L. Summerera,∗, A. Galvezb, D. Izzoa, F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Back to the the Future? 07> Probing the Kuiper Belt
SpaceFlight A British Interplanetary Society publication Volume 62 No.7 July 2020 £5.25 SPACE PLANES: back to the the future? 07> Probing the Kuiper Belt 634089 The man behind the ISS 770038 Remembering Dr Fred Singer 9 CONTENTS Features 16 Multiple stations pledge We look at a critical assessment of the way science is conducted at the International Space Station and finds it wanting. 18 The man behind the ISS 16 The Editor reflects on the life of recently Letter from the Editor deceased Jim Beggs, the NASA Administrator for whom the building of the ISS was his We are particularly pleased this supreme achievement. month to have two features which cover the spectrum of 22 Why don’t we just wing it? astronautical activities. Nick Spall Nick Spall FBIS examines the balance between gives us his critical assessment of winged lifting vehicles and semi-ballistic both winged and blunt-body re-entry vehicles for human space capsules, arguing that the former have been flight and Alan Stern reports on his grossly overlooked. research at the very edge of the 26 Parallels with Apollo 18 connected solar system – the Kuiper Belt. David Baker looks beyond the initial return to the We think of the internet and Moon by astronauts and examines the plan for a how it helps us communicate and sustained presence on the lunar surface. stay in touch, especially in these times of difficulty. But the fact that 28 Probing further in the Kuiper Belt in less than a lifetime we have Alan Stern provides another update on the gone from a tiny bleeping ball in pioneering work of New Horizons. -
SPACE RESEARCH in POLAND Report to COMMITTEE
SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report -
European Space Camp – 2017
European Space Camp – 2017 Participants Celine Victoria Berg-Hansen From: Norway Description: Hello, my name is Celine and I am from Sortland in Northern Norway. I am 18 years old. When I am not doing homework, I am most likely reading a book or watching Netflix. I have been to the Aurora Space Center on multiple occasions since it is so close to where I live. But I am really excited to go back there for ESC 2017! Roommate description: Celine was an awesome roommate, we got along very well. She is such a sweet and kind person. We were able to have many interesting conversations and coordinated getting up in the morning - not always the nicest task haha. Adrian StokdalOpheim From: Norway Description: Hello! My name is Adrian, i am 18 years old and live just outside the city of Trondheim in the middle of Norway. From a young age i have always been fascinated by space and all its hidden mysteries. Not only space itself, but also rockets, satellites and all of the other technology involved. I also love making things and, using the tools and machines in our garage, i have done a few projects the last couple of years. When i don't do homework/schoolwork i usually spend my time on these projects or outdoors training. I have been doing a sport called "orienteering" since i was eight, and still do my best to acheive the best possible results in competition. Orienteering is a typical scandinavian sport where the goal is to run a course, with several controls, set on a map at the shortest amount of time. -
On Orbital Debris JEFF FOUST, COLLEGE PARK, Md
NOVEMBER 24, 2014 SPOTLIGHT Clyde Space See page 12 www.spacenews.com VOLUME 25 ISSUE 46 $4.95 ($7.50 Non-U.S.) PROFILE/22> YVONNE PENDLETON DIRECTOR, SOLAR SYSTEM EXPLORATION RESEARCH VIRTUAL INSTITUTE INSIDE THIS ISSUE LAUNCH INDUSTRY Swift Development of Ariane 6 Urged Applauding the end of a French-German impasse over the Ariane 6 rocket, the European Satellite Operators Association said the vehicle needs to be in service as quickly as possible. See story, page 8 ATK Hints at Antares Engine Selection Alliant Techsystems Chief Executive Mark DeYoung said there are no near-term liquid- propulsion alternatives to Russian engines for U.S. rockets. See story, page 6 ESA PHOTO Virginia May Seek Federal Funds for Wallops > “We have found a compromise that is OK for both countries, for the other participating states and also for industry,” Brigitte Zypries (above), Germany’s Virginia’s two U.S. senators said they may seek federal funds to cover $20 million in repairs to the space minister, said of an agreement under which Germany and France will back the Ariane 6 rocket and scrap the Ariane 5 Midlife Evolution. Wallops Island launch pad damaged when Orbital Sciences’ Antares exploded. See story, page 6 MILITARY SPACE Protected Tactical Waveform Taking Shape German-French Compromise The U.S. Air Force is expected to demonstrate its protected tactical waveform in new modems and reworked terminals as early as 2018. See story, page 11 U.S. To Grant Indirect Access to Space Fence Paves Direct Path to Ariane 6 The Pentagon’s international space surveillance partners will have indirect access to data from the Air Force’s next-generation Space Fence tracking system. -
MT Aerospace (Germany)
https://ntrs.nasa.gov/search.jsp?R=20080014278 2019-08-30T04:19:50+00:00Z European Directions for Hypersonic Thermal Protection Systems and Hot Structures 31st Annual Conference on Composites Materials and Structures Daytona Beach, FL January 22, 2007 David E. Glass NASA Langley Research Center, Hampton, VA 23681 Approved for Public Release, Distribution Unlimited Agenda ♦ Background • Comments on prior ESA workshop • X-38 • Hopper ♦ Flight Vehicle Based Technology Development • IXV (ESA) • EXPERT (ESA) • USV (Italy) • SHEFEX (Germany) • SHyFE (UK) • LEA (France) • Foton (Russia) ♦ Non-Vehicle Specific Technology ♦ Concluding Remarks 2 European TPS and Hot Structures Research and Development ♦TPS and hot structures research and development critical for future space vehicles ♦Developing next generation TPS and hot structures technology (not Space Shuttle derived technology) ♦Long-term funding based on technology needs ♦Wide industry support and commitment to X-38 program ♦Test facilities developed for TPS and hot structures development • Thermal/structural test chamber • Arc-jet tunnels developed in recent years ♦Technology development has broad base • Fabrication • Testing • Large components • Fasteners • Bearings • Oxidation protection • Damage repair • Life cycle Wayne Sawyer comments from previous ESA TPS & Hot Structures Workshop 3 European TPS and Hot Structures Research and Development ♦ Proposing numerous experimental launch vehicles dedicated to or with TPS and hot structures research of prime consideration ♦ Committing significant -
Mission Analysis and Preliminary Re-Entry Trajectory Design of the DLR Reusability Flight Experiment Refex
8TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Mission Analysis and Preliminary Re-entry Trajectory Design of the DLR Reusability Flight Experiment ReFEx Sven Stappert*, Peter Rickmers*, Waldemar Bauer*, Martin Sippel* *German Aerospace Center (DLR), Institute of Space Systems, Robert-Hooke-Straße 7, 28359 Bremen [email protected], [email protected], [email protected], [email protected] Abstract Driven by the recently increased demand for investigating reusable launchers, the German Aerospace Center (DLR) is currently developing the Reusability Flight Experiment (ReFEx). The goal is to demonstrate the capability of performing an atmospheric re-entry, representative of a possible future winged reusable stage, and to develop and test key technologies for such reusable stages. The flight demonstrator ReFEx shall perform a controlled and autonomous re-entry from hypersonic velocity of approximately Mach 5 down to subsonic velocity after separation from the VSB-30 booster. The focus of this paper is the re-entry trajectory design for the ReFEx mission. Abbreviations AoA Angle of Attack AVS Avionics BC Ballistic Coefficient BoGC Begin of Guided Control CALLISTO Cooperative Action Leading to Launcher Innovation in Stage Tossback Operation DOF Degree of Freedom ELV Expendable Launch Vehicle EoE End Of Experiment GNC Guidance, Navigation and Control L/D Lift-to-Drag Ratio FPA Flight Path Angle LFBB Liquid Fly-Back Booster MECO Main Engine Cut-Off RCS Reaction Control System RLV Reusable Launch Vehicle TOSCA Trajectory Optimization and Simulation of Conventional and Advanced Spacecraft VTHL Vertical Takeoff, Horizontal Landing VTVL Vertical Takeoff, Vertical Landing 1. Introduction The recent successes of the emerging private space companies SpaceX and Blue Origin in landing, recovering and relaunching reusable first stages have demonstrated the possibility of building reliable and competitive reusable first stages. -
Jacques Tiziou Space Collection
Jacques Tiziou Space Collection Isaac Middleton and Melissa A. N. Keiser 2019 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Biographical / Historical.................................................................................................... 1 Scope and Contents........................................................................................................ 2 Arrangement..................................................................................................................... 2 Names and Subjects ...................................................................................................... 2 Container Listing ............................................................................................................. 4 Series : Files, (bulk 1960-2011)............................................................................... 4 Series : Photography, (bulk 1960-2011)................................................................. 25 Jacques Tiziou Space Collection NASM.2018.0078 Collection Overview Repository: National Air and Space Museum Archives Title: Jacques Tiziou Space Collection Identifier: NASM.2018.0078 Date: (bulk 1960s through -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 1 January–April 2019 CONTENTS SPACE POLICY AND PROGRAMMES .................................................................................... 1 Focus .................................................................................................................... 1 Europe ................................................................................................................... 4 11TH European Space Policy Conference ......................................................................... 4 EU programmatic roadmap: towards a comprehensive Regulation of the European Space Programme 4 EDA GOVSATCOM GSC demo project ............................................................................. 5 Programme Advancements: Copernicus, Galileo, ExoMars ................................................... 5 European Space Agency: partnerships continue to flourish................................................... 6 Renewed support for European space SMEs and training ..................................................... 7 UK Space Agency leverages COMPASS project for international cooperation .............................. 7 France multiplies international cooperation .................................................................... 7 Italy’s PRISMA pride ................................................................................................ 8 Establishment of the Portuguese Space Agency: Data is King ................................................ 8 Belgium and Luxembourg -
Electric Propulsion: a Key Enabling Technology for Planetary Exploration*
Electric Propulsion: A Key Enabling Technology for Planetary Exploration* A White Paper for the Planetary Science and Astrobiology Decadal Survey 2023-2032 Jay Polk, Jet Propulsion Laboratory, California Institute of Technology [email protected], 818-281-1094 George Soulas, NASA Glenn Research Center [email protected], 216-977-7419 Andy Hoskins, Aerojet Rocketdyne [email protected], 425-945-6362 *The information presented in this white paper about future mission concepts and power systems is pre- decisional and is provided for planning and discussion purpose only. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). 1 Abstract. Electric propulsion is now widely accepted by industry, with over 900 operational spacecraft using electric thrusters as of June 30, 2020. Electric propulsion provides dramatic reductions in propellant mass which can enable many demanding mission concepts to meet their scientific and operational goals. It has already proven to be a critical enabling technology on science missions such as Dawn, Hayabusa I and II, and BepiColombo and is the key to making missions in development like Psyche and a potential Mars Sample Return possible. These examples show that electric propulsion can enable the use of smaller launch vehicles, provide mass margins that make missions much more robust, yield much greater flexibility in launch dates, reduce the number of critical events, and, in some cases, reduce trip times by eliminating the need for gravity assists. Electric propulsion systems developed by industry for commercial spacecraft and NASA- developed technologies for higher power and specific impulse support current mission applications, but ensuring that electric propulsion can meet the demands of future missions requires continued investment by NASA. -
Multidisciplinary Design Optimization of Launch Vehicles Mathieu Balesdent
Multidisciplinary Design Optimization of Launch Vehicles Mathieu Balesdent To cite this version: Mathieu Balesdent. Multidisciplinary Design Optimization of Launch Vehicles. Optimization and Control [math.OC]. Ecole Centrale de Nantes (ECN), 2011. English. tel-00659362 HAL Id: tel-00659362 https://tel.archives-ouvertes.fr/tel-00659362 Submitted on 12 Jan 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÉCOLE DOCTORALE SCIENCES POUR L’INGÉNIEUR, GÉOSCIENCES, ARCHITECTURE École Centrale de Nantes Année 2011 Thèse de Doctorat Spécialité : Génie Mécanique présentée et soutenue publiquement par Mathieu BALESDENT le 3 novembre 2011 à l’Office National d’Etudes et de Recherches Aérospatiales OPTIMISATION MULTIDISCIPLINAIRE DE LANCEURS (Multidisciplinary Design Optimization of Launch Vehicles) JURY Président : Jean-Antoine Désidéri Directeur de Recherche, INRIA Rapporteurs : David Bassir Docteur, HDR, Université de Technologie de Belfort-Montbéliard Attaché pour la Science et la Technologie, Ministère des Affaires Etrangères Patrick Siarry Professeur, Université Paris-Est Créteil Val-de-Marne Examinateurs : Philippe Dépincé Professeur, Ecole Centrale de Nantes Michèle Lavagna Associate Professor, Politecnico di Milano Rodolphe Le Riche Docteur, HDR, CNRS - Ecole des Mines de Saint-Etienne Invités : Nicolas Bérend Ingénieur, Onera Julien Laurent-Varin Docteur, CNES Directeur de thèse : Philippe DÉPINCÉ Encadrant Onera : Nicolas BÉREND Laboratoires : Office National d’Etudes et de Recherches Aérospatiales Institut de Recherche en Communications et Cybernétique de Nantes N◦ E.D. -
Norway in Space
50 years Norway as a space nation 50 years as a space nation Contents Norway in space 4 Young rocket scientists on Andøya 36 First blast off 6 Leading the world in satellite communications 37 Our unknown multi-talent 10 Vital satellite navigation 42 The European road to space 13 Norway's eye in space 46 The space industry: innovative and traditional 16 At the top of the world 50 Earth watchers 20 To Mars from Svalbard 54 A place in the sun 27 Working in the space industry 58 The Norwegian northern lights pioneers 32 Europe's new time machine 60 Lasers in the night 34 CoveR PHoto: KolBJØRN DAHLE 50 years P H We are entitled to get excited now that we're celebrating oto Norway's 50th anniversary as a space nation We are : TRU entitled to be proud of the fact that the first rocket has been de E as a space nation N followed by more than a thousand others We are entitled G to be pleased with the sound scientific, commercial and societal expertise we have built up in space technology over the course of these 50 years Things have turned out very differently from what we envisaged when Ferdinand was launched in the 1960s We were very optimistic about space travel then, and many people believed that it was only a question of a few decades before we made it to Mars We envisaged a permanent set- tlement on the moon and that hotel breaks orbiting the Earth would soon become a holiday option There has been incredible development, but in a com- pletely different direction than into space What has actu- ally happened is that space technology has become -
1 the Lifecycle of Hollows on Mercury
The Lifecycle of Hollows on Mercury: An Evaluation of Candidate Volatile Phases and a Novel Model of Formation. 1 1 2 3 M. S. Phillips , J. E. Moersch , C. E. Viviano , J. P. Emery 1Department of Earth and Planetary Sciences, University of Tennessee, Knoxville 2Planetary Exploration Group, Johns Hopkins University Applied Physics Laboratory 3Department of Astronomy and Planetary Sciences, Northern Arizona University Corresponding author: Michael Phillips ([email protected]) Keywords: Mercury, hollows, thermal model, fumarole. Abstract On Mercury, high-reflectance, flat-floored depressions called hollows are observed nearly globally within low-reflectance material, one of Mercury’s major color units. Hollows are thought to be young, or even currently active, features that form via sublimation, or a “sublimation-like” process. The apparent abundance of sulfides within LRM combined with spectral detections of sulfides associated with hollows suggests that sulfides may be the phase responsible for hollow formation. Despite the association of sulfides with hollows, it is still not clear whether sulfides are the hollow-forming phase. To better understand which phase(s) might be responsible for hollow formation, we calculated sublimation rates for 57 candidate hollow-forming volatile phases from the surface of Mercury and as a function of depth beneath regolith lag deposits of various thicknesses. We found that stearic acid (C18H36O2), fullerenes (C60, C70), and elemental sulfur (S) have the appropriate thermophysical properties to explain hollow formation. Stearic acid and fullerenes are implausible hollow-forming phases because they are unlikely to have been delivered to or generated on Mercury in high enough volume to account for hollows.