The Stability and Evolution of Triple Junctions

Total Page:16

File Type:pdf, Size:1020Kb

The Stability and Evolution of Triple Junctions THE STABILITY AND EVOLUTION OF TRIPLE JUNCTIONS Theodore G. Apotria B.S., The University of Connecticut, 1982 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at The University of Connecticut 1985 APPROVAL PAGE Master of Science Thesis THE STABILITY AND EVOLUTION OP TRIPLE JUNCTIONS Presented by- Theodore G. Apotria, B.S. Major Adviser Associate Adviser | Peter Dehlrnger Associate Adviser 7 Peter Geiser Associate Adviser Thomas Moran The University of Connecticut 1985 ii DEDICATION This thesis is dedicated to my parents, George and Cleo Apotria, and to my "brother and best friend, John. Their support was essential in completing this work. iii ACKNOWLEDGEMENTS There are several individuals whose assistance and support contributed to this thesis, and to whom I am indebted: I am especially thankful to Dr. Norman Gray, who, as my major adviser, contributed many hours of stimulating discussion and attention. As the thesis topic evolved, his assistance in the theoretical development, computer programming, and critical commentary on the manuscript, all proved invaluable. Dr. Peter Dehlinger, Dr. Peter Geiser, and Dr. Thomas Moran, contributed their time reviewing the text and provided useful perspectives. Dr. Randolph Steinen contributed useful comments on the preliminary research proposal. I am also grateful to the Dept, of Geology and Geophysics for providing financial support in the form of a Teaching Assistantship, and an Amoco sponsored Master's Fellowship in Geophysics. I also thank Dr. Anthony Philpotts for providing a Research Assistantship from K.S.F. grant if EAR8017059* - iv ABSTRACT Triple junction stability, as introduced by McKenzie and Morgan (1969)> assumes constant relative velocities and can only be defined instantaneously. Factors that affect the stability of triple junctions as a function of time include changes in the boundary orientations and relative velocities. Changes in the velocity triangle can be induced by the effects of motion on a sphere, and the motion of the lithospheric plates with respect to the mantle. Each type of triple junction has been assigned a number of degrees of freedom, where a degree of freedom is an imparted change in boundary configurations or relative velocities without upsetting the stability condition. The number of degrees of freedom correlates positively with the junction's ability to maintain stability under imposed changes. The exact stability condition of any triple junction can be calculated by least squares analysis. An equation for the location of the triple junction with respect to each boundary is introduced with respect to any reference frame. - v - The equations are linear and of the form J = a + hh. A unique simultaneous solution results if the junction is stable. If the junction is unstable, the sum of the squares of the residuals is proposed as a measure of the degree of geometric instability. This analysis is particularly useful when several boundary types are consistent with a single velocity triangle. The type least affected by imposed changes can be regarded as the most geometrically stable, and can be considered in evolutionary schemes. The absolute motion of the Bouvet triple junction with respect to the mantle (mesosphere) plays a significant role in its evolution. Absolute poles of rotation from the AM1-2 model (Minster and Jordan, 1978) for the South American, African, and Antarctic plates were utilized to calculate an "isosceles line" in the South Atlantic. Along this locus (trending 91°)* the relative velocity triangle for the three plates is isosceles. The actual Bouvet triple junction lies about 5 degrees north of this line, presumably due to uncertainties in the AM1-2 poles. Assuming the Bouvet junction is actually isosceles, the absolute triple junction velocity vectors for the motion of the Ridge-Ridge-Ridge (RRR) and Ridge-Fault-Fault (RFF) configurations are respectively 14*7 km/yr, with an azimuth of 34j5> and 5*8 km/my with an azimuth of 157* A least squares analysis - vi - suggests the RFF configuration is geometrically more stable in the vicinity of the isosceles line and is the preferred mode. Consequently, a RRR triple junction located south of the present position of the Bouvet junction vould, relative to the mantle, migrate northwest until it intersects the isosceles line and spontaneously changes to a stable RFF configuration. As a RFF junction, its new velocity would take it southeast away from the isosceles line, rendering it increasingly unstable. As it migrates, the rotations of the relative velocities are such that both growing transform fault develop a small component of extension normal to the transform. Hence, the junction may survive for an appreciable time in a geometrically unstable state. At the point of mechanical instability, the junction would change back to a stable RRR configuration and migrate northwest until it intersects the isosceles line once again. Each time the junction switched to RFF mode, paired transform faults would develop. The RFF configuration of the Bouvet junction was apparently able to migrate approximately 110 km (about 1 degree latitude) from the isosceles line before RRR mode intervened. vii A rigorous examination of the unstable Kendocino triple junction in velocity space reveals possible modes of evolution. If the requirement is relaxed that the trench is fixed with respect to the North American plate, trench rotation and subsequent back-arc spreading are possible. At specific orientations of the trench boundary, spreading at the North American-Pacific boundary allows the junction to regain stability. A third alternative is the migration of the San Andreas shear zone eastward, transferring part of the North American plate to the Pacific plate. - viii - CONTENTS APPROVAL PAGE ii DEDICATION iii ACKKOVLEDGEKENTS iv ABSTRACT v LIST OF FIGURES xi LIST OF TABLES xiii Chapter page I. INTRODUCTION 1 II. PREVIOUS WORK 5 Triple Junction Geometry 5 III. THE FRAMEWORK OF PLATE GEOMETRY 10 The Angular Displacement of a Plate 10 The Tectonic Character of Plate Boundaries 13 The Stability of Triple Junctions 14 Nomenclature 14 Defining Stability 16 IV. THE QUANTIFICATION OF GEOMETRIC INSTABILITY 22 Triple Junction Equations 23 The Best Fit Solution 26 least Squares Estimation 27 Relative Stability 29 V. THE PERTURBATION STABILITY OF TRIPLE JUNCTIONS 32 Analysis of Stability 33 The Problem on a Sphere Absolute Plate Motion 41 - ix - VI. GEOLOGIC APPLICATIONS 44 The Bouvet Triple Junction 44 Introduction 44 The Absolute Notion of the Eouvet Triple Junction 46 Eouvet Triple Junction Evolution 48 The Question of Relative Stability 51 Triple Junction Evolution in the Western United States 55 Introduction 55 Previous Work 55 Velocity Space Analysis 58 VII. CONCLUSIONS 61 BIBLIOGRAPHY 65 FIGURES 68 TABLES 132 Appendix page A. SINGULAR VALUE DECOMPOSITION 139 B. SUMMARY OF CONSTRAINT AND PERTURBATION STABILITY ANALYSIS 144 X -T LIST OP FIGURES Figure page 1. A stable configuration for the RRF triple junction. 68 2. An unstable RRR triple junction...................70 3* A stable TTT(b) triple junction....................72 4. A geometrically stable quadruple junction......... 74 5* Instantaneous displacement and angular velocity. 76 6. The vector circuit around a triple junction.......78 7. The possible types of plate boundaries............ 80 8. Nomenclature and labeling scheme.................. 82 9* An FRT triple junction defining the stable condition........................................ 84 10. Possible velocity diagrams for the RRR junction. 86 11. Direct space representation of Figure 10.......... 88 12. Four possible rff direct space configurations. ... 90 13» Development of vectors describing the location of (J).............................................. 92 14. Sum of square of the residuals.....................94 15* The effects of boundary rotation on stability. ... 96 16. The effects of triangle distortion on stability. 98 17. Constraints on the relative velocity............ 101 18. A description of perturbation stability.........103 - xi 19* Stability analysis of the RPP Junction............ 105 20. Stability analysis of the RRF and RRR junctions . 107 21. The location of the Bouvet triple junction. 109 22. The position and orientation of the isosceles line. 111 23. Velocity space representation of the Bouvet junction.........................................113 24* A model of evolution for the Eouvet triple junction.........................................115 25* The evolving velocity triangle for the RFF junction.........................................117 26. Relative geometric stability........................119 27* Location and tectonic map of the western United States...........................................121 28. The geometric evolution of the NE Pacific.......... 123 29. Stable and unstable FFT configurations............. 125 30. Cumulative deformation at an unstable FFT junction. 127 31. Tectonic consequences of the unstable Mendocino junction.........................................129 - xii - LIST OP TABLES Table page 1. The stability of triple junctions....................132 2. Stability involving oblique symmetrical spreading. 133 3« Topologically distinct varieties of triple junctions......................................... 134 4. Topologically distinct varieties of stable T- junctions.................. 136 5. Perturbation stability of some existing triple junctions.......................................137 6. AMI-2 absolute poles of
Recommended publications
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Tectonic Influences on the Spatial and Temporal Evolution of the Walker Lane: an Incipient Transform Fault Along the Evolving Pacific – North American Plate Boundary
    Arizona Geological Society Digest 22 2008 Tectonic influences on the spatial and temporal evolution of the Walker Lane: An incipient transform fault along the evolving Pacific – North American plate boundary James E. Faulds and Christopher D. Henry Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada, 89557, USA ABSTRACT Since ~30 Ma, western North America has been evolving from an Andean type mar- gin to a dextral transform boundary. Transform growth has been marked by retreat of magmatic arcs, gravitational collapse of orogenic highlands, and periodic inland steps of the San Andreas fault system. In the western Great Basin, a system of dextral faults, known as the Walker Lane (WL) in the north and eastern California shear zone (ECSZ) in the south, currently accommodates ~20% of the Pacific – North America dextral motion. In contrast to the continuous 1100-km-long San Andreas system, discontinuous dextral faults with relatively short lengths (<10-250 km) characterize the WL-ECSZ. Cumulative dextral displacement across the WL-ECSZ generally decreases northward from ≥60 km in southern and east-central California, to ~25 km in northwest Nevada, to negligible in northeast California. GPS geodetic strain rates average ~10 mm/yr across the WL-ECSZ in the western Great Basin but are much less in the eastern WL near Las Vegas (<2 mm/ yr) and along the northwest terminus in northeast California (~2.5 mm/yr). The spatial and temporal evolution of the WL-ECSZ is closely linked to major plate boundary events along the San Andreas fault system. For example, the early Miocene elimination of microplates along the southern California coast, southward steps in the Rivera triple junction at 19-16 Ma and 13 Ma, and an increase in relative plate motions ~12 Ma collectively induced the first major episode of deformation in the WL-ECSZ, which began ~13 Ma along the N60°W-trending Las Vegas Valley shear zone.
    [Show full text]
  • Borehole-Explosion and Air-Gun Data Acquired in the 2011 Salton Seismic Imaging Project (SSIP), Southern California: Description of the Survey
    Borehole-Explosion and Air-Gun Data Acquired in the 2011 Salton Seismic Imaging Project (SSIP), Southern California: Description of the Survey Open-File Report 2013–1172 U.S. Department of the Interior U.S. Geological Survey COVER: High-explosives magazine, used for the Salton Seismic Imaging Program, parked in secured, unused private rodeo ground in Imperial Valley, California. Photo by Gary Fuis. Borehole-Explosion and Air-Gun Data Acquired in the 2011 Salton Seismic Imaging Project (SSIP), Southern California: Description of the Survey By Elizabeth J. Rose, Gary S. Fuis, Joann M. Stock, John A. Hole, Annie M. Kell, Graham Kent, Neal W. Driscoll, Sam Crum, Mark Goldman, Angela M. Reusch, Liang Han, Robert R. Sickler, Rufus D. Catchings, Michael J. Rymer, Coyn J. Criley, Daniel S. Scheirer, Steven M. Skinner, Coye J. Slayday-Criley, Janice M. Murphy, Edward G. Jensen, Robert McClearn, Alex J. Ferguson, Lesley A. Butcher, Max A. Gardner, Iain Emmons, Caleb L. Loughran, Joseph R. Svitek, Patrick C. Bastien, Joseph A. Cotton, David S. Croker, Alistair J. Harding, Jeffrey M. Babcock, Steven H. Harder, and Carla M. Rosa Open-File Report 2013–1172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call
    [Show full text]
  • Geochemistry and Origin of Middle Miocene Volcanic Rocks from Santa Cruz and Anacapa Islands, Southern California Borderland Peter W
    Geochemistry and Origin of Middle Miocene Volcanic Rocks from Santa Cruz and Anacapa Islands, Southern California Borderland Peter W. Weigand Department of Geological Sciences California State University Northridge, CA 91330 Cenozoic volcanism that began in the eastern Abstract - Major-oxide and trace-element Mojave Desert about 30 m.y. ago and swept compositions of middle Miocene volcanic rocks irregularly west and north. This extensive from north Santa Cruz and Anacapa Islands are extrusive activity was related closely to complex very similar. In contrast, they are geochemically tectonic activity that included subduction of the distinct from the volcanic clasts from the Blanca Farallon plate whose subduction angle was Formation, of similar age but located south of steepening, and interaction of the Pacific and the Santa Cruz Island fault, which implies North American plates along a lengthening significant strike-slip movement on this fault. transform boundary; this activity additionally The island lavas are also compositionally involved rotation and possible northward distinct from the Conejo Volcanics located translation of crustal blocks. onshore in the Santa Monica Mountains. The The origin of the volcanic rocks in this area island lavas are part of a larger group of about has been variously ascribed to subduction of the 12 similar-aged volcanic suites from the Farallon plate (Weigand 1982; Crowe et al. California Borderland and onshore southern 1976; Higgins 1976), subduction of the Pacific- California that all belong to the calc-alkaline
    [Show full text]
  • Dynamic Implications of Baja California Microplate Kinematics On
    DYNAMIC IMPLICATIONS OF BAJA CALIFORNIA MICROPLATE KINEMATICS ON THE NORTH AMERICA – PACIFIC PLATE BOUNDARY REGION Dissertation zur Erlangung des Doktorgrades der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München vorgelegt von Christina Plattner am 2. März 2009 1. Gutachter: Prof. Rocco Malservisi 2. Gutachter: Prof. Dr. Hans-Peter Bunge Tag der mündlichen Prüfung: 03.07.2009 2 EHRENWÖRTLICHE VERSICHERUNG Ich versichere hiermit ehrenwörtlich, dass die Dissertation von mir selbständig, ohne Beihilfe angefertigt worden ist. München, den 2. März 2009 ERKLÄRUNG Hiermit erkläre ich, dass die Dissertation noch nicht in einem anderen Prüfunsverfahren vorgelegt und bewertet wurde. Hiermit erkläre ich, dass ich mich anderweitig einer Doktorprüfung ohne Erfolg nicht unterzogen habe. München, den 2. März, 2009 3 ACKNOWLEDGEMENTS Financial support for this work came from Deutsche Forschungsgemeinschaft (DFG) and the International Graduate School THESIS of the Elitenetzwerk Bayern. I thank the geodynamics group at Ludwig-Maximilians-Universität for providing the framework of this thesis, in particular Prof. Peter Bunge, Dr. Helen Pfuhl, and IN SPECIFIC MY ADVISOR PROF. ROCCO MALSERVISI. I want to thank all international collaborators of the DFG project, and coauthors of publications resulting from this work: Dr. Rob Govers, Prof. Kevin Furlong, Prof. Tim Dixon, Prof. Paul Umhoefer, Dr. Francisco Suarez-Vidal, and others. I want to acknowledge all the people that have been supporting my forthcoming during the last years in different ways, including many colleagues within the Department of Earth and Environmental Sciences at LMU, my internal and external mentors from LMU Mentoring Geosciences, Prof. Bettina Reichenbacher and Dr. Oliver Heidbach, and in particular MY FAMILY AND FRIENDS.
    [Show full text]
  • Zoogeography of the San Andreas Fault System: Great Pacific Fracture Zones Correspond with Spatially Concordant Phylogeographic
    Biol. Rev. (2016), 91, pp. 235–254. 235 doi: 10.1111/brv.12167 Zoogeography of the San Andreas Fault system: Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America Andrew D. Gottscho1,2,∗ 1Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, U.S.A. 2Department of Biology, University of California, Riverside, CA 92521, U.S.A. ABSTRACT The purpose of this article is to provide an ultimate tectonic explanation for several well-studied zoogeographic boundaries along the west coast of North America, specifically, along the boundary of the North American and Pacific plates (the San Andreas Fault system). By reviewing 177 references from the plate tectonics and zoogeography literature, I demonstrate that four Great Pacific Fracture Zones (GPFZs) in the Pacific plate correspond with distributional limits and spatially concordant phylogeographic breaks for a wide variety of marine and terrestrial animals, including invertebrates, fish, amphibians, reptiles, birds, and mammals. These boundaries are: (1) Cape Mendocino and the North Coast Divide, (2) Point Conception and the Transverse Ranges, (3) Punta Eugenia and the Vizcaíno Desert, and (4) Cabo Corrientes and the Sierra Transvolcanica. However, discussion of the GPFZs is mostly absent from the zoogeography and phylogeography literature likely due to a disconnect between biologists and geologists. I argue that the four zoogeographic boundaries reviewed here ultimately originated via the same geological process (triple junction evolution). Finally, I suggest how a comparative phylogeographic approach can be used to test the hypothesis presented here. Key words: fracture zones, historical biogeography, North America, Pacific Ocean, phylogeography, plate tectonics, San Andreas Fault.
    [Show full text]
  • Introduction: an Overview of Ridge-Trench Interactions in Modern and Ancient Settings Virginia B
    Geological Society of America Special Paper 371 2003 Introduction: An overview of ridge-trench interactions in modern and ancient settings Virginia B. Sisson* Department of Earth Science, MS-126, Rice University, Houston, Texas 77005-1892, USA Terry L. Pavlis Department of Geology and Geophysics, University of New Orleans, New Orleans, Louisiana 70148, USA Sarah M. Roeske Department of Geology, One Shields Avenue, University of California, Davis, California 95616-8605, USA Derek J. Thorkelson Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada ABSTRACT Virtually all subduction zones eventually interact with a spreading ridge, and this interac- tion leads to a great diversity of tectonic processes in the vicinity of the triple junction. In the present-day Pacifi c basin, there are seven examples of active or recently extinct spreading ridges and transforms interacting with trenches. In contrast, there are only a few well-documented cases of spreading ridge interactions in the ancient geologic record, which indicates this pro- cess is grossly underrepresented in tectonic syntheses of plate margins. Analogies with modern systems can identify some distinctive processes associated with triple junction interactions, yet an incomplete understanding of those processes, and their effects, remains. Additional insights can be gained from well-documented examples of ancient ridge subduction because exhumation has revealed deeper levels of the tectonic system and such systems provide a temporal record of
    [Show full text]
  • Prepliocene Extension Around the Gulf of California and the Transfer of Baja California to the Pacific Plate
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Caltech Authors TECTONICS,VOL. 8, NO. 1, PAGES99-115, FEBRUARY1989 PRE-PLIOCENE EXTENSION AROUND THE GULF OF CALIFORNIA AND THE TRANSFER OF BAJA CALIFORNIA TO THE PACIFIC PLATE J. M. Stockand K. V. Hodges Departmentof Earth, Atmospheric,and PlanetarySciences, MassachusettsInstitute of Technology,Cambridge Abstract. Late Miocene (12-5 Ma) extensionaround the Originally, the protogulfconcept was usedto explain an area edgesof the Gulf of Californiahas been alternatively attributed of anomalouslyold oceanic crust adjacentto the Mexican to "Basin and Range" extension, back arc extension, or margin at the mouth of the Gulf of California [Moore and developmentof the Pacific-NorthAmerica plate boundary. Buffington, 1968]. More recently, this concept has been This extensionwas ENE directedand similar in structuralstyle expandedto include late Miocene extensionalfaulting and to extensionin the Basin and Range province. Timing marine sedimentsfrom areas surroundingthe northern and constraints permit nearly synchronous onset of this centralparts of the Gulf of California [e.g., Karig and Jensky, deformationin a belt extendingSSE from northernmostBaja 1972; Moore, 1973; Gastil et al., 1979]. These late Miocene Californiato the mouthof the gulf. Where this extensional extensionalstructures and sedimentsare exposedaround the faulting continuedthrough Pliocene time to the present, gulf in the "Gulf ExtensionalProvince" [Gastil et al., 1975] synchronouswith motion on the modern transformplate on the east side of Baja California and the west coast of boundaryin the Gulf of California,no changein directionof mainland Mexico (Figure 1). The amountand direction of extension can be resolved. Revised constraints on Pacific- extensionof the pre-5.5 Ma protogulf, and its relation to North Americaplate motionsupport the developmentof this Pacific-North America motion, is not well known.
    [Show full text]
  • Volcanic Markers of the Post-Subduction
    Volcanic Markers of the Post-Subduction Evolution of Baja California and Sonora, Mexico: Slab Tearing Versus Lithospheric Rupture of the Gulf of California Thierry Calmus, Carlos Pallares, René Maury, Alfredo Aguillón-Robles, Hervé Bellon, Mathieu Benoit, François Michaud To cite this version: Thierry Calmus, Carlos Pallares, René Maury, Alfredo Aguillón-Robles, Hervé Bellon, et al.. Volcanic Markers of the Post-Subduction Evolution of Baja California and Sonora, Mexico: Slab Tearing Versus Lithospheric Rupture of the Gulf of California. Pure and Applied Geophysics, Springer Verlag, 2011, 168 (8-9), pp.1303-1330. 10.1007/s00024-010-0204-z. insu-00543676 HAL Id: insu-00543676 https://hal-insu.archives-ouvertes.fr/insu-00543676 Submitted on 25 Feb 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Click here to download Manuscript: CALMUS et al.doc Volcanic markers of the post-subduction evolution of Baja 1 2 3 California and Sonora, Mexico: Slab tearing versus lithospheric 4 5 rupture of the Gulf of California 6 7 8 9 10 11 a, a, b b c 12 Thierry Calmus *, Carlos Pallares , René C. Maury , Alfredo Aguillón-Robles , 13 b d e 14 Hervé Bellon , Mathieu Benoit , François Michaud 15 16 17 18 19 a 20 Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional 21 Autónoma de México, Hermosillo, Son., C.P.
    [Show full text]
  • Report on RCL-Cortez Workshop: Lithospheric Rupture in the Gulf of California – Salton Trough Region Rebecca J
    MARGINS Newsletter No. 16, Spring 2006 Page 9 Report on RCL-Cortez Workshop: Lithospheric Rupture in the Gulf of California – Salton Trough Region Rebecca J. Dorsey1, Raul Castro2, John Fletcher2, Daniel Lizarralde3, and Paul J. Umhoefer4 1Dept. of Geological Sciences, 1272 University of Oregon, Eugene, OR 97403, USA; Email: [email protected], 2División de Ciencias de la Tierra, CICESE, Ensenada, Baja California, México, 3Dept. of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA, 4Dept. of Geology, Box 4099, Northern Arizona University, Flagstaff AZ 86011, USA -115˚ -110˚ -105˚ Introduction 35˚ 35˚ From January 9 to 13, 2006, a group of about 70 professional and student re- Colorado R. searchers gathered at the Hotel Coral in Ensenada, Baja California, Mexico, to discuss the status of geophysical and geo- logical research in the MARGINS Gulf of California – Salton Trough focus site 30˚ 30˚ (Fig. 1). The main goals of the workshop were to summarize emerging new data and results, identify existing gaps in knowledge, and suggest possible direc- tions for future research. Theoretical models and studies of other rifted mar- gins allowed participants to compare and 25˚ 25˚ contrast results from this region. A 2-day field trip, led by John Fletcher and Gary Axen, illustrated a well-studied example of low-angle normal faulting in the La- NARS-Baja Stations guna Salada area, and provided new in- sights into Late Cenozoic extension and Seismic Transects transtensional tectonics in the Salton Faults 20˚ 20˚ Trough (Fig. 2). Spreading Centers Financial support for U.S., Mexican, and other international participants came -115˚ -110˚ -105˚ Figure 1.
    [Show full text]
  • 69. Geologic and Tectonic History of the Gulf of California1
    69. GEOLOGIC AND TECTONIC HISTORY OF THE GULF OF CALIFORNIA1 D. G. Moore and J. R. Curray, Scripps Institution of Oceanography, La Jolla, California ABSTRACT Deep sea drilling and associated geophysical surveys have provided samples and data that offer new insight into the nature and timing of the evolution of the Gulf of California. We propose a scenario for the opening of the Gulf that begins about 5.5 Ma, when the Pacific-Farallon (Guadalupe) spreading center propagated northeastward, and right- slip transform motion between the Pacific and North American plates jumped from offshore to the eastern side of the Peninsular Range batholith to initiate motion on the present San Andreas Fault and opening of the Gulf. Assuming constant 5.6 cm/yr displacement between the Pacific and North American plates since that time, the Baja California crustal block and Southern California Terrace of the Pacific Plate have moved 300 km to the northwest relative to North America. This is the maximum closure that can be attained in paleogeographic reconstruction of the region by retrofitting along the azimuth of the major Gulf fracture zones. About 300 km is also the amount of offset required by Gastil and his colleagues for matching geological phenomena across the Gulf and is the amount required by Matthews, Ehlig, and others for restoring offsets along the San Andreas Fault in Central and Southern California. We do not pro- pose that any of this 300 km of opening resulted from formation of an earlier proto-Gulf, but instead postulate opening by a single, two-phased process.
    [Show full text]
  • A BRIEF GEOLOGIC HISTORY of NORTHWESTERN MEXICO © Richard C
    A BRIEF GEOLOGIC HISTORY OF NORTHWESTERN MEXICO © Richard C. Brusca Vers. 25 December 2019 (for references, see “A Bibliography for the Gulf of California” at http://rickbrusca.com/http___www.rickbrusca.com_index.html/Research.html) NOTE: This document is periodically updated as new information becomes available (see date stamp above). Photos by the author, unless otherwise indicated. This essay constitutes the draft of a chapter for the planned book, A Natural History of the Sea of Cortez, by R. Brusca; comments on this draft chapter are appreciated and can be sent to [email protected]. References cited can be found in “A Bibliography for the Sea of Cortez” at rickbrusca.com. SECTIONS Pre-Gulf of California Tectonics and the Laramide Orogeny The Basin and Range Region and Opening of the Gulf of California Islands of the Sea of Cortez The Colorado River The Gran Desierto de Altar The Upper Gulf of California The Sierra Pinacate Rocks that Tell Stories Endnotes Glossary of Common Geological Terms 1 Beginning in the latest Paleozoic or early Pre-Gulf of California Tectonics and the Mesozoic, the Farallon Plate began Laramide Orogeny subducting under the western edge of the North American Plate. The Farallon Plate The Gulf of California (“the Gulf,” Sea of was spreading eastward from an active Cortez) provides an excellent example of seafloor spreading center called the East how ocean basins form. It is shallow, young Pacific Rise, or East Pacific Spreading (~7 Ma), and situated along a plate Ridge (Endnote 1). To the west of the East boundary (between the Pacific and North Pacific Rise, the gigantic Pacific Plate was American Plates).
    [Show full text]