Definition of Mechanisms of Mutation Generation in Tissues and Embryonic Stem Cells of the Constitutive Fhit Knockout Mouse

Total Page:16

File Type:pdf, Size:1020Kb

Definition of Mechanisms of Mutation Generation in Tissues and Embryonic Stem Cells of the Constitutive Fhit Knockout Mouse Definition of mechanisms of mutation generation in tissues and embryonic stem cells of the constitutive Fhit knockout mouse DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Carolyn Anne Paisie, H.BSc. Biomedical Sciences Graduate Program The Ohio State University 2015 Dissertation Committee: Kay Huebner, PhD, Advisor Vincenzo Coppola, MD Sissy Jhiang, PhD Yuri Pekarsky, PhD Copyright by Carolyn Anne Paisie, H.BSc. 2015 Abstract Genome instability, which can be defined as an increase in changes at both the nucleotide and chromosomal level (e.g. point mutations, chromosomal translocations), results from errors in normal biological processes that function to repair, replicate, and segregate the genome during cell division. Genomic instability is a hallmark of human neoplasia, present in varying degrees in all stages of cancer, from precancerous to advanced cancer. Genome instability is initiated due to loss of expression of the FHIT gene, located at 3p14.2; the murine Fhit gene is located at 14A2. Fhit loss occurs early in human cancer development and is frequently observed in preneoplastic lesions. The Fhit protein is a tumor suppressor and genome caretaker that modulates genome stability and level of DNA damage that accumulates beginning in precancerous lesions. To investigate the contribution of loss of Fhit expression to the generation of mutations and to define mechanisms that underlie these genome alterations, we performed an analysis of whole exome sequences from cell lines and tissues, from wildtype and Fhit-/- mice. -/- cells and tissues demonstrated increased numbers of C>T and T>C mutations and Fhit-deficient kidney cell cultures that survived dimethylbenz(a)anthracene treatment exhibited increased numbers of T>A mutations. Following determination of trinucleotide contexts of mutations, a Fhit-loss signature was ii proposed to consist of C>T and T>C mutations that may be due to respective increased spontaneous deamination (C>T mutations) and deoxyribonucleotide triphosphates pool imbalance (T>C mutations), a signature similar to the 'age at diagnosis' signature identified in human cancers. Increased T>C mutations in -/- exomes may be due to the imbalance in deoxyribonucleotide triphosphates, particularly thymidine triphosphate, resulting from decreased expression of Thymidine Kinase 1 in Fhit-deficient cells and tissues. Fhit-deficient kidney cell cultures that survived in vitro dimethylbenz(a)anthracene treatment additionally exhibited an increase in T>A mutations, a signature known to be generated by treatment with carcinogens such as dimethylbenz(a)anthracene, a consequence of inefficient nucleotide excision repair. We continued our examination of mutations in genomes of short-term cultured embryonic stem cells and derived differentiated cells. These studies revealed an increase in mutations in -/- embryonic stem and derived differentiated cells vs +/+ embryonic stem and derived differentiated cells. From this analysis we cannot separate mutations due to genetic drift, relative to the B6 reference, from possible accumulation of mutations in the -/- germline. In addition to point mutations, -/- kidney tissue contained more insertions and particularly more deletions compared to +/+ liver tissue; loci at regions of insertions and deletions in -/- kidney tissue contained sequence motifs (e.g. poly(C) stretches) and sequences that might participate in insertion/deletion through microhomology directed repair. In summary, the results revealed that multiple types of mutations occurred more frequently in the Fhit-/- environment, with multiple mechanisms of damage and repair involved in generating mutations. A future goal will be to follow the initiation and iii accumulation of mutations through tissue development and through the germline in a conditional Fhit-/- strain on pure background, after deleting Fhit in the germline and in specific organs through recombinase technology. iv Dedication To my family, for their love and support. In loving memory of Martha Paisie and Dorothy Walsh. v Acknowledgments I am especially grateful to my advisor, Dr. Kay Huebner, for mentoring and supporting me through my graduate research years. I would like to thank my thesis committee members, Drs. Vincenzo Coppola, Sissy Jhiang, and Yuri Pekarsky, for their helpful comments and constructive critiques during committee meetings, for their suggestions on my current and future research, and for ensuring my timely progression through the program. I would like to thank the Biomedical Science Graduate Program for offering me a position in the program in 2009 and a special thank you to Dr. Ginny Sanders, the program director at the time, for her support and encouragement. I thank members of the Huebner lab, both past and present, for making the lab an enjoyable environment to work in on a daily basis. I would like to thank Dr. Satoshi Miuma for performing the initial experiments which generated the raw data that served as the starting point for the work described in this dissertation and Dr. Jie Zhang for assistance with the initial bioinformatics analysis. I would like to thank Catherine Waters, Morgan Schrock, and Jenna Karras for many insightful discussions, critical reading of abstracts and manuscripts, and troubleshooting assistance and additional thanks to Morgan Schrock for her maintenance of our mouse colony. Special thanks to vi Teresa Druck for her assistance in preparing figures for publication, including those found in this dissertation, technical expertise, and assistance in performing important experiments that are included in this dissertation. I would also like to thank Dr. Sigrid Eckardt and Dr. John McLaughlin for the establishment of the mouse embryonic stem cell lines that were crucial for providing the exome sequencing data that was described in this dissertation. I greatly appreciate the financial support provided by The Ohio State University Wexner Medical Center and the National Institutes of Health. vii Vita June 2003 .................................................... Southeast Raleigh High School June 2007 .................................................... H.BSc. Developmental Biology, University of Toronto August 2009 to present ............................... Graduate Research Associate, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Publications Paisie CA, Schrock MS, Karras JR*, Zhang J*, Miuma S*, Ouda IM, Waters CE, et al. Exome-wide single-base substitutions in tissues and derived cell lines of the constitutive Fhit knockout mouse. BMC Genomics. In review. *These authors contributed equally to this work. Karras JR*, Paisie CA*, Huebner K. Replicative Stress and the FHIT Gene: Roles in Tumor Suppression, Genome Stability and Prevention of Carcinogenesis. Cancers (Basel). 2014 Jun 4;6(2):1208-19. * These authors contributed equally to this work. Gasparini P, Fassan M, Cascione L, Guler G, Balci S, Irkkan C, Paisie C, et al. Androgen receptor status is a prognostic marker in non-Basal triple negative breast cancers and determines novel therapeutic options. PLoS One. 2014 Feb 5;9(2):e88525. Miuma S, Saldivar JC, Karras JR, Waters CE, Paisie CA, et al. Fhit deficiency-induced global genome instability promotes mutation and clonal expansion. PLoS One. 2013 Nov 14;8(11):e80730. viii Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ, Ferenchak G, Dorrance AM, Paisie CA, et al. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest. 2013 Oct 1;123(10):4144-57. Wu Y, Feng X, Jin Y, Wu Z, Hankey W, Paisie C, et al. A novel mechanism of indole- 3-carbinol effects on breast carcinogenesis involves induction of Cdc25A degradation. Cancer Prev Res (Phila). 2010 Jul;3(7):818-28. Fields of Study Major Field: Biomedical Science Minor Field: Cancer Biology ix Table of Contents Abstract .......................................................................................................................... ii Dedication .......................................................................................................................v Acknowledgments ........................................................................................................ vii Vita ........................................................................................................................... viiiii List of Tables.............................................................................................................. xivv List of Figures ............................................................................................................... xv Abbreviations...................................................................................................................xvii Chapter 1: Introduction....................................................................................................1 I. Genome instability..........................................................................................................1 I.1 Chromosomal instability............................................................................................2 I.2 Microsatellite instability............................................................................................3 I.3 Insertions and deletions.............................................................................................4 II. The FHIT gene..............................................................................................................6
Recommended publications
  • Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
    Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing.
    [Show full text]
  • Downloads/ (Accessed on 17 January 2020)
    cells Review Novel Approaches for Identifying the Molecular Background of Schizophrenia Arkadiy K. Golov 1,2,*, Nikolay V. Kondratyev 1 , George P. Kostyuk 3 and Vera E. Golimbet 1 1 Mental Health Research Center, 34 Kashirskoye shosse, 115522 Moscow, Russian; [email protected] (N.V.K.); [email protected] (V.E.G.) 2 Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russian 3 Alekseev Psychiatric Clinical Hospital No. 1, 2 Zagorodnoye shosse, 115191 Moscow, Russian; [email protected] * Correspondence: [email protected] Received: 5 November 2019; Accepted: 16 January 2020; Published: 18 January 2020 Abstract: Recent advances in psychiatric genetics have led to the discovery of dozens of genomic loci associated with schizophrenia. However, a gap exists between the detection of genetic associations and understanding the underlying molecular mechanisms. This review describes the basic approaches used in the so-called post-GWAS studies to generate biological interpretation of the existing population genetic data, including both molecular (creation and analysis of knockout animals, exploration of the transcriptional effects of common variants in human brain cells) and computational (fine-mapping of causal variability, gene set enrichment analysis, partitioned heritability analysis) methods. The results of the crucial studies, in which these approaches were used to uncover the molecular and neurobiological basis of the disease, are also reported. Keywords: schizophrenia; GWAS; causal genetic variants; enhancers; brain epigenomics; genome/epigenome editing 1. Introduction Schizophrenia is a severe mental illness that affects between 0.5% and 0.7% of the human population [1]. Both environmental and genetic factors are thought to be involved in its pathogenesis, with genetic factors playing a key role in disease risk, as the heritability of schizophrenia is estimated to be 70–85% [2,3].
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Supplemental Material 1
    SUP. FIGURE S1 DAPI NFAT Merge DMSO Ac­5SGlcNAc Figure S1. Inhibition of OGT does not prevent nuclear translocation of NFAT. Jurkat cells !"#$%&'()*+(!!,-.'/012"#..(3'4056'7(+('"+(#"(3'7,"8'9:';<'5=29>/%=45='?+'@<>A'B?+'CD' 8+!E''F(%%!'7(+('"8(-'*%#"(3'?-'#-",2F@GHF@ID2=?#"(3'=?J(+!%,*!'B?+'G:'K,-!E''5B"(+'B,)#",?-L' =(%%!'7(+('#-#%&M(3'$&'=?-B?=#%'K,=+?!=?*&E SUP. FIGURE S2 Labeled Unlabeled Labeled Unlabeled 1h 18h ­Az ­PEG 1h 19h ­Az ­PEG !"#$%"#&'( ­ + ­ + + + !"#$%"#&'( ­ + ­ + + + 110 EWSR1 160 *34+&5 80 &,/ 160 )*+-2$ 160 110 )*+,& 80 60 &,/ 160 110 80 0"1"- RUNX1 110 80 60 60 50 160 SP1 160 110 ELF1 110 80 160 NUP98 110 80 )*+&-. &,/ Figure S2. PEG mass tags allow visualization of O­GlcNAc stoichiometry. 5K PEG mass tags were affixed to O­GlcNAc groups on proteins from control or activated T cells via enzy­ matic labeling with azide and copper­free click chemistry. Proteins were then analyzed for shifts in electrophoretic mobility by immunoblot. For the unlabeled control samples, either the azide (­Az) or PEG (­PEG) reagent was omitted during the labeling procedure. Note that HCFC1 appears as multiple bands because the protein is expressed as a single polypeptide that under­ goes proteolytic processing. UBAP2L appears as two bands in the unlabeled control samples due to alternative splicing. Table S1. Details of 133 higher confidence and 81 lower confidence O-GlcNAc glycoproteins1. Confidence Uniprot ID Symbol Specificity Chi Higher P55265 ADAR 100% 9.11E-04 Higher Q09666 AHNAK 92% 2.36E-16 Higher Q8IWZ3 ANKHD1 100% 1.19E-03 Higher
    [Show full text]
  • Introducing Gene Deletions by Mouse Zygote Electroporation of Cas12a/Cpf1
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 Introducing gene deletions by mouse zygote electroporation of Cas12a/Cpf1 Dumeau, Charles-Etienne ; Monfort, Asun ; Kissling, Lucas ; Swarts, Daan C ; Jinek, Martin ; Wutz, Anton Abstract: CRISPR-associated (Cas) nucleases are established tools for engineering of animal genomes. These programmable RNA-guided nucleases have been introduced into zygotes using expression vectors, mRNA, or directly as ribonucleoprotein (RNP) complexes by different delivery methods. Whereas mi- croinjection techniques are well established, more recently developed electroporation methods simplify RNP delivery but can provide less consistent efficiency. Previously, we have designed Cas12a-crRNA pairs to introduce large genomic deletions in the Ubn1, Ubn2, and Rbm12 genes in mouse embryonic stem cells (ESC). Here, we have optimized the conditions for electroporation of the same Cas12a RNP pairs into mouse zygotes. Using our protocol, large genomic deletions can be generated efficiently by electroporation of zygotes with or without an intact zona pellucida. Electroporation of as few as ten zygotes is sufficient to obtain a gene deletion in mice suggesting potential applicability of thismethod for species with limited availability of zygotes. DOI: https://doi.org/10.1007/s11248-019-00168-9 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-181145 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License. Originally published at: Dumeau, Charles-Etienne; Monfort, Asun; Kissling, Lucas; Swarts, Daan C; Jinek, Martin; Wutz, Anton (2019).
    [Show full text]
  • Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders
    177 Arch Neuropsychitry 2020;57:177−191 RESEARCH ARTICLE https://doi.org/10.29399/npa.24890 Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders Hakan GÜRKAN1 , Emine İkbal ATLI1 , Engin ATLI1 , Leyla BOZATLI2 , Mengühan ARAZ ALTAY2 , Sinem YALÇINTEPE1 , Yasemin ÖZEN1 , Damla EKER1 , Çisem AKURUT1 , Selma DEMİR1 , Işık GÖRKER2 1Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey 2Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey ABSTRACT Introduction: Aneuploids, copy number variations (CNVs), and single in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown nucleotide variants in specific genes are the main genetic causes of significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients developmental delay (DD) and intellectual disability disorder (IDD). were reported. In 6 patients, one or more pathogenic CNVs were These genetic changes can be detected using chromosome analysis, determined. Therefore, the diagnostic efficiency of CMA was found to chromosomal microarray (CMA), and next-generation DNA sequencing be 31.7% (39/123). techniques. Therefore; In this study, we aimed to investigate the Conclusion: Today, genetic analysis is still not part of the routine in the importance of CMA in determining the genomic etiology of unexplained evaluation of IDD patients who present to psychiatry clinics. A genetic DD and IDD in 123 patients. diagnosis from CMA can eliminate genetic question marks and thus Method: For 123 patients, chromosome analysis, DNA fragment analysis alter the clinical management of patients. Approximately one-third and microarray were performed. Conventional G-band karyotype of the positive CMA findings are clinically intervenable.
    [Show full text]
  • The DNA Sequence and Comparative Analysis of Human Chromosome 20
    articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M.
    [Show full text]
  • Produktinformation
    Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic SANTA CRUZ BIOTECHNOLOGY, INC. RBM12 CRISPR/Cas9 KO Plasmid (h): sc-408807 BACKGROUND APPLICATIONS The clustered regularly interspaced short palindromic repeats (CRISPR) and RBM12 CRISPR/Cas9 KO Plasmid (h) is recommended for the disruption of CRISPR-associated protein (Cas9) system is an adaptive immune response gene expression in human cells. defense mechanism used by archea and bacteria for the degradation of foreign genetic material (4,6). This mechanism can be repurposed for other 20 nt non-coding RNA sequence: guides Cas9 functions, including genomic engineering for mammalian systems, such as to a specific target location in the genomic DNA gene knockout (KO) (1,2,3,5). CRISPR/Cas9 KO plasmid products enable the U6 promoter: drives gRNA scaffold: helps Cas9 identification and cleavage of specific genes by utilizing guide RNA (gRNA) expression of gRNA bind to target DNA sequences derived from the genome-scale CRISPR knock-out (GeCKO) v2 library developed in the Zhang Laboratory at the Broad Institute (3,5). Termination signal Green Fluorescent Protein: to visually REFERENCES verify transfection CRISPR/Cas9 Knockout Plasmid CBh (chicken β-Actin 1. Cong, L., et al.
    [Show full text]
  • The Link Between Type 2 Diabetes Mellitus and the Polymorphisms Of
    life Article The Link between Type 2 Diabetes Mellitus and the Polymorphisms of Glutathione-Metabolizing Genes Suggests a New Hypothesis Explaining Disease Initiation and Progression Iuliia Azarova 1,2 , Elena Klyosova 2 and Alexey Polonikov 3,4,* 1 Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; [email protected] 2 Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., 305041 Kursk, Russia; [email protected] 3 Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., 305041 Kursk, Russia 4 Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia * Correspondence: [email protected]; Tel.: +7-471-258-8147 Abstract: The present study investigated whether type 2 diabetes (T2D) is associated with polymor- phisms of genes encoding glutathione-metabolizing enzymes such as glutathione synthetase (GSS) and gamma-glutamyl transferase 7 (GGT7). A total of 3198 unrelated Russian subjects including 1572 T2D patients and 1626 healthy subjects were enrolled. Single nucleotide polymorphisms (SNPs) of the GSS and GGT7 genes were genotyped using the MassArray-4 system. We found that the GSS Citation: Azarova, I.; Klyosova, E.; and GGT7 gene polymorphisms alone and in combinations are associated with T2D risk regardless of Polonikov, A. The Link between Type sex, age, and body mass index, as well as correlated with plasma glutathione, hydrogen peroxide, 2 Diabetes Mellitus and the and fasting blood glucose levels. Polymorphisms of GSS (rs13041792) and GGT7 (rs6119534 and Polymorphisms of Glutathione- Metabolizing Genes Suggests a New rs11546155) genes were associated with the tissue-specific expression of genes involved in unfolded Hypothesis Explaining Disease protein response and the regulation of proteostasis.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information Flow
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • RBM12 (T-17): Sc-85872
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . RBM12 (T-17): sc-85872 BACKGROUND APPLICATIONS Proteins containing RNA recognition motifs, including various hnRNP proteins, RBM12 (T-17) is recommended for detection of RBM12 of mouse, rat and are implicated in the regulation of alternative splicing and protein components human origin by Western Blotting (starting dilution 1:200, dilution range of snRNPs. The RBM (RNA-binding motif) gene family encodes proteins with 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein an RNA binding motif that have been suggested to play a role in the modu - (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution lation of apoptosis. RBM12 (RNA binding motif protein 12), also known as range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution SWAN, HRIHFB2091 or KIAA0765, is a 932 amino acid protein which localizes range 1:30-1:3000); non cross-reactive with other RBM family members. to the nucleus. RBM12 contains multiple proline-rich regions, transmembrane RBM12 (T-17) is also recommended for detection of RBM12 in additional domains and three RNA recognition motifs (RRM). It has been found that the species, including equine, canine, bovine, porcine and avian. genes for RBM12 and copine I (CPNE1) overlap at human chromosome location 20q11.22, sharing the promoter region and a 5'UTR (which are conserved in Suitable for use as control antibody for RBM12 siRNA (h): sc-76364, RBM12 human, zebrafish and mouse), suggesting that a functional interaction between siRNA (m): sc-152725, RBM12 shRNA Plasmid (h): sc-76364-SH, RBM12 the two genes may exist.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0264934 A1 GALLOURAKIS Et Al
    US 20160264934A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0264934 A1 GALLOURAKIS et al. (43) Pub. Date: Sep. 15, 2016 (54) METHODS FOR MODULATING AND Publication Classification ASSAYING MI6AIN STEM CELL POPULATIONS (51) Int. Cl. CI2N5/0735 (2006.01) (71) Applicants: THE GENERAL, HOSPITAL AOIN I/02 (2006.01) CORPORATION, Boston, MA (US); CI2O I/68 (2006.01) The Regents of the University of GOIN 33/573 (2006.01) California, Oakland, CA (US) CI2N 5/077 (2006.01) CI2N5/0793 (2006.01) (72) Inventors: Cosmas GIALLOURAKIS, Boston, (52) U.S. Cl. MA (US); Alan C. MULLEN, CPC ............ CI2N5/0606 (2013.01); CI2N5/0657 Brookline, MA (US); Yi XING, (2013.01); C12N5/0619 (2013.01); C12O Torrance, CA (US) I/6888 (2013.01); G0IN33/573 (2013.01); A0IN I/0226 (2013.01); C12N 2501/72 (73) Assignees: THE GENERAL, HOSPITAL (2013.01); C12N 2506/02 (2013.01); C12O CORPORATION, Boston, MA (US); 2600/158 (2013.01); C12Y 201/01062 The Regents of the University of (2013.01); C12Y 201/01 (2013.01) California, Oakland, CA (US) (57) ABSTRACT (21) Appl. No.: 15/067,780 The present invention generally relates to methods, assays and kits to maintain a human stem cell population in an (22) Filed: Mar 11, 2016 undifferentiated state by inhibiting the expression or function of METTL3 and/or METTL4, and mA fingerprint methods, assays, arrays and kits to assess the cell state of a human stem Related U.S. Application Data cell population by assessing mA levels (e.g. mA peak inten (60) Provisional application No.
    [Show full text]