(Hymenoptera: Eulophidae) Recovered from Leptocybe Invasa

Total Page:16

File Type:pdf, Size:1020Kb

(Hymenoptera: Eulophidae) Recovered from Leptocybe Invasa Selitrichodes neseri (Hymenoptera: Eulophidae) recovered from Leptocybe invasa (Hymenoptera: Eulophidae) galls after initial release on Eucalyptus (Myrtaceae) in Brazil, and data on its biology Marcus V. Masson1, Wagner de S. Tavares1,*, Fabricio de A. Lopes1, Amanda R. de Souza2, Pedro J. Ferreira-Filho3, Leonardo R. Barbosa4, Carlos F. Wilcken2, and José C. Zanuncio5 Abstract Blue gum chalcid, Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae), causes galling damage to Eucalyptus species (Myrtaceae) in various regions of the world, but has been controlled effectively by its primary parasitoid, Selitrichodes neseri Kelly & La Salle (Hymenoptera: Eulophidae). The objectives of this study were to evaluate the recovery of S. neseri after its initial release on Eucalyptus plants in Brazil and to provide data on its biology. Selitrichodes neseri was imported from South Africa to Brazil for the biological control of L. invasa, in Mar 2015, and recovered from Aug 2015 to Dec 2016. Successful recovery of this parasitoid shows its potential to become established in the field. Seedlings of 2 hybrids obtained from crosses between rose gum Eucalyptus grandis W. Hill. ex Maiden and flooded gum Eucalyptus urophylla S. T. Blake and between Eucalyptus sp. and (river red gum Eucalyptus camaldulensis Dehnh. × E. grandis) showed potential as hosts for culture of S. neseri on L. invasa in the laboratory because up until the adult parasitoid emergence these seedlings did not wilt. When reared at 25.1 to 26.0 °C, the total number of parasitoids and the proportion of male parasitoids were highest, relative to hosts reared at 26.1 to 27.0 °C. Peak emergence ofS. neseri occurred 28 d after parasitism. Key Words: emergence; exotic pest; gall wasp; parasitoid; South Africa Resumo Vespa-da-galha, Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae), causa galhas danosas às espécies de Eucalyptus (Myrtaceae) em várias regiões do mundo, mas tem sido efetivamente controlada por seu parasitoide primário,Selitrichodes neseri Kelly & La Salle (Hymenoptera: Eu- lophidae). Os objetivos deste estudo foram avaliar a recuperação deS. neseri após sua liberação inicial em plantas de Eucalyptus no Brasil e fornecer dados sobre sua biologia. Selitrichodes neseri foi importado da África do Sul para o Brasil para o controle biológico de L. invasa em março de 2015 e recuperado de agosto de 2015 a dezembro de 2016. Recuperação com sucesso deste parasitoide mostra seu potencial para se tornar estabelecido no campo. Mudas de 2 híbridos obtidos a partir dos cruzamentos Eucalyptus grandis W. Hill. ex Maiden and Eucalyptus urophylla S. T. Blake e entre Eucalyptus sp. e (Eucalyptus camaldulensis Dehnh. × E. grandis) mostraram potencial como hospedeiro para se criar S. neseri em L. invasa em labora- tório porque até a emergência do parasitoide adulto essas mudas não murcharam. Quando criado de 25,1 a 26,0 °C, o número total de parasitoides e a proporção de parasitoides machos foram maiores, relativo aos hospedeiros criados de 26,1 a 27,0 °C. O pico de emergência de S. neseri ocorreu aos 28 dias após parasitismo. Palavras Chave: emergência; praga exótica; vespa-da-galha; parasitoide; África do Sul Mated Selitrichodes neseri Kelly & La Salle (Hymenoptera: Eulo- the biological control of L. invasa (Kelly et al. 2012). In South Africa, S. phidae: Tetrastichinae) females parasitize mature larvae and newly neseri is maintained by the Tree Protection Co-operative Programme of formed pupae in galls caused by the blue gum chalcid, Leptocybe the Forestry and Agricultural Biotechnology Institute at the University invasa Fisher & La Salle (Hymenoptera: Eulophidae: Tetrastichinae), in of Pretoria in partnership with the Biological Control of Eucalypt Pests eucalyptus plants, Eucalyptus (Myrtaceae) (Kelly et al. 2012). Selitrich- program. odes neseri was collected in Australia, where it is native, in 2010 and Galls caused by L. invasa and bearing larvae parasitized byS. neseri reared in quarantine in South Africa, where it has been released for were sent on 26 Mar 2015 to the “Laboratório de Quarentena Costa 1Bahia Specialty Cellulose/Copener Florestal Ltda., rua Dr. José Tiago Correa, s/n, bairro Alagoinhas Velha, 48030-480, Alagoinhas, Bahia, Brasil; E-mail: [email protected] (M. V. M.), [email protected] (W. de S. T.), [email protected] (F. de A. L.) 2Departamento de Proteção Vegetal, Universidade Estadual Paulista “Júlio de Mesquita Filho”, 18603-970, Botucatu, São Paulo, Brasil; E-mail: [email protected] (A. R. de S.), [email protected] (C. F. W.) 3Departamento de Ciências Ambientais, Universidade Federal de São Carlos, 18052-780, Sorocaba, São Paulo, Brasil; E-mail: [email protected] (P. J. F.-F.) 4Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Florestas, 83411-000, Colombo, Paraná, Brasil; E-mail: [email protected] (L. R. B.) 5Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil; E-mail: [email protected] (J. C. Z.) *Corresponding author; E-mail: [email protected] (W. de S. T.) 2017 — Florida Entomologist — Volume 100, No. 3 589 590 2017 — Florida Entomologist — Volume 100, No. 3 Lima” of the “Embrapa Meio Ambiente” in Jaguariúna, São Paulo State, of 74.18 ha. Leptocybe invasa has been present at this location since Brazil, where they remained in quarantine to prevent the introduc- 2012. tion of other exotic agents, including bacteria, fungi, mites, and other insects, into Brazil. Selitrichodes neseri was imported according to RECOVERY OF SELITRICHODES NESERI EMERGING FROM LEP- protocols of the Brazilian “Ministério da Agricultura, Pecuária e Abas- tecimento”, as part of the “Projeto Cooperativo de Manejo de Pragas TOCYBE INVASA GALLS COLLECTED IN THE FIELD Exóticas do Eucalipto” of the “Programa Cooperativo em Proteção Flo- Recovery of S. neseri was evaluated monthly from Aug 2015 to Dec restal” at the “Instituto de Pesquisas e Estudos Florestais.” Emerged 2016, with 6 branches (approximately 50 cm length) of a eucalyptus parasitoids were sent to the “Laboratório de Controle Biológico de Pra- tree infested by L. invasa galls bagged individually within an organza gas Florestais” of the “Universidade Estadual Paulista Júlio de Mesquita fabric bag (20 cm width × 40 cm length). Trees within the stand where Filho” in Botucatu, São Paulo State, Brazil, where they were raised on S. neseri were released showed a high incidence of galling and drying L. invasa galls in seedlings of a cross between rose gum Eucalyptus of the upper third of the tree canopy due to the high level of L. invasa grandis W. Hill. ex Maiden (Myrtaceae) and river red gum Eucalyptus infestation. Pure honey was placed on the edge of the bags as food for camaldulensis Dehnh. (Myrtaceae), clone 3025, at 26 ± 2 °C, 60 ± 10% the collected insects (S. neseri and L. invasa). The numbers of S. neseri RH, and a 12:12 h L:D photoperiod. and L. invasa individuals inside these bags were evaluated visually 2 d The population dynamics of natural predators often mirrors that after being installed in the field without removal of the branches. of their prey (Bjorksten et al. 2005; Ferreira-Filho et al. 2008). Thus, these biological agents have the greatest potential for successful bio- ADEQUACY OF EUCALYPTUS HYBRIDS FOR CULTURE OF SELIT- logical control when released in the field at the beginning of pest out- breaks (Huber et al. 2006). Selitrichodes neseri is a specialist L. invasa RICHODES NESERI IN THE LABORATORY, AND NOTES ON S. NE- parasitoid and therefore does not attack other insect species (Dittrich- SERI BIOLOGY Schröder et al. 2014). Mass rearing of S. neseri is important for L. invasa Three S. neseri females and 1 male were placed in each wood- biological control programs, and knowledge of this parasitoid’s biology framed cage sealed with screen on the sides and with glass on the top could assist with large-scale production and release in the field (Kelly (45 cm length × 50 cm width × 80 cm height) with 3 potted eucalyptus et al. 2012). The objectives of this study were to evaluate the recovery seedlings infested by L. invasa galls. Potted eucalyptus seedlings with and establishment of S. neseri in L. invasa galls after its initial release galls exposed to parasitoids were placed in other cages after 2 d of ex- on Eucalyptus plants in Brazil and to provide data on its biology. posure to parasitoids until the emergence of parasitoids or gall wasps. The same 3 female and 1 male parasitoids received 3 other potted eu- calyptus seedlings (same hybrid) with L. invasa galls for parasitism for Materials and Methods an additional 2 d. One assay with the hybrid E. grandis × E. uropylla and a second assay with the hybrid Eucalyptus sp. × (E. camaldulensis × E. grandis) separated by cages were used per tested temperature. RECEIVING AND MAINTAINING SELITRICHODES NESERI Drying out and mortality of eucalyptus seedlings were evaluated ADULTS IN THE LABORATORY daily for each hybrid through visual observation and counting the num- Sixty S. neseri adults (41 females and 19 males) were brought to ber of emerged insects (S. neseri and L. invasa). The generation time the “Laboratório de Proteção Florestal” of the “Bahia Specialty Cellu- from parasitism to emergence and the adult longevity ofS. neseri were lose/Copener Florestal Ltda.” in Alagoinhas, Bahia State, Brazil, on 1 Jul also evaluated. The emergence of adults and rate of parasitism were 2015. We placed 21 females and 7 males of the 60 parasitoids in wood- evaluated in separate rooms at 24.0 to 25.0, 25.1 to 26.0, 26.1 to 27.0, framed cages sealed with screen on the sides and with glass on the top 27.1 to 28.0, 28.1 to 29.0, and 29.1 to 30 °C with a constant RH and (45 cm length × 50 cm width × 80 cm height).
Recommended publications
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • Redalyc.Distribution and Host Records of Melittobia (Hymenoptera: Eulophidae) from Mexico
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México González, Jorge M.; Matthews, Robert W.; Bradleigh Vinson, S. Distribution and host records of Melittobia (Hymenoptera: Eulophidae) from Mexico Revista Mexicana de Biodiversidad, vol. 79, núm. 2, diciembre, 2008, pp. 529-531 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42511935026 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 79: 529- 531, 2008 Nota Científi ca Distribution and host records of Melittobia (Hymenoptera: Eulophidae) from Mexico Distribución y huéspedes de Melittobia (Hymenoptera: Eulophidae) en México Jorge M. González1*, Robert W. Matthews2 and S. Bradleigh Vinson1 1Texas A & M. University, Department of Entomology, Entomology Research Laboratory, College Station, Texas 77843-2475, USA. 2University of Georgia, Department of Entomology, Athens, Georgia 30602, USA. *Correspondent: [email protected] Abstract. Specimens of a parasitoid wasp attacking pupae of Anastrepha ludens (Loew) in Mexico were identifi ed as Melittobia digitata Dahms, and after a revision of several worldwide insect collections, M. australica Girault was also found to be present in Mexico. Distribution, diagnosis, hosts and collection locations are given for both species. The possibility that M. acasta (Walker) is also present in Mexico is discussed. Key words: Eulophidae, Melittobia australica, M. digitata, M. acasta, Anastrepha ludens, Mexico, distribution. Resumen. Se identifi caron como Melittobia digitata Dahms ejemplares de un parasitoide atacando pupas de Anastrepha ludens (Loew) proveniente de México.
    [Show full text]
  • The Entomofauna on Eucalyptus in Israel: a Review
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 116: 450–460, 2019 http://www.eje.cz doi: 10.14411/eje.2019.046 REVIEW The entomofauna on Eucalyptus in Israel: A review ZVI MENDEL and ALEX PROTASOV Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Rishon LeTzion 7528809, Israel; e-mails: [email protected], [email protected] Key words. Eucalyptus, Israel, invasive species, native species, insect pests, natural enemies Abstract. The fi rst successful Eucalyptus stands were planted in Israel in 1884. This tree genus, particularly E. camaldulensis, now covers approximately 11,000 ha and constitutes nearly 4% of all planted ornamental trees. Here we review and discuss the information available about indigenous and invasive species of insects that develop on Eucalyptus trees in Israel and the natural enemies of specifi c exotic insects of this tree. Sixty-two phytophagous species are recorded on this tree of which approximately 60% are indigenous. The largest group are the sap feeders, including both indigenous and invasive species, which are mostly found on irrigated trees, or in wetlands. The second largest group are wood feeders, polyphagous Coleoptera that form the dominant native group, developing in dying or dead wood. Most of the seventeen parasitoids associated with the ten invasive Eucalyptus-specifi c species were introduced as biocontrol agents in classical biological control projects. None of the polyphagous species recorded on Eucalyptus pose any threat to this tree. The most noxious invasive specifi c pests, the gall wasps (Eulophidae) and bronze bug (Thaumastocoris peregrinus), are well controlled by introduced parasitoids.
    [Show full text]
  • First Report of Leptocybe Invasa Fischer & Lasalle
    ISSN 1519-6984 (Print) ISSN 1678-4375 (Online) THE INTERNATIONAL JOURNAL ON NEOTROPICAL BIOLOGY THE INTERNATIONAL JOURNAL ON GLOBAL BIODIVERSITY AND ENVIRONMENT Notes and Comments First Report of Leptocybe invasa Fischer & LaSalle (Hymenoptera: Eulophidae) in the southern Tocantins, Brazil R. A. Sarmentoa* , M. I. Sarmentoa , R. S. da Silvab and R. Afonsoa a Universidade Federal do Tocantins – UFT, Programa de Pós-graduação em Ciências Florestais e Ambientais, Gurupi, TO, Brasil b Universidade Federal dos Vales do Jequitinhonha e Mucuri – UFVJM, Programa de Pós-graduação em Produção Vegetal, Diamantina, MG, Brasil The eucalyptus gall wasp, Leptocybe invasa Middle East, and Europe. This study aimed to report the presence Fischer & LaSalle (Hymenoptera: Eulophidae), causes severe of L. invasa in southern Tocantins state within central Brazil. damage to susceptible plants of the genera Eucalyptus L’Hér. The pest was first observed infesting plants in a commercial and Corymbia K.D. Hill & L.A.S. Johnson, in which it induces plantation of Eucalyptus clones (VS058) from the crossbreeding galls in the midribs and petioles of young leaves and in the of Eucalyptus tereticornis Sm. × Eucalyptus camaldulensis Dehnh., internodes of branch apices. Even though the insect attacks located in the municipality of Peixe, Tocantins (12.052696ºS, 48.550525°W). This initial infestation was detected in an area trees of all ages, the infestations are generally more severe of 180 ha, where it spreaded quickly to neighboring plantations, in nursery seedlings and young plantations (1–3 years old) reaching an area of 3000 ha planted with clones from the than in older plantations (Wylie and Speight 2012), and the crossbreeding mentioned above.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS KENYA January 2007 Forest Resources Development Service Working Paper FBS/20E Forest Management Division FAO, Rome, Italy Forestry Department DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Kenya. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). Overview of forest pests - Kenya TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • I EFFECTS of EUCALYPTUS GALL WASP, Leptocybe Invasa
    i EFFECTS OF EUCALYPTUS GALL WASP, Leptocybe invasa (HYMENOPTERA: EULOPHIDAE) ON GROWTH AND WOOD BASIC DENSITY OF SOME EUCALYPTUS SPECIES, TANZANIA REVOCATUS PETRO A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF SOKOINE UNIVERSITY OF AGRICULTURE. MOROGORO, TANZANIA. 2015 ii EXTENDED ABSTRACT Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae), also known as Blue Gum Chalcid (BGC) is native to Australia. The pest was first recorded in the Mediterranean region in 2000 causing severe injury to young foliage of Eucalyptus camaldulensis by inducing galls mainly on growing shoots. The pest was first reported in Tanzania in 2005 and has recently become a problem by infesting a range of commercially grown Eucalyptus species. The purpose of this study was to determine infestation density and assess the effects of L. invasa on growth, biomass production and wood basic density of some Eucalyptus species in Tanzania. Results showed that, trees in the Coastal were more infested, followed by Plateaux while trees in the Southern highlands agro-ecological zone were least infested. Eucalyptus tereticornis was more infested followed by E. camaldulensis while E. saligna was the least infested. Eucalyptus citriodora and E. grandis were not infested. The mean Dbh of infested trees were reduced by 7.8%, 2.1% and 13.6% and mean heights were reduced by 6.6%, 9.5% and 3.8% compared to uninfested ones for E. camaldulensis, E. tereticornis and E. saligna respectively. The mean basal area of infested trees were reduced by 16.4%, 17.1% and 24.5% and mean volume were reduced by 17.8%, 16.1% and 23.1% for E.
    [Show full text]
  • Zootaxa, a New Genus and Species of Tetrastichinae (Hymenoptera: Eulophidae)
    Zootaxa 1745: 63–68 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A new genus and species of Tetrastichinae (Hymenoptera: Eulophidae) inducing galls in seed capsules of Eucalyptus IL-KWON KIM & JOHN LA SALLE CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia School of Botany and Zoology; The Australian National University, Canberra, ACT, 0200, Australia. E-mail: [email protected] Abstract Leprosa milga Kim & La Salle gen. & sp. nov. (Hymenoptera: Eulophidae: Tetrastichinae) is described from Eucalyptus seed capsules. The new species is an Australian seed gall inducer which has become established in South Africa and Italy. The relationship of Leprosa to two other genera of seed gall inducing tetrastichines, Quadrastichodella and Moona, is discussed. Key words: Tetrastichinae, Leprosa, Quadrastichodella, Moona, Eucalyptus Introduction Most members of Tetrastichinae are known to be entomophagous as primary or hyper parasitoids on a wide variety of insects, as well as a few other arthropod hosts, including even spider egg sacs and nematodes (La Salle 1994). However, several species are known to be phytophagous, and these include gall inducers (La Salle 2005). Within Australia, tetrastichine gall-inducers mainly attack Eucalyptus, and a few other Myrta- ceae, and can induce galls on twigs, leaves, flower buds and seeds (Bouček 1988; Headrick et al. 1995; Noyes 2002, 2003; Kim et al. 2004; Kim et al. 2005; La Salle 2005). The vast majority of Australian tetrastichines are parasitoids, and many of them are associated with galls as inquilines or parasitoids (Bouček, 1988; La Salle 2005).
    [Show full text]
  • Sensory Gene Identification in the Transcriptome of the Ectoparasitoid
    www.nature.com/scientificreports OPEN Sensory gene identifcation in the transcriptome of the ectoparasitoid Quadrastichus mendeli Zong‑You Huang, Xiao‑Yun Wang, Wen Lu & Xia‑Lin Zheng* Sensory genes play a key role in the host location of parasitoids. To date, the sensory genes that regulate parasitoids to locate gall‑inducing insects have not been uncovered. An obligate ectoparasitoid, Quadrastichus mendeli Kim & La Salle (Hymenoptera: Eulophidae: Tetrastichinae), is one of the most important parasitoids of Leptocybe invasa, which is a global gall‑making pest in eucalyptus plantations. Interestingly, Q. mendeli can precisely locate the larva of L. invasa, which induces tumor‑like growth on the eucalyptus leaves and stems. Therefore, Q. mendeli–L. invasa provides an ideal system to study the way that parasitoids use sensory genes in gall‑making pests. In this study, we present the transcriptome of Q. mendeli using high‑throughput sequencing. In total, 31,820 transcripts were obtained and assembled into 26,925 unigenes in Q. mendeli. Then, the major sensory genes were identifed, and phylogenetic analyses were performed with these genes from Q. mendeli and other model insect species. Three chemosensory proteins (CSPs), 10 gustatory receptors (GRs), 21 ionotropic receptors (IRs), 58 odorant binding proteins (OBPs), 30 odorant receptors (ORs) and 2 sensory neuron membrane proteins (SNMPs) were identifed in Q. mendeli by bioinformatics analysis. Our report is the frst to obtain abundant biological information on the transcriptome of Q. mendeli that provided valuable information regarding the molecular basis of Q. mendeli perception, and it may help to understand the host location of parasitoids of gall‑making pests.
    [Show full text]
  • Csl Pest Risk Analysis for Ophelimus Maskelli Stage 1
    CSL Pest Risk Analysis for Ophelimus maskelli copyright CSL, 2007 CSL PEST RISK ANALYSIS FOR OPHELIMUS MASKELLI STAGE 1: PRA INITIATION 1. What is the name of the pest? Ophelimus maskelli (Ashmead, 1900) Hymenoptera Eulophidae A gall wasp of Eucalyptus Notes on taxonomy: Originally described as Pteroptrix maskelli by Ashmead in 1900, this organism was reclassified within the primitive Genus Ophelimus as part of the extensive revision of Australasian Chalcidoidea by Boucek (1988). The biology and taxonomy of Ophelimus is little studied and poorly known. Ophelimus is a very large genus with lots of undescribed species and no one has produced a key to species (Protasov et al., 2007). Specimens found spreading around the Mediterranean previously identified as O. eucalypti (e.g. Viggiani & Nicotina, 2001) are actually O. maskelli (Tilbury & Jukes, 2006; Protasov et al., 2007). 2. What is the reason for the PRA? In November 2004, Eucalyptus trees at a retail plant nursery in Yorkshire were found to have leaves infested with galls, suspected as either O. eucalypti, O. maskelli or Leptocybe invasa. Since no adults were present with the sample, the diagnosis could not be taken further (CSL unpublished data). In April 2005 a species of gall-causing eulophid wasp, new to the UK, was found in private gardens in London (Lambeth and Wimbledon) (Tilbury & Jukes, 2006). The identity of the organism has not been confirmed but it is very similar to O. maskelli and it could be an intraspecific variant of O. maskelli or an undescribed species of Ophelimus1. This PRA assumes that the organism in London will be confirmed as O.
    [Show full text]
  • Establishment of Parasitoids of the Lily Leaf Beetle in North America
    Environmental Entomology, 2017, 1–11 doi: 10.1093/ee/nvx049 Biological Control - Parasitoids and Predators Research Establishment of Parasitoids of the Lily Leaf Beetle (Coleoptera: Chrysomelidae) in North America Lisa Tewksbury,1,2 Richard A. Casagrande,1 Naomi Cappuccino,3 and Marc Kenis4 1Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881 ([email protected]; [email protected]), 2Corresponding author, e-mail: [email protected], 3Department of Biology, Carleton University, Ottawa, ON K1S 5B6 ([email protected]), and 4CABI, Dele´mont, CH 2800, Switzerland ([email protected]), Subject Editor: James Nechols Received 15 September 2016; Editorial decision 30 January 2017 Abstract Three larval parasitoids were imported from Europe to control the lily leaf beetle, Lilioceris lilii Scopoli (Coleoptera: Chrysomelidae), an accidentally introduced herbivore of native and cultivated lilies in North America. Tetrastichus setifer Thomson (Hymenoptera: Eulophidae) was introduced in Massachusetts in 1999, and was found to be established there in 2002. Subsequent releases of T. setifer were made and two additional parasitoids, Lemophagus errabundus Szepligeti (Hymenoptera: Ichneumonidae) and Diaparsis jucunda (Holmgren) (Hymenoptera: Ichneumonidae), were introduced. The establishment and distribution of the three parasitoids was evaluated through 2016. Tetrastichus setifer is now established in Massachusetts, Rhode Island, New Hampshire, Maine, Connecticut, and Ontario, Canada. Lemophagus errabundus is established in Massachusetts and Rhode Island, and D. jucunda is established in Massachusetts, Rhode Island, Connecticut, and Maine. All three parasitoids have spread at least 10 km from release sites. The establishment of T. setifer is associated with a substantial reduction of L. lilii. In time it is likely that the parasitoids will spread throughout the North American range of L.
    [Show full text]
  • Eucalyptus Infestation by Leptocybe Invasa in Uganda
    Eucalyptus infestation by Leptocybe invasa in Uganda Philip Nyeko1*, Eston K. Mutitu2 and Roger K. Day3 1Department of Forest Biology and Ecosystems Management, Faculty of Forestry and Nature Conservation, Makerere University, PO Box 7062, Kampala, Uganda, 2Kenya Forestry Research Institute (KEFRI), PO Box 20412, 00200 Nairobi and 3CAB International Africa Regional Centre, PO Box 633, 00621 Nairobi, Kenya plus fraıˆches et plus humides. Il y avait des relations Abstract ne´gatives directes entre l’altitude et l’infestation des espe`- Very little is known about Leptocybe invasa Fisher & LaSalle, ces d’eucalyptus par L. invasa. On n’a observe´ aucune a new fast-spreading alien pest infesting Eucalyptus in infestation de quelque espe`ce d’eucalyptus que ce soit dans several countries. This study examined L. invasa infestation les plantations allant de 1938 a` 2452 me`tres d’altitude (la on Eucalyptus germplasms in different agroecological zones plus haute altitude a` cet endroit). L’infestation par of Uganda. The incidence and severity of the pest infesta- Leptocybe invasa touchait toutes les espe`ces d’eucalyptus tion were higher in hotter and drier agroecological zones rencontre´es (Eucalyptus grandis, E. camaldulensis, E. saligna than in cooler and wetter zones. There were direct negative et E. robusta)a` l’exception d’E. maidenii qui a e´chappe´ a` relationships between altitude and L. invasa infestation on cette attaque parce qu’il e´tait situe´ en dehors de l’aire de Eucalyptus species. No infestation was observed on any dispersion e´cologique de cet insecte. L’occurrence et la Eucalyptus species in stands at altitudes ranging from 1938 gravite´ de l’infestation par cette espe`ce nuisible e´taient plus to 2452 (the maximum encountered) m above sea level.
    [Show full text]
  • Pest Fact Sheet: Blue Gum Chalcid
    Asia - Pacific Forest Invasive Species Network Pest Fact Sheet A P F I S N The Asia-Pacific Forest Invasive Species Network (APFISN) has been established as a response to the immense costs and dangers posed by invasive species to the sustainable management of forests in the Asia-Pacific region. APFISN is a cooperative alliance of the 32 member countries in the Asia-Pacific Forestry Commission (APFC) - a statutory body of the Food and Agriculture Organization of the United Nations (FAO). The network focuses on inter-country cooperation that helps to detect, prevent, monitor, eradicate and/or control forest invasive species in the Asia-Pacific region. Specific objectives of the network are: 1) raise awareness of invasive species throughout the Asia-Pacific region; 2) define and develop organizational structures; 3) build capacity within member countries and 4) develop and share databases and information. Scientific name: Leptocybe invasa Common name: Blue Gum Chalcid Taxonomic position: Phylum: Arthropoda Class: Insecta; Order: Hymenoptera Family: Eulophidae Introduction: Leptocybe invasa, Fisher & La Salle, commonly called Blue Gum Chalcid, is a newly described gall- inducing wasp species currently spreading in many countries and causing damage to young eucalypt plantations and nurseries. Galls induced by this wasp can cause serious injuries to trees, thereby weakening them. Information on the taxonomy, distribution, biology and economic impacts of the Blue Gum Chalcid are still meager. Distribution: Believed to be a native of Australia, where its distribution is still unknown, the wasp has spread to most eucalypt-growing countries in Africa, Asia and the Pacific, Europe, North America and the Near East.
    [Show full text]