Evolution and Ecology of Lizard Body Sizes PAPER Shai Meiri

Total Page:16

File Type:pdf, Size:1020Kb

Evolution and Ecology of Lizard Body Sizes PAPER Shai Meiri Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2008) 17, 724–734 Blackwell Publishing Ltd RESEARCH Evolution and ecology of lizard body sizes PAPER Shai Meiri NERC Centre for Population Biology, Imperial ABSTRACT College London, Silwood Park, Ascot, Berkshire Aim Body size is instrumental in influencing animal physiology, morphology, SL5 7PY, UK ecology and evolution, as well as extinction risk. I examine several hypotheses regarding the influence of body size on lizard evolution and extinction risk, assessing whether body size influences, or is influenced by, species richness, herbivory, island dwelling and extinction risk. Location World-wide. Methods I used literature data and measurements of museum and live specimens to estimate lizard body size distributions. Results I obtained body size data for 99% of the world’s lizard species. The body size–frequency distribution is highly modal and right skewed and similar distributions characterize most lizard families and lizard assemblages across biogeographical realms. There is a strong negative correlation between mean body size within families and species richness. Herbivorous lizards are larger than omnivorous and carnivorous ones, and aquatic lizards are larger than non-aquatic species. Diurnal activity is associated with small body size. Insular lizards tend towards both extremes of the size spectrum. Extinction risk increases with body size of species for which risk has been assessed. Main conclusions Small size seems to promote fast diversification of disparate body plans. The absence of mammalian predators allows insular lizards to attain larger body sizes by means of release from predation and allows them to evolve into the top predator niche. Island living also promotes a high frequency of herbivory, which is also associated with large size. Aquatic and nocturnal lizards probably evolve large size because of thermal constraints. The association between large size and high extinction risk, however, probably reflects a bias in the species in which risk *Correspondence: Shai Meiri, NERC Centre has been studied. for Population Biology, Imperial College Keywords London, Silwood Park, Ascot, Berkshire SL5 7PY, UK. Body size, description dates, diversification rates, extinction risk, insularity, lizard E-mail: [email protected] diets, snout–vent length, size–frequency distributions, species richness. logarithmic scale (Hutchinson & MacArthur, 1959; Gardezi & da INTRODUCTION Silva, 1999; Olden et al., 2007. cf. Roy et al., 2000; Boback & Guyer, Body size is known to greatly influence many aspects of the 2003). Thus most species are smaller than the midpoint and morphology, physiology and ecology of organisms. Furthermore, mean of the size range. Most research on global-scale patterns size often is linked to the likelihood of speciation and extinction of size distributions has focused on vertebrates and sampling is and to the rate of evolution, as well as to current levels of anthro- relatively complete for birds (65% of species; Maurer, 1998), pogenically induced extinction risk (Stanley, 1973; Cardillo et al., mammals (73% of extant and historically extinct species; Smith 2005; Olden et al., 2007). et al., 2003) and fishes (81%; Olden et al., 2007). However, At large geographical and taxonomic scales, body size–frequency although lizards have featured prominently as model organisms distributions are typically unimodal and right skewed on a in studies of the evolution of body size (e.g. Schoener, 1969; Case, DOI: 10.1111/j.1466-8238.2008.00414.x © 2008 The Author 724 Journal compilation © 2008 Blackwell Publishing Ltd www.blackwellpublishing.com/geb Lizard body size 1978, Espinoza et al., 2004; Meiri, 2007) there have been no has been challenged by Espinoza et al. (2004), studying the evo- efforts to study patterns of size evolution for the whole group lution of herbivory in small-sized lizards of the genus Liolaemus. (but see Avery, 1996, and Greer, 2001 for skinks). I therefore test whether there are associations between lizard size Here I examine the shape of the size–frequency distributions and activity times, use of space, mode of reproduction and dietary of lizards at the global and continental scales, both for the group preferences. as a whole and at the family level, where most of the variation of lizard body size lies (Dunham et al., 1988 and see below). I use Body size and insularity these distributions to test the following hypotheses. Island living is thought to enable lizards to evolve large sizes in the absence of mammalian predators (Szarski, 1962; Pregill, 1986; Body size and species richness Greer, 2001). However, cases of insular dwarfism are also well Because in many groups most species are small (Hutchinson & known (Hedges & Thomas, 2001). I test whether insular lizards MacArthur, 1959; Stanley, 1973), and small animals have high rates tend to occupy more extreme sizes than mainland lizards (as was of molecular evolution (Fontanillas et al., 2007), it is often thought found intraspecifically; Meiri, 2007), or whether insular lizards that small size promotes high speciation rates (e.g. Maurer et al., tend to be show less extreme sizes than mainland ones, as predicted 1992). However, Orme et al. (2002) have shown that richness is by theories of optimal body size (Marquet & Taper, 1998; Lomolino usually not associated with body size when clade ages and phylo- et al., 2005, cf. Meiri et al., 2005). These theories invoke the island genetic affinities are modelled. I therefore test for the association rule to suggest that small taxa evolve larger size and large ones between body size, species richness and diversification rates. evolve smaller sizes on islands, a process that will result in insular size distribution tending towards medium body sizes (Price & Phillimore, 2007). I further test whether extreme sizes are more Ecological correlates of body size likely to have evolved on islands lacking mammalian carnivores. Small lizards can gain heat more quickly, but will also tend to lose heat quicker than larger ones. Therefore it is reasonable to expect Body size and extinction risk body size to interact with factors related to thermal regimes such as daily activity patterns. Smaller size may facilitate faster heating Large size has often been associated with anthropogenically and cooling rates in diurnal lizards (Huey & Slatkin, 1976), induced extinction risk (Cardillo et al., 2005; Olden et al., 2007). which are likely to be thermoregulators. Nocturnal lizards may Many lizard species that went extinct in recent times were among be more likely to be thermoconformers (Huey & Slatkin, 1976), the largest in their clades (Case et al., 1998). I therefore test and thus less affected by body-size related cooling and heating whether current levels of threat are associated with lizard body rates. Thus I predict that diurnal species will be smaller to facilitate size. Because risk status is published for only a small number of faster heating. Likewise aquatic species may be more likely to be lizard species, this analysis may be biased if small species are less affected by fast cooling. I therefore hypothesize they will tend to likely to have been assessed or described (e.g. Reed & Boback, be large, to reduce the rates of heat loss. Fossorial habits are 2002). However, if there is no such bias, or if most newly thought to be associated with large size (Dunham et al., 1988), described species result from well-known species being split, perhaps because fossorial lizards often have reduced legs, and then no relationship between size, description date and threat serpentiform movement is easier at large sizes (Avery, 1996; will be found. Greer, 2001). I therefore examine whether the use of space influences lizard size. METHODS Some authors report that viviparous lizards are larger than oviparous ones (e.g. Shine, 1985; Dunham et al., 1988). Greer Data (2001) hypothesized that viviparity is difficult to fit into the short life cycle of very small species, and that over the long development I used data obtained from published literature on the body size times needed by large species embryos may be safer within the of lizards (Appendix S1 in Supplementary Material), and mother’s body than inside a nest. However, his finding that small supplemented it by measurements of live lizards (mostly at the size may be constrained by minimum egg size can suggest that Meier Segal’s Garden for Zoological Research, Tel-Aviv University), oviparous species are constrained to larger sizes (see also Kratochvil museum specimens and personal communication with museum & Frynta, 2006). curators. Taxonomy follows Uetz (2006). While most lizards are carnivorous, Cooper & Vitt (2002) Snakes and amphisbaenians probably evolved from lizards estimated that some 12% of lizard species include a significant (e.g. Townsend et al., 2004; Kumazawa, 2007; but see Zhou et al., amount of plant material (> 10%) in their diets. Plant consumption 2006, who found snakes and lizards are sister taxa). However, in lizards has frequently been associated with large body size these taxa are highly derived (e.g. in respect to life history and (Sokol, 1967; Van Damme, 1999), and it is often assumed that skull kinetism; see Dunham et al., 1988, Zug et al., 2001, and large size is required for lizards to efficiently process plant Pough et al., 2003), and are both, on average, much larger than material, or that herbivory allows lizards to grow large, or both lizards (Avery, 1996). Using the Squamata as a whole, while (Pough, 1973; Cooper & Vitt, 2002; Herrel et al., 2004). This view making the group examined monophyletic, may therefore © 2008 The Author Global Ecology and Biogeography, 17, 724–734, Journal compilation © 2008 Blackwell Publishing Ltd 725 S. Meiri obscure rather than clarify the forces affecting size evolution (see I examined the relationship between SVL and species richness below). The omission of highly morphologically and ecologically within both families and genera. To account for phylogenetic derived taxa is commonplace in macroecology. For example, structure (Orme et al., 2002) I repeated the analysis using the marine mammals and bats are often omitted from studies of family-level phylogeny of Townsend et al.
Recommended publications
  • UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS NATURALES CARRERA DE BIOLOGÍA Trabajo De Titulación Previo a Obtener El Grado Ac
    UNIVERSIDAD DE GUAYAQUIL FACULTAD DE CIENCIAS NATURALES CARRERA DE BIOLOGÍA Trabajo de titulación previo a obtener el grado académico de Biólogo Influencia del paisaje en el comportamiento territorial de la especie introducida Anolis sagrei (Duméril & Bibron, 1837) en ambientes urbanizados AUTOR: Jacob Agustín Guachisaca Salínas TUTOR: Blga. Andrea Narváez García, Ph.D. GUAYAQUIL, OCTUBRE, 2019 ANEXO 4 FACULTAD DE CIENCIAS NATURALES CARRERA DE BIOLOGÍA UNIDAD DE TITULACIÓN Guayaquil, 13 de agosto de 2019 Blga. Dialhy Coello, Mgs. DIRECTORA (e) DE LA CARRERA DE BIOLOGÍA FACULTAD DE CIENCIAS NATURALES UNIVERSIDAD DE GUAYAQUIL Ciudad. - De mis consideraciones: Envío a usted el informe correspondiente a la tutoría realizada al Trabajo de Titulación Influencia del paisaje en el comportamiento territorial de la especie introducida Anolis sagrei (Duméril & Bibron, 1837) en ambientes urbanizados del estudiante Jacob Agustín Guachisaca Salínas, indicando que ha cumplido con todos los parámetros establecidos en las normativas vigentes: El trabajo es el resultado de una investigación. El estudiante demuestra conocimiento profesional integral. El trabajo presenta una propuesta en el área de conocimiento. El nivel de argumentación es coherente con el campo de conocimiento. Adicionalmente, se adjunta el certificado del porcentaje de similitud y la valoración del trabajo de titulación con la respectiva calificación. Dando por concluida esta tutoría de trabajo de titulación, CERTIFICO, para los fines pertinentes, que el estudiante Jacob Agustín Guachisaca Salínas está apto para continuar el proceso de titulación de revisión final. Atentamente, _________________________ Andrea Narváez García, Ph.D. TUTOR DEL TRABAJO DE TITULACIÓN C.I. 1720145844 ANEXO 5 FACULTAD DE CIENCIAS NATURALES CARRERA DE BIOLOGÍA UNIDAD DE TITULACIÓN RÚBRICA DE EVALUACIÓN TRABAJO DE TITULACIÓN Título del Trabajo: Influencia del paisaje en el comportamiento territorial de la especie introducida Anolis sagrei (Duméril & Bibron, 1837) en ambientes urbanizados.
    [Show full text]
  • Predation of an Adult of Agama Impalearis by Falco Tinnunculusin
    42 Bol. Asoc. Herpetol. Esp. (2016) 27(1) Fathinia, B. & Rastegar-Pouyani, N. 2010. On the species of Viperidae) inferred from mitochondrial DNA sequences. Pseudocerastes (Ophidia: Viperidae) in Iran. Russian Jour- Molecular Phylogenetics and Evolution, 19, 94–104. nal of Herpetology, 17: 275–279. Leviton, A.E., Anderson, S.C., Adler, K. & Minton, S.A. Fathinia, B., Anderson, S.C., Rastegar-Pouyani, N., Jahani, H. 1992. Handbook to Middle East Amphibians and Repti- & Mohamadi, H. 2009. Notes on the natural history of les. Contributions to Herpetology, No. 8, Society for the Pseudocerastes urarachnoides (Squamata: Viperidae). Rus- Study of Amphibians and Reptiles. Oxford, Ohio, USA. sian Journal of Herpetology, 16: 134–138. Martínez-Freiría, F. 2009. Biogeografía y ecología de las víboras ibéricas Fathinia, B., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Too- (V. aspis, V. latastei y V. seoanei) en una zona de contacto en el norte deh-Dehghan, F. & Rajabizadeh, M. 2014. Molecular sys- peninsular. Tesis doctoral. Universidad de Salamanca. Salamanca tematics of the genus Pseudocerastes (Ophidia: Viperidae) Neill, W.T. 1960. The caudal lure of various juvenile snakes. Quar- based on the mitochondrial cytochrome b gene. Turkish terly Journal of the Florida Academy of Sciences, 23:173–200. Journal of Zoology, 38: doi:10.3906/zoo-1308-25. Nilson, G., Andren, C., Ioannidis, Y. & Dimaki, M. 1999. Gholamifard, A. & Esmaeili, H.R. 2010. First record and Ecology and conservation of the Milos viper, Macrovipera range extension of Field’s horned viper, Pseudocerastes schweizeri (Werner, 1935). Amphibia-Reptilia, 20: 355-375. fieldi Schmidt, 1930 (Squamata: Viperidae), from Fars Tsairi, H.
    [Show full text]
  • Diversificação Morfológica E Molecular Em Lagartos Dactyloidae Sul-Americanos
    MUSEU PARAENSE EMÍLIO GOELDI UNIVERSIDADE FEDERAL DO PARÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA CURSO DE DOUTORADO EM ZOOLOGIA DIVERSIFICAÇÃO MORFOLÓGICA E MOLECULAR EM LAGARTOS DACTYLOIDAE SUL-AMERICANOS ANNELISE BATISTA D’ANGIOLELLA Belém - PA 2015 ANNELISE BATISTA D’ANGIOLELLA DIVERSIFICAÇÃO MORFOLOGICA E MOLECULAR EM LAGARTOS DACTYLOIDAE SUL-AMERICANOS Tese apresenta ao Programa de Pós-Graduação em Zoologia do convênio Universidade Federal do Pará e Museu Paraense Emílio Goeldi, para obtenção do título de doutora em zoologia. Orientadora: Dra. Tereza Cristina Ávila Pires Co-Orientadora: Dra. Ana Carolina Carnaval Belém - PA 2015 “É capaz quem pensa que é capaz.” ii Agradecimento Ao CNPq pela concessão da minha bolsa de pesquisa. A Capes pela Bolsa de Doutorado Sanduiche no exterior. À Teresa Avila-Pires, minha orientadora, por estar sempre disponível para ajudar, escutar e puxar a orelha! A minha co-orientadora Carol Carnaval, por ter me recebido de braços abertos em seu lab e por toda confiança e apoio. A Ana Prudente pelo passe livre à Coleção e sugestões dadas ao trabalho de hemipenis. Ao Tibério Burlamaqui por toda a ajuda com as análises moleculares e momentos de descontração! A todo o pessoal do laboratório de Herpetologia do MPEG pela companhia e troca de ideias, sempre ajudando quando possível. Ao lab de molecular que foi a minha casa nesses últimos quatro anos e a todos que por ele passaram e contribuíram de alguma forma com meu conhecimento, em especial a Áurea, Geraldo, e Joice. Aos meus filhos de quatro patas Pukey e Bingo por me amarem incondicionalmente. A dança, por ser meu refúgio e por não ter me deixado pirar! Ao meu amor, Bruno, por me inspirar diariamente a ser uma pessoa melhor! Por me impulsionar a ir além e por simplesmente existir em minha vida..
    [Show full text]
  • Blumgart Et Al 2017- Herpetological Survey Nosy Komba
    Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs).
    [Show full text]
  • A New Subspecies of Jackyhosersaur Hoser, 2013 from North-West Australia
    Australasian Journal of Herpetology 5 Australasian Journal of Herpetology 49:5-6. Published 6 August 2020. ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) A new subspecies of Jackyhosersaur Hoser, 2013 from north-west Australia. LSIDURN:LSID:ZOOBANK.ORG:PUB:2877185D-E93C-4040-973C-89657DC512B1 RAYMOND T. HOSER LSID urn:lsid:zoobank.org:author:F9D74EB5-CFB5-49A0-8C7C-9F993B8504AE 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 10 February 2017, Accepted 17 January 2020, Published 6 August 2020. ABSTRACT As part of an ongoing audit of Australian reptiles, specimens of the endemic Western Australian dragon species, Jackyhosersaur superba (Storr, 1974), known to most herpetologists as “Diporiphora superba Storr, 1974” were inspected from all parts of the known range. A population from the Manning Creek Gorge area of the Kimberley in Western Australia were found to be morphologically divergent and so are formally described herein as a new subspecies. Keywords: Lizards; taxonomy; nomenclature; Agamidae; Western Australia; Diporiphora; Jackyhosersaur; superba; newsubspecies; jackyhoserae. INTRODUCTION Jackyhosersaur superba (Storr, 1974) as currently recognized, As stated in the abstract, as part of an ongoing audit of even though all occur within close geographical proximity, being Australian reptiles, specimens of the endemic Western restricted to the high rainfall parts of the West Kimberley Region. Australian dragon species, Jackyhosersaur superba (Storr, Significant is that the species appears to be reasonably 1974) were inspected from all parts of the known range. A common and different populations are in close proximity to one population from the Manning Creek Gorge area of the Kimberley another without obvious biogeographical barriers stopping gene in Western Australia were found to be morphologically divergent flow between them.
    [Show full text]
  • Addo Elephant National Park Reptiles Species List
    Addo Elephant National Park Reptiles Species List Common Name Scientific Name Status Snakes Cape cobra Naja nivea Puffadder Bitis arietans Albany adder Bitis albanica very rare Night adder Causes rhombeatus Bergadder Bitis atropos Horned adder Bitis cornuta Boomslang Dispholidus typus Rinkhals Hemachatus hemachatus Herald/Red-lipped snake Crotaphopeltis hotamboeia Olive house snake Lamprophis inornatus Night snake Lamprophis aurora Brown house snake Lamprophis fuliginosus fuliginosus Speckled house snake Homoroselaps lacteus Wolf snake Lycophidion capense Spotted harlequin snake Philothamnus semivariegatus Speckled bush snake Bitis atropos Green water snake Philothamnus hoplogaster Natal green watersnake Philothamnus natalensis occidentalis Shovel-nosed snake Prosymna sundevalli Mole snake Pseudapsis cana Slugeater Duberria lutrix lutrix Common eggeater Dasypeltis scabra scabra Dappled sandsnake Psammophis notosticus Crossmarked sandsnake Psammophis crucifer Black-bellied watersnake Lycodonomorphus laevissimus Common/Red-bellied watersnake Lycodonomorphus rufulus Tortoises/terrapins Angulate tortoise Chersina angulata Leopard tortoise Geochelone pardalis Green parrot-beaked tortoise Homopus areolatus Marsh/Helmeted terrapin Pelomedusa subrufa Tent tortoise Psammobates tentorius Lizards/geckoes/skinks Rock Monitor Lizard/Leguaan Varanus niloticus niloticus Water Monitor Lizard/Leguaan Varanus exanthematicus albigularis Tasman's Girdled Lizard Cordylus tasmani Cape Girdled Lizard Cordylus cordylus Southern Rock Agama Agama atra Burrowing
    [Show full text]
  • Supplemental Material Conservation Status of the Herpetofauna
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 8(2) [Special Section]: 1–18; S1–S24 (e87). Supplemental Material Conservation status of the herpetofauna, protected areas, and current problems in Valle del Cauca, Colombia 1Alejandro Valencia-Zuleta, Andrés Felipe Jaramillo-Martínez, Andrea Echeverry-Bocanegra, Ron- ald Viáfara-Vega, Oscar Hernández-Córdoba, Victoria E. Cardona-Botero, Jaime Gutiérrez-Zúñiga, and Fernando Castro-Herrera Universidad del Valle, Grupo Laboratorio de Herpetología, Departamento de Biología, Cali, COLOMBIA Citation: Valencia-Zuleta A, Jaramillo-Martínez AF, Echeverry-Bocanegra A, Viáfara-Vega R, Hernández-Córdoba O, Cardona-Botero VE, Gutiérrez- Zúñiga J, Castro-Herrera F. 2014. Conservation status of the herpetofauna, protected areas, and current problems in Valle del Cauca, Colombia. Amphibian & Reptile Conservation 8(2) [Special Section]: 1–18; S1–S24 (e87). Copyright: © 2014 Valencia-Zuleta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCom- mercial-NoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the official and authorized publication sources are recognized and properly credited. The official and authorized publication credit sources, which will be duly enforced, are as follows: official journal title Amphibian & Reptile Conservation; official journal website <amphibian-reptile-conservation.org>. Received: 12 March 2014; Accepted: 24 November 2014; Published: 19 December 2014 Table 1. Taxonomic list of amphibians and reptile of the department of Valle del Cauca (Cardona-B. et al. 2014). Actualization of threat categories based on: IUCN (red list), Red Book of Amphibians (Rueda et al.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Stellio' in Herpetology and a Comment on the Nomenclature and Taxonomy of Agamids of the Genus Agama (Sensu Lato) (Squamata: Sauria: Agamidae)
    ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA 8 (1/2): 3 - 9 Wien, 30. Juli 1995 A brief review of the origin and use of 'stellio' in herpetology and a comment on the nomenclature and taxonomy of agamids of the genus Agama (sensu lato) (Squamata: Sauria: Agamidae) Kurzübersicht über die Herkunft und Verwendung von "stellio" in der Herpetologie und Kommentar zur Nomenklatur und Taxonomie von Agamen, Gattung Agama (sensu lato) (Squamata: Sauria: Agamidae) KLAUS HENLE ABSTRACT The name 'stellio' has received a wide and variable application in herpetology. Its use antedates modern nomenclature. The name was applied mainly to various agamid and gekkonid species. In modern usage, confu- sion exists primarily with its use as a genus, i. e., Siellio. To solve this problem, STEJNEGER (1936) desig- nated Siellio saxatilis of LAURENTI, 1768 which is based on a figure in SEBA (1734) as the type species. This species is unidentifiable. In an unpublished thesis, MOODY (1980) split the genus Agama (s. 1.) into six genera. He overlooked STEJNEGER's (1936) designation and reused Stellio for the stellio-group of agamid lizards. Many authors followed MOODY (1980). Recently, some authors pointed out that Siellio is unavailable but did not fully dis- cuss the implications for agamid nomenclature. It is argued that a satisfactory nomenclature is difficult with current knowledge of agamid taxonomy. It is suggested to restrict Laudakia to L. tuberculata and to use Ploce- denna for the stellio-group (sensu stricto). KURZFASSUNG Der Name "stellio" sah eine breite und vielfältige Verwendung in der Herpetologie, die weit über die moderne Nomenklatur zurückreicht.
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Print This Article
    VOLUME 3 ISSUE 1 DECEMBER 2008 MADAGASCAR CONSERVATION & DEVELOPMENT INVESTING FOR A SUSTAINABLE NATURAL ENVIRONMENT FOR FUTURE GENERATIONS OF HUMANS, ANIMALS AND PLANTS OF MADAGASCAR IN THIS ISSUE Taboos & Social Contracts Bats & Bushmeat in Madagascar Endemic Plants in the Mandena Mining Area Radio for Sustain- able Development MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 3 | ISSUE 1 — DECEMBER 2008 PAGE 2 TABLE OF CONTENTS EDITORIAL 2 Editorial by Wilmé, L. and Waeber, P. O. 5 Foreword by Camara, C. Image in Action 85 Impressum The attachment that we feel to Madagascar compels us to talk ARTICLES about it – its richness, its values, its people and about life lessons 7 Taboos and social contracts: Tools for ecosystem learned and taught. As these experiences may differ in many management – lessons from the Manambolomaty aspects, a journal is the ideal place for sharing our common Lakes RAMSAR site, western Madagascar. Rabearivony J., ideas, as well as expressing our divergent thoughts and theories. Fanameha, E, Mampiandra, J. and Thorstom R. It is also a conduit for the exchange and transmission of our 17 Three flying fox (Pteropodidae: Pteropus rufus) ideas and perspectives to the world. Thus, it is the ambition roosts, three conservation challenges in southeastern of this journal to talk about Madagascar – it’s natural richness Madagascar. Rahaingodrahety, V. N., Andriafidison, D., and its conservation, about development and challenges in the Ratsimbazafy, J., Racey, P. A. and Jenkins, R. K. B. country, and more generally about components and facets of 22 Bats as bushmeat in Madagascar. Jenkins, R. K. B and conservation and development. Racey, P.
    [Show full text]
  • NHBSS 061 1G Hikida Fieldg
    Book Review N$7+IST. BULL. S,$0 SOC. 61(1): 41–51, 2015 A Field Guide to the Reptiles of Thailand by Tanya Chan-ard, John W. K. Parr and Jarujin Nabhitabhata. Oxford University Press, New York, 2015. 344 pp. paper. ISBN: 9780199736492. 7KDLUHSWLOHVZHUHÀUVWH[WHQVLYHO\VWXGLHGE\WZRJUHDWKHUSHWRORJLVWV0DOFROP$UWKXU 6PLWKDQG(GZDUG+DUULVRQ7D\ORU7KHLUFRQWULEXWLRQVZHUHSXEOLVKHGDV6MITH (1931, 1935, 1943) and TAYLOR 5HFHQWO\RWKHUERRNVDERXWUHSWLOHVDQGDPSKLELDQV LQ7KDLODQGZHUHSXEOLVKHG HJ&HAN-ARD ET AL., 1999: COX ET AL DVZHOODVPDQ\ SDSHUV+RZHYHUWKHVHERRNVZHUHWD[RQRPLFVWXGLHVDQGQRWJXLGHVIRURUGLQDU\SHRSOH7ZR DGGLWLRQDOÀHOGJXLGHERRNVRQUHSWLOHVRUDPSKLELDQVDQGUHSWLOHVKDYHDOVREHHQSXEOLVKHG 0ANTHEY & GROSSMANN, 1997; DAS EXWWKHVHERRNVFRYHURQO\DSDUWRIWKHIDXQD The book under review is very well prepared and will help us know Thai reptiles better. 2QHRIWKHDXWKRUV-DUXMLQ1DEKLWDEKDWDZDVP\ROGIULHQGIRUPHUO\WKH'LUHFWRURI1DWXUDO +LVWRU\0XVHXPWKH1DWLRQDO6FLHQFH0XVHXP7KDLODQG+HZDVDQH[FHOOHQWQDWXUDOLVW DQGKDGH[WHQVLYHNQRZOHGJHDERXW7KDLDQLPDOVHVSHFLDOO\DPSKLELDQVDQGUHSWLOHV,Q ZHYLVLWHG.KDR6RL'DR:LOGOLIH6DQFWXDU\WRVXUYH\KHUSHWRIDXQD+HDGYLVHGXV WRGLJTXLFNO\DURXQGWKHUH:HFROOHFWHGIRXUVSHFLPHQVRIDibamusZKLFKZHGHVFULEHG DVDQHZVSHFLHVDibamus somsaki +ONDA ET AL 1RZ,DPYHU\JODGWRNQRZWKDW WKLVERRNZDVSXEOLVKHGE\KLPDQGKLVFROOHDJXHV8QIRUWXQDWHO\KHSDVVHGDZD\LQ +LVXQWLPHO\GHDWKPD\KDYHGHOD\HGWKHSXEOLFDWLRQRIWKLVERRN7KHERRNLQFOXGHVQHDUO\ DOOQDWLYHUHSWLOHV PRUHWKDQVSHFLHV LQ7KDLODQGDQGPRVWSLFWXUHVZHUHGUDZQZLWK H[FHOOHQWGHWDLO,WLVDYHU\JRRGÀHOGJXLGHIRULGHQWLÀFDWLRQRI7KDLUHSWLOHVIRUVWXGHQWV
    [Show full text]