The Pleiades the Second Data Release from the Gaia Mission Solves a Decades-Long Controversy About the Distance to the Pleiades Cluster

Total Page:16

File Type:pdf, Size:1020Kb

The Pleiades the Second Data Release from the Gaia Mission Solves a Decades-Long Controversy About the Distance to the Pleiades Cluster STAR SLEUTHING by Guillermo Abramson ow far away are the stars? You might think that shift of the position of a star while the Earth moves along astronomers should know, but distances to the stars its orbit. But the stars are so far away that it was only in the Hare something very difficult to figure out. In daily 19th century that astronomers finally succeeded in measur- life, we estimate nearby distances using a trigonometric ing a handful of stellar parallaxes. Measurements on a grand trick built into our bodies: Our eyes see the world from two scale had to wait for modern technology. slightly different perspectives, and our brain processes this Near the end of the 20th century, the European Space difference to build a three-dimensional image of our envi- Agency (ESA) designed a space telescope to measure stellar ronment. This shift in an object’s apparent position, called parallaxes. The High Precision Parallax Collecting Satel- parallax, enables us to complete a myriad of tasks, from lite (Hipparcos, named in honor of the Greek astronomer threading a needle to catching a ball in mid-air. Hipparchus of Nicaea from the 2nd century BC), observed a Since classical antiquity astronomers have labored to use predefined set of stars over four years. The result was the Hip- the same method on the stars, by observing the apparent parcos Catalogue, published in 1997 and containing precise PLACING the Pleiades The second data release from the Gaia mission solves a decades-long controversy about the distance to the Pleiades cluster. 26 MARCH 2019 • SKY & TELESCOPE parallaxes for a little more than 100,000 stars, all within 300 light-years of Earth. The precision achieved was about 1 milliarcsecond (1 mas), which is 1/1,000 of an arcsecond or 1/3,600,000 of 1°. That is like seeing an astronaut standing on the Moon from Earth. Along with its expected successes, the Hipparcos mis- sion delivered several surprises. The most notable was the distance to a famous stellar cluster, the Pleiades (Messier 45, in Taurus). This group of bluish stars is easily visible by eye in dark autumn skies — although there are many more members than your naked eye can discern. Hipparcos found a distance of roughly 380 light-years, rather less than the 440 light-years of previous calculations, which were based on the stars’ brightnesses and considerations of stellar physics (see S&T: June 1999, p. 40). This was an embarrassing problem. On the one hand, if astronomers had been using the wrong distance for the Ple- iades, then it could have implications on a much larger scale: The Pleiades are a nearby open cluster and for this reason are frequently used to test our models of stellar evolution p THE PLEIADES Perhaps the most famous star cluster in the sky, the bright stars of the Pleiades — often called the Seven Sisters — can be and to calculate the distances to farther stars. On the other seen without binoculars even from a city. It lies roughly 450 light-years hand, if Hipparcos were wrong, then the dubious result might away toward the constellation Taurus. challenge the entire Hipparcos catalog. Was there some NICOLLE R. FULLER / SAYO-ART LLC; PLEIADES PHOTO: DAVIDE DE MARTIN & THE ESA / ESO / NASA PHOTOSHOP FITS LIBERATOR skyandtelescope.com • MARCH 2019 27 Star Sleuthing u WHAT IS PARALLAX? Parallax is the shift in an and so on and so forth, changing methods object’s position against the background scene along the way until we reach the confines when viewed from two different locations. Nearby Apparent shift = 2p of the observable universe. Much of mod- stars have measurable parallaxes due to Earth’s motion around the Sun, which astronomers can ern astronomical knowledge, from stellar use to calculate the stars’ distances. However, physics to the structure and evolution of calculating the true distance using the parallax re- the universe, depends on a good calibra- quires eliminating all sources of error in the angle tion of this distance ladder — and thus on measurement. knowing the distances to nearby stars to a T. Controversy over the Pleiades’ distance instrumental or systematic error astrono- was therefore disconcerting. Parallax mers had overlooked? Was there a problem angle (p) Suspicion quickly fell on Hipparcos, as with just the Pleiades, or also with other additional measurements made with other measurements? Or were the Pleiades really Distance instruments and methods contradicted closer and thus didn’t fit into our models to star its result. In 2004, observations of three of stellar formation and evolution? Pleiads done by the Hubble Space Tele- Astronomers now have an answer. 1 a.u. scope gave a distance of 435 light-years. In 2014, an extremely precise measurement The Importance of Being made by combining data from radio tele- Clumped scopes all over the world gave a result of Open clusters play a crucial role in astronomy. Because a 444 light-years. Measurement after measurement agreed with cluster’s stars formed together from the same interstellar the greater distance, making the one from Hipparcos look cloud, we know that they are the same age. As such, they anomalously small, even though successive reassessments of are excellent laboratories to test physical models of stellar the spacecraft’s data only narrowed in on the smaller value. evolution. What’s more, by knowing their distance and using It took many years to solve the mystery. The issue is appar- it to derive their intrinsic brightness, astronomers can then ently a matter of instrument calibration, due to Hipparcos’s use these models to calculate the distances to farther stars, intricate observing method. Instead of looking at a fixed spot those that are removed from the reach of direct geometrical in the sky, the telescope rotated about itself and changed the methods like parallax. orientation of its rotation axis over time, a common strategy In this regard, the Pleiades play a keystone role in the cali- for all-sky surveys (see page 20). Using this method, Hip- bration of the cosmic distances ladder, which proceeds step by parcos built up a map of the celestial sphere by determining step, from the Sun to the nearest stars, then to farther stars, the relative angular distances between stars and how those distances changed with time. Calculating a particular star’s parallax required distinguishing the star’s motion from those Trigonometric Parallax around it. But closely packed stars — like those in a cluster — Gaia DR2 gave tightly correlated measurements. This called for differ- Hipparcos Gaia DR1 VLBI ent calibrations at different spatial scales and resulted in an unexpected source of error for the important and compact open clusters. Spectroscopic twins But even when they knew what the problem likely was, astronomers had trouble correcting Hipparcos’s data to Moving cluster produce a distance that agreed with the others. It could be that there were multiple sources of error. So, what scientists wanted was confirmation of the larger distance from an ILLUSTRATION, S&T Fit of isochrone instrument that worked as Hipparcos did. CELESTIA Putting the Pleiades in Their Place Binary orbits Hipparcos’s successor, the hat-shaped Gaia, provided the opportunity astronomers needed. Like Hipparcos, Gaia is an 2014 ; HIPPARCOS ANOMALY: ESA satellite of unusual design: It also looks sideways as it S&T 350 400 450 500 GUILLERMO SOURCE: ILLUSTRATION, SCIENCE Distance (light-years) spins, its two telescopes scanning the same strip of sky one S&T after the other as the spacecraft slowly rotates its view. Its p HIPPARCOS’S ANOMALY Shown are distances to the Pleiades ac- second data release contains the positions, parallaxes, and cording to a variety of methods. Note the anomalous distance measured by Hipparcos (purple), the precise result of radio interferometry (green), proper motions of more than 1.3 billion sources and reaches and the early result given by the first Gaia data release (DR1, yellow). The as faint as magnitude 21. The uncertainty of its parallaxes is article uses Gaia’s second data release (light blue). around 40 microarcseconds (40 μas) for objects brighter than PARALLAX: LEAH TISCIONE / SOURCE: MELIS C. ET AL. / SORTING PARALLAXES: ABRAMSON; GUILLERMO 3D PLOT: ABRAMSON / 28 MARCH 2019 • SKY & TELESCOPE magnitude 15. So while Hipparcos could spot an astronaut on the Moon from Earth, Gaia would be able to see a penny. What value would Gaia find for the distance to the famous cluster? Using the first data release from 2016, one team Taygeta Maia calculated that the 164 cluster stars they included in their Atlas Merope Electra analysis gave a distance of 437 light-years. It was a clear con- Pleione firmation that Hipparcos’s value was wrong. Alcyone How does this analysis work? Using the same method, we can calculate the distance to the Pleiades based on Gaia’s To Earth second data release, announced in April 2018: First we have to pick the Pleiades out from everything else that shines in the same part of the sky. A download of all the (nearly 700,000!) sources lying within 5° of the Pleiades’ p UNUSUAL STREAM When you plot the positions of the cluster’s members in 3D, the brightest stars form a string stretching away from position gives a cone of observations, with its tip in the solar the swarm and pointing toward the solar system (on the right side of system and extending indefinitely into space. Somewhere this image). The effect might be a byproduct of the data analysis, but inside that cone lie the Pleiades, as well as many field stars in other research has seen similar patterns in open clusters.
Recommended publications
  • A Search for Pulsations in Helium White Dwarfs
    DRAFT VERSION OCTOBER 13, 2018 Preprint typeset using LATEX style emulateapj v. 11/10/09 A SEARCH FOR PULSATIONS IN HELIUM WHITE DWARFS JUSTIN D. R. STEINFADT1,LARS BILDSTEN1,2,DAVID L. KAPLAN3,BENJAMIN J. FULTON4,STEVE B. HOWELL5, T. R. MARSH6 , ERAN O. OFEK7,8 , AND AVI SHPORER1,4 Draft version October 13, 2018 ABSTRACT The recent plethora of sky surveys, especially the Sloan Digital Sky Survey, have discovered many low- mass (M < 0.45M⊙) white dwarfs that should have cores made of nearly pure helium. These WDs come in two varieties; those with masses 0.2 < M < 0.45M⊙ and H envelopes so thin that they rapidly cool, and those with M < 0.2M⊙ (often called extremely low mass, ELM, WDs) that have thick enough H envelopes to sustain 109 years of H burning. In both cases, these WDs evolve through the ZZ Ceti instability strip, Teff ≈ 9,000–12,000K, where g-mode pulsations always occur in Carbon/Oxygen WDs. This expectation, plus theoretical work on the contrasts between C/O and He core WDs, motivated our search for pulsations in 12 well characterized helium WDs. We report here on our failure to find any pulsators amongst our sample. Though we have varying amplitude limits, it appears likely that the theoretical expectations regarding the onset of pulsations in these objects requires closer consideration. We close by encouraging additional observations as new He WD samples become available, and speculate on where theoretical work may be needed. Subject headings: stars: white dwarfs— stars: oscillations 1. INTRODUCTION for C/O-core WDs.
    [Show full text]
  • Radio and IR Interferometry of Sio Maser Stars
    Cosmic Masers - from OH to H0 Proceedings IAU Symposium No. 287, 2012 c International Astronomical Union 2012 R.S. Booth, E.M.L. Humphreys & W.H.T. Vlemmings, eds. doi:10.1017/S1743921312006989 Radio and IR interferometry of SiO maser stars Markus Wittkowski1, David A. Boboltz2,MalcolmD.Gray3, Elizabeth M. L. Humphreys1 Iva Karovicova4, and Michael Scholz5,6 1 ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei M¨unchen, Germany 2 US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420, USA 3 Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Manchester M13 9PL, UK 4 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 5 Zentrum f¨ur Astronomie der Universit¨at Heidelberg (ZAH), Institut f¨ur Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 6 Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney NSW 2006, Australia Abstract. Radio and infrared interferometry of SiO maser stars provide complementary infor- mation on the atmosphere and circumstellar environment at comparable spatial resolution. Here, we present the latest results on the atmospheric structure and the dust condensation region of AGB stars based on our recent infrared spectro-interferometric observations, which represent the environment of SiO masers. We discuss, as an example, new results from simultaneous VLTI and VLBA observations of the Mira variable AGB star R Cnc, including VLTI near- and mid- infrared interferometry, as well as VLBA observations of the SiO maser emission toward this source. We present preliminary results from a monitoring campaign of high-frequency SiO maser emission toward evolved stars obtained with the APEX telescope, which also serves as a pre- cursor of ALMA images of the SiO emitting region.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Evidence for Very Extended Gaseous Layers Around O-Rich Mira Variables and M Giants B
    The Astrophysical Journal, 579:446–454, 2002 November 1 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. EVIDENCE FOR VERY EXTENDED GASEOUS LAYERS AROUND O-RICH MIRA VARIABLES AND M GIANTS B. Mennesson,1 G. Perrin,2 G. Chagnon,2 V. Coude du Foresto,2 S. Ridgway,3 A. Merand,2 P. Salome,2 P. Borde,2 W. Cotton,4 S. Morel,5 P. Kervella,5 W. Traub,6 and M. Lacasse6 Received 2002 March 15; accepted 2002 July 3 ABSTRACT Nine bright O-rich Mira stars and five semiregular variable cool M giants have been observed with the Infrared and Optical Telescope Array (IOTA) interferometer in both K0 (2.15 lm) and L0 (3.8 lm) broad- band filters, in most cases at very close variability phases. All of the sample Mira stars and four of the semire- gular M giants show strong increases, from ’20% to ’100%, in measured uniform-disk (UD) diameters between the K0 and L0 bands. (A selection of hotter M stars does not show such a large increase.) There is no evidence that K0 and L0 broadband visibility measurements should be dominated by strong molecular bands, and cool expanding dust shells already detected around some of these objects are also found to be poor candi- dates for producing these large apparent diameter increases. Therefore, we propose that this must be a con- tinuum or pseudocontinuum opacity effect. Such an apparent enlargement can be reproduced using a simple two-component model consisting of a warm (1500–2000 K), extended (up to ’3 stellar radii), optically thin ( ’ 0:5) layer located above the classical photosphere.
    [Show full text]
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • Frankfurt Pleiades Star Map 2
    FRANKFURT PLEIADES STAR MAP 2 In investigating the Martian connection of the Pleiadian pattern of Frankfurt, one cannot avoid to address the origins at least in the propagation of this motif in the modern era and in all the financial powerhouses of today’s World Financial Oder. This is in part the Pleiades conspiracy as this modern version of the ‘Pleiadian Conspiracy’ started here in Frankfurt with the Rothschild dynasty by Amschel Moses Bauer, 1743. This critique is not meant to placate all those of the said family or those that work in such financial structures or businesses and specifically not those in Frankfurt. However the argument is that those behind the family apparatus are of a cabal that is connected to the allegiance of not the true GOD of the Universe, YHVH but to the false usurper Lucifer. It is Lucifer they worship and venerate as the ‘god of this world’ and is the God of Mammon according to Jesus’ assessment. According to research and especially based on The 13 Bloodlines of the Illuminati by Springmeier, the current financial domination of the world began in Frankfurt with Mayer Amschel. They were of Jewish extract but adhere more toward the Kabbalistic, Zohar, and ancient Babylonian secret mystery religion initiated by Nimrod after the Flood of Noah. The star Taygete corresponds to the Literaturahaus building. T he star Celaena corresponds to the Burgenamt Zentrales building. The star Merope corresponds to the area of the Timmitus und THE PLEIADES Hyperakusis Center. The star Alcyone corresponds to the Oper FINANCIAL DISTRICT The Bearing-Point building is Frankfurt or the Opera House.
    [Show full text]
  • On the Polar Distances of the Greenwich Transit Circle
    fi 1260-1263. l'he prominence, which iR due in many astronoiiiicsl re- ortlcr to restore this uniforiiiify , which is otiviously of the searches to the long and excellent series of the Greenwich iiiost esseritial iiriporhiicbe, 1 have rel'errctl all the otiser- mericliorial oliservations, gives to any changes of the instrri- vatioiis to the Circle reatlirigs. which corresporrtl to the Naclir nients, by means of which these ohservatioiis are procurecl, observations of the wire. It iiiight have heen tlcsirahle to a higher and more general importance, than they woulcl other- get rid, as much as pnssilile, of' pere~nalecpitions in the wise possess. Hence the interest, with which astrononicrs reading of iiiicroscope - iiiicronieters etc. hy iisiclg for each are wont to regRrtl the construction and cfhiency of any new observer his own Zenithpoints. A closer inspec:tiori sjiotv,, instrunient of superior pretensions, is greatly enhanced in however, that, owing to several ciiwes, this (:nurse is for the case of the powerful Greenwich Transit Circle, and the the past observations inipracticable. I have 'coiiserperitly asiral question, concerning the degree of correctness, which considered it best to adopt the same periods of uri;iltered the results of a new apparatus have attained, acquires addi- Zenithpoints, as have Iieerl used in the Greenwiclr rechictioris. tional claims to be answered. As I an1 not aware, that a The values of the corrections, which it was accordingly seces- strict determination of this point has yet been attempted, 1 sary to apply to the single ohservations, fluctuate I)ct\veeri shall here niake it the suhject of inquiry with reepect to -fO"45 and TO"71.
    [Show full text]
  • METEOR CSILLAGÁSZATI ÉVKÖNYV 2019 Meteor Csillagászati Évkönyv 2019
    METEOR CSILLAGÁSZATI ÉVKÖNYV 2019 meteor csillagászati évkönyv 2019 Szerkesztette: Benkő József Mizser Attila Magyar Csillagászati Egyesület www.mcse.hu Budapest, 2018 Az évkönyv kalendárium részének összeállításában közreműködött: Tartalom Bagó Balázs Görgei Zoltán Kaposvári Zoltán Kiss Áron Keve Kovács József Bevezető ....................................................................................................... 7 Molnár Péter Sánta Gábor Kalendárium .............................................................................................. 13 Sárneczky Krisztián Szabadi Péter Cikkek Szabó Sándor Szőllősi Attila Zsoldos Endre: 100 éves a Nemzetközi Csillagászati Unió ........................191 Zsoldos Endre Maria Lugaro – Kereszturi Ákos: Elemkeletkezés a csillagokban.............. 203 Szabó Róbert: Az OGLE égboltfelmérés 25 éve ........................................218 A kalendárium csillagtérképei az Ursa Minor szoftverrel készültek. www.ursaminor.hu Beszámolók Mizser Attila: A Magyar Csillagászati Egyesület Szakmailag ellenőrizte: 2017. évi tevékenysége .........................................................................242 Szabados László Kiss László – Szabó Róbert: Az MTA CSFK Csillagászati Intézetének 2017. évi tevékenysége .........................................................................248 Petrovay Kristóf: Az ELTE Csillagászati Tanszékének működése 2017-ben ............................................................................ 262 Szabó M. Gyula: Az ELTE Gothard Asztrofi zikai Obszervatórium
    [Show full text]
  • 10. Scientific Programme 10.1
    10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic
    [Show full text]
  • Sky-High 2009
    Sky-High 2009 Total Solar Eclipse, 29th March 2006 The 17th annual guide to astronomical phenomena visible from Ireland during the year ahead (naked-eye, binocular and beyond) By John O’Neill and Liam Smyth Published by the Irish Astronomical Society € 5 P.O. Box 2547, Dublin 14, Ireland. e-mail: [email protected] www.irishastrosoc.org Page 1 Foreword Contents 3 Your Night Sky Primer We send greetings to all fellow astronomers and welcome them to this, the seventeenth edition of 5 Sky Diary 2009 Sky-High. 8 Phases of Moon; Sunrise and Sunset in 2009 We thank the following contributors for their 9 The Planets in 2009 articles: Patricia Carroll, John Flannery and James O’Connor. The remaining material was written by 12 Eclipses in 2009 the editors John O’Neill and Liam Smyth. The Gal- 14 Comets in 2009 lery has images and drawings by Society members. The times of sunrise etc. are from SUNRISE by J. 16 Meteors Showers in 2009 O’Neill. 17 Asteroids in 2009 We are always glad to hear what you liked, or 18 Variable Stars in 2009 what you would like to have included in Sky-High. If we have slipped up on any matter of fact, let us 19 A Brief Trip Southwards know. We can put a correction in future issues. And if you have any problem with understanding 20 Deciphering Star Names the contents or would like more information on 22 Epsilon Aurigae – a long period variable any topic, feel free to contact us at the Society e- mail address [email protected].
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • A Case for an Atmosphere on Super-Earth 55 Cancri E
    The Astronomical Journal, 154:232 (8pp), 2017 December https://doi.org/10.3847/1538-3881/aa9278 © 2017. The American Astronomical Society. All rights reserved. A Case for an Atmosphere on Super-Earth 55 Cancri e Isabel Angelo1,2 and Renyu Hu1,3 1 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA; [email protected] 2 Department of Astronomy, University of California, Campbell Hall, #501, Berkeley CA, 94720, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA Received 2017 August 2; revised 2017 October 6; accepted 2017 October 8; published 2017 November 16 Abstract One of the primary questions when characterizing Earth-sized and super-Earth-sized exoplanets is whether they have a substantial atmosphere like Earth and Venus or a bare-rock surface like Mercury. Phase curves of the planets in thermal emission provide clues to this question, because a substantial atmosphere would transport heat more efficiently than a bare-rock surface. Analyzing phase-curve photometric data around secondary eclipses has previously been used to study energy transport in the atmospheres of hot Jupiters. Here we use phase curve, Spitzer time-series photometry to study the thermal emission properties of the super-Earth exoplanet 55 Cancri e. We utilize a semianalytical framework to fit a physical model to the infrared photometric data at 4.5 μm. The model uses parameters of planetary properties including Bond albedo, heat redistribution efficiency (i.e., ratio between radiative timescale and advective timescale of the atmosphere), and the atmospheric greenhouse factor.
    [Show full text]