Relative abundance along shorelines varies from dense mats to loose aggregations and occurrence may extend from ~1 km to 8 km along the shorelines. All of the known populations of Ocala vetch currently exist on federally-owned conservation lands (Ocala National Forest, ONF; Lake Woodruff National Wildlife Refuge, LWNWR) (Fig. 6-1 through 6-6). For the period of 1957-1992, a limited amount of historical information was found with regard to the Ocala vetch’s abundance, range, and distribution (Fig. 6-1 through 6-6; FNAI 2018). From 1997-2014, locations where Ocala vetch were known to occur (Juniper Creek, Silver Glen Springs, Alexander Springs) were surveyed annually during the flowering season. These annual surveys indicated the Juniper Creek and Silver Glen Springs populations “generally remained stable” (Peterson 2018, p. 3). Thus, survey efforts changed from annually to every 3-5 years. 4 In May 2018, the known locations of Ocala vetch were surveyed and efforts were expanded to include additional geographic areas. Thirty-six volunteers surveyed ~90 km of shoreline over four days. New populations were discovered at Salt Springs (ONF) and Lake Dexter (LWNWR). In addition, the Alexander Springs population (Ocala National Forest) was rediscovered after not being observed since 2003 (Peterson 2018, pp. 3-5). The Salt Springs discovery expanded the species known range by 9 km northward and the Lake Dexter discovery expanded the range by 11 km eastward. The 2018 surveys confirmed the Juniper Creek (Ocala National Forest) and Silver Glen Springs (Ocala National Forest) populations were also extant (Figs. 6-1 through 6-6). Juniper Creek has the most robust population of the five known populations and has maintained a self-sustaining population at least since 1957. With the Alexander Springs population re-appearing in 2018, there is no evidence that any of the known populations of Ocala vetch have ever been extirpated. The re-discovery of the Alexander Springs population indicates the Ocala vetch can persist at undetectable levels during unfavorable conditions and return in greater abundance during more favorable conditions. The ability of seeds to successfully germinate after being deposited into the substrate is a factor that may contribute to its return after a long period of absence. For example, experimental seed storage trials have shown seeds greater than 7 years old have a germination rate of 80-95% (Peterson 2018, p. 3). In regard to genetics, Analysis of Molecular Variance indicated 87% of the genetic variation for Ocala vetch was within populations and 13% was between populations, indicating a moderate amount of genetic differentiation between populations that could indicate some level of reproductive isolation (Oleas et al.
Recommended publications
  • Phenological Responses to Climate in the Alberta Native Flora: Herbarium Specimens Reveal Differential Responsiveness Between Species in Mesic and Xeric Habitats
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2019-03-01 Phenological responses to climate in the Alberta native flora: Herbarium specimens reveal differential responsiveness between species in mesic and xeric habitats Porto, Cassiano Porto, C. (2019). Phenological responses to climate in the Alberta native flora: Herbarium specimens reveal differential responsiveness between species in mesic and xeric habitats (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/109929 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Phenological responses to climate in the Alberta native flora: Herbarium specimens reveal differential responsiveness between species in mesic and xeric habitats by Cassiano Porto A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA MARCH, 2019 © Cassiano Porto 2019 UNIVERSITY OF CALGARY Phenological responses to climate in the Alberta native flora: Herbarium specimens reveal differential responsiveness between species in mesic and xeric habitats by Cassiano Porto A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOLOGICAL SCIENCES Research Supervisor: Dr.
    [Show full text]
  • Notes on Grasses (Poaceae) in Hawai‘I: 2
    Records of the Hawaii Biological Survey for 2009 –2010. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 110: 17 –22 (2011) Notes on grasses (Poaceae ) in Hawai‘i : 31. neil snoW (Hawaii Biological survey, Bishop museum, 1525 Bernice street, Honolulu, Hawai‘i, 96817-2704, Usa; email: [email protected] ) & G errit DaViDse (missouri Botanical Garden, P.o. Box 299, st. louis, missouri 63166-0299, Usa; email: [email protected] ) additional new records for the grass family (Poaceae) are reported for Hawai‘i, including five state records, three island records, one corrected island report, and one cultivated species showing signs of naturalization. We also point out minor oversights in need of cor - rection in the Flora of North America Vol. 25 regarding an illustration of the spikelet for Paspalum unispicatum . Herbarium acronyms follow thiers (2010). all cited specimens are housed at the Herbarium Pacificum (BisH) apart from one cited from the missouri Botanical Garden (mo) for Paspalum mandiocanum, and another from the University of Hawai‘i at mānoa (HaW) for Leptochloa dubia . Anthoxanthum odoratum l. New island record this perennial species, which is known by the common name vernalgrass, occurs natu - rally in southern europe but has become widespread elsewhere (allred & Barkworth 2007). of potential concern in Hawai‘i is the aggressive weedy tendency the species has shown along the coast of British columbia, canada, where it is said to be rapidly invad - ing moss-covered bedrock of coastal bluffs, evidently to the exclusion of native species (allred & Barkworth 2007). the species has been recorded previously on kaua‘i, moloka‘i, maui, and Hawai‘i (imada 2008).
    [Show full text]
  • Ranunculaceae): a Critical Review
    Thaiszia - J. Bot., Košice, 25 (2): 153-164, 2015 http://www.bz.upjs.sk/thaiszia THAISZIAT H A I S Z I A JOURNAL OF BOTANY Taxonomy and phylogeny of Anemone patens L. sensu lato (Ranunculaceae): A critical review VLADIMIR V. KRICSFALUSY School of Environment and Sustainability, University of Saskatchewan 117 Science Place, Saskatoon SK, Canada S7N 5C8; [email protected] Kricsfalusy V.V. (2015): Taxonomy and phylogeny of Anemone patens L. sensu lato (Ranunculaceae): A critical review. – Thaiszia – J. Bot. 25 (2): 153-164. – ISSN 1210-0420. Abstract: A critical review of botanical nomenclature for Anemone patens L. is given based on a rigorous literature analysis. Complete morphological characteristics and karyology of the taxon are compiled using data from the floristic treatments of Europe and North America. The phylogeny of A. patens in relation to a variety of contrasting historical, ecological and evolutionary factors acting through the species range transformation and speciation is elucidated. Keywords: morphological characteristics, chromosome numbers, taxonomic considerations, origin, evolution Introduction Some plants, such as Anemone patens L. sensu lato from the buttercup or crowfoot family (Ranunculaceae), with very broad geographical range, highly expressed polymorphism, the existence of numerous transitional forms, convergent evolution, ability to cross and interbreed in a great variety of habitats, may become a nightmare for taxonomists. Arguably, A. patens is one of the most problematic taxa in the genus Anemone L., as far as circumscription and distribution are concerned, which was noted by many authors (e.g. ZÄMELS 1926; TZVELEV 2001). Taxonomic status of A. patens has been widely debated by botanists over a few centuries since the time it was first described by LINNAEUS (1753).
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • The Very Handy Bee Manual
    The Very Handy Manual: How to Catch and Identify Bees and Manage a Collection A Collective and Ongoing Effort by Those Who Love to Study Bees in North America Last Revised: October, 2010 This manual is a compilation of the wisdom and experience of many individuals, some of whom are directly acknowledged here and others not. We thank all of you. The bulk of the text was compiled by Sam Droege at the USGS Native Bee Inventory and Monitoring Lab over several years from 2004-2008. We regularly update the manual with new information, so, if you have a new technique, some additional ideas for sections, corrections or additions, we would like to hear from you. Please email those to Sam Droege ([email protected]). You can also email Sam if you are interested in joining the group’s discussion group on bee monitoring and identification. Many thanks to Dave and Janice Green, Tracy Zarrillo, and Liz Sellers for their many hours of editing this manual. "They've got this steamroller going, and they won't stop until there's nobody fishing. What are they going to do then, save some bees?" - Mike Russo (Massachusetts fisherman who has fished cod for 18 years, on environmentalists)-Provided by Matthew Shepherd Contents Where to Find Bees ...................................................................................................................................... 2 Nets ............................................................................................................................................................. 2 Netting Technique ......................................................................................................................................
    [Show full text]
  • Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area
    Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons Stanwyn G. Shetler Sylvia Stone Orli Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 MAP OF THE CHECKLIST AREA Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part II Monocotyledons by Stanwyn G. Shetler and Sylvia Stone Orli Department of Systematic Biology Botany Section National Museum of Natural History 2002 Botany Section, Department of Systematic Biology National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 Cover illustration of Canada or nodding wild rye (Elymus canadensis L.) from Manual of the Grasses of the United States by A. S. Hitchcock, revised by Agnes Chase (1951). iii PREFACE The first part of our Annotated Checklist, covering the 2001 species of Ferns, Fern Allies, Gymnosperms, and Dicotyledons native or naturalized in the Washington-Baltimore Area, was published in March 2000. Part II covers the Monocotyledons and completes the preliminary edition of the Checklist, which we hope will prove useful not only in itself but also as a first step toward a new manual for the identification of the Area’s flora. Such a manual is needed to replace the long- outdated and out-of-print Flora of the District of Columbia and Vicinity of Hitchcock and Standley, published in 1919. In the preparation of this part, as with Part I, Shetler has been responsible for the taxonomy and nomenclature and Orli for the database. As with the first part, we are distributing this second part in preliminary form, so that it can be used, criticized, and updated while the two parts are being readied for publication as a single volume.
    [Show full text]
  • Population Dynamics of Pulsatilla Patens (L.) Mill
    Biodiv. Res. Conserv. 41: 61-68, 2016 BRC www.brc.amu.edu.pl DOI 10.1515/biorc-2016-0006 Submitted 24.07.2015, Accepted 08.03.2016 Population dynamics of Pulsatilla patens (L.) Mill. in a new locality in Poland Marek Tadeusz Ciosek*, Katarzyna Piórek, Roman Sikorski & Agata Trębicka Faculty of Natural Science, Siedlce University of Natural Sciences and Humanities, B. Prusa 12, 08-110 Siedlce, Poland *corresponding author (e-mail: [email protected]) Abstract: A new locality of Pulsatilla patens (L.) Mill. in the Wyszków-Jegiel Forest District, in the southern part of Puszcza Biała (ATPOL EC79) is described. This locality is situated on an escarpment, at the edge of Peucedano-Pinetum fresh pine forest with elements of Serratulo-Pinetum mixed pine forest and Potentillo albae-Quercetum steppe oak forest. Good light conditions prevail in the place of plant occurrence. Studies carried out in 2008-2015 showed an increasing trend of P. patens population, though, recently, this population seems to be stable. The number of species accompanying the pasque-flower also increased in this time period. It was found based on the analysis of flora directly neighbouring the clumps of the pasque-flower. During 7 years, the number of taxa increased by 31.5% on plot I and by 25% on plot II. In the years 2011-2013, the pasque- flower was represented both by flowering (1-2) and vegetative individuals. Afterwards, the plant was present only in vegetative stage. The number of its leaves varied in time. The highest number of leaves – 14 per individual – was noted in 2014, and the lowest number (1) – in 2012.
    [Show full text]
  • List of Plants for Great Sand Dunes National Park and Preserve
    Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • Notes on the Nests of <I>Augochloropsis Metallica Fulgida
    The Great Lakes Entomologist Volume 50 Numbers 1 & 2 -- Spring/Summer 2017 Article 4 Numbers 1 & 2 -- Spring/Summer 2017 September 2017 Notes on the Nests of Augochloropsis metallica fulgida and Megachile mucida in Central Michigan (Hymenoptera: Halictidae, Megachilidae) Jason Gibbs University of Manitoba, [email protected] Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Gibbs, Jason 2017. "Notes on the Nests of Augochloropsis metallica fulgida and Megachile mucida in Central Michigan (Hymenoptera: Halictidae, Megachilidae)," The Great Lakes Entomologist, vol 50 (1) Available at: https://scholar.valpo.edu/tgle/vol50/iss1/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Notes on the Nests of Augochloropsis metallica fulgida and Megachile mucida in Central Michigan (Hymenoptera: Halictidae, Megachilidae) Cover Page Footnote My postdoctoral research in Michigan supported by the United States Department of Agriculture-National Institute for Food and Agriculture Specialty Crop Research Initiative; project 2012-01534: Developing Sustainable Pollination Strategies for U.S. Specialty Crops during this research. I also appreciate the willingness of Fenner Nature Center staff to allow research to be conducted on the Center’s grounds. This peer-review article is available in The Great Lakes Entomologist: https://scholar.valpo.edu/tgle/vol50/iss1/4 Gibbs: Halictid and megachilid bee nests of Central Michigan 2017 THE GREAT LAKES ENTOMOLOGIST 17 Notes on the Nests of Augochloropsis metallica fulgida and Megachile mucida in Central Michigan (Hymenoptera: Halictidae, Megachilidae) Jason Gibbs Department of Entomology, University of Manitoba, 12 Dafoe Rd., Winnipeg, MB, R3T 2N2.
    [Show full text]
  • Species Convergence Into Life-Forms in a Hyperseasonal Cerrado in Central Brazil Silva, IA.* and Batalha, MA
    Species convergence into life-forms in a hyperseasonal cerrado in central Brazil Silva, IA.* and Batalha, MA. Laboratório de Ecologia Vegetal, Departamento de Botânica, Universidade Federal de São Carlos – UFSCar, CP 676, CEP 13565-905, São Carlos, SP, Brazil *e-mail: [email protected] Received September 21, 2006 – Accepted November 30, 2006 – Distributed May 31, 2008 (With 3 figures) Abstract Whether the functional structure of ecological communities is deterministic or historically contingent is still quite con- troversial. However, recent experimental tests did not find effects of species composition variation on trait convergence and therefore the environmental constraints should play the major role on community convergence into functional groups. Seasonal cerrados are characterized by a sharp seasonality, in which the water shortage defines the community functioning. Hyperseasonal cerrados experience additionally waterlogging in the rainy season. Here, we asked whether waterlogging modifies species convergences into life-forms in a hyperseasonal cerrado. We studied a hyperseasonal cerrado, comparing it with a nearby seasonal cerrado, never waterlogged, in Emas National Park, central Brazil. In each area, we sampled all vascular plants by placing 40 plots of 1 m2 plots in four surveys. We analyzed the species convergences into life-forms in both cerrados using the Raunkiaer’s life-form spectrum and the index of divergence from species to life-form diversity (IDD). The overall life-form spectra and IDDs were not different, indicating that waterlogging did not affect the composition of functional groups in the hyperseasonal cerrado. However, there was a seasonal variation in IDD values only in the hyperseasonal cerrado. As long as we did not find a seasonal variation in life-form diversity, the seasonal variation of convergence into life-forms in the hyperseasonal cerrado was a conse- quence of the seasonal variation of species diversity.
    [Show full text]