Handbook of Transfusion Medicine 5Th Edition Handbook of Transfusion Medicine Editor: Dr Derek Norfolk

Total Page:16

File Type:pdf, Size:1020Kb

Handbook of Transfusion Medicine 5Th Edition Handbook of Transfusion Medicine Editor: Dr Derek Norfolk Handbook of of Handbook Handbook of Transfusion Transfusion Transfusion Medicine Editor: Dr Derek Norfolk Medicine 5th edition5th United Kingdom Blood Services 5th edition Handbook of Transfusion Medicine Editor: Dr Derek Norfolk United Kingdom Blood Services 5th edition Published by TSO and available from: Online www.tsoshop.co.uk Mail, Telephone, Fax & E-mail TSO PO Box 29, Norwich NR3 1GN Telephone orders/General enquiries: 0870 600 5522 Fax orders: 0870 600 5533 E-mail: [email protected] Textphone: 0870 240 3701 TSO@Blackwell and other Accredited Agents Editor Dr Derek Norfolk c/o Caroline Smith JPAC Manager NHS Blood and Transplant Longley Lane SHEFFIELD S5 7JN Email: [email protected] © Crown Copyright 2013 All rights reserved. You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit http://www.nationalarchives.gov.uk/ doc/open-government-licence/ or e-mail: [email protected] Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned. Applications for reproduction should be made in writing to The National Archives, Kew, Richmond, Surrey TW9 4DU. e-mail: [email protected] First published 2013 ISBN 9780117068469 Printed in the United Kingdom by The Stationery Office. Contents List of figures ix List of tables xi Preface xiii 1 Transfusion ten commandments 1 2 Basics of blood groups and antibodies 5 2.1 Blood group antigens 7 2.2 Blood group antibodies 7 2.3 Testing for red cell antigens and antibodies in the laboratory 7 2.4 The ABO system 8 2.4.1 Transfusion reactions due to ABO incompatibility 8 2.5 The Rh system 9 2.6 Other clinically important blood group systems 10 2.7 Compatibility procedures in the hospital transfusion laboratory 10 2.7.1 Group and screen 10 2.7.2 Compatibility testing 10 2.7.3 Electronic issue 11 2.7.4 Blood for planned procedures 11 3 Providing safe blood 13 3.1 Blood donation 15 3.1.1 Donor eligibility 16 3.1.2 Frequency of donation 16 3.1.3 Genetic haemochromatosis 16 3.2 Tests on blood donations 16 3.2.1 Screening for infectious agents 16 3.2.2 Precautions to reduce the transfusion transmission of prion-associated diseases 17 3.2.3 Blood groups and blood group antibodies 17 3.2.4 Molecular blood group testing 17 iii HANDBOOK OF TRANSFUSION MEDICINE 3.3 Blood products 17 3.3.1 Blood components 18 3.3.2 Labelling of blood components 18 4 Safe transfusion – right blood, right patient, right time and right place 27 4.1 Patient identification 31 4.2 Documentation 32 4.3 Communication 33 4.4 Patient consent 33 4.5 Authorising (or ‘prescribing’) the transfusion 33 4.6 Requests for transfusion 34 4.7 Pre-transfusion blood sampling 34 4.8 Collection of blood components and delivery to clinical areas 35 4.9 Receiving blood in the clinical area 35 4.10 Administration to the patient 36 4.11 Monitoring the transfusion episode 36 4.12 Technical aspects of transfusion 37 4.12.1 Intravenous access 37 4.12.2 Infusion devices 38 4.12.3 Rapid infusion devices 38 4.12.4 Blood warmers 38 4.12.5 Compatible intravenous fluids 38 4.12.6 Co-administration of intravenous drugs and blood 38 4.13 Transfusion of blood components 39 5 Adverse effects of transfusion 41 5.1 Haemovigilance 43 5.2 Non-infectious hazards of transfusion 44 5.2.1 Acute transfusion reactions 44 5.2.2 Severe and life-threatening reactions 45 5.2.3 Less severe acute transfusion reactions 53 5.2.4 Delayed transfusion reactions 53 iv CONteNts 5.3 Infectious hazards of transfusion 55 5.3.1 Viral infections 55 5.3.2 Bacterial infections 58 5.3.3 Protozoal infections 59 5.4 Variant Creutzfeldt–Jakob disease (vCJD) 59 6 Alternatives and adjuncts to blood transfusion 61 6.1 Autologous blood transfusion (collection and reinfusion of the patient’s own red blood cells) 63 6.1.1 Predeposit autologous donation (PAD) 63 6.1.2 Intraoperative cell salvage (ICS) 64 6.1.3 Postoperative cell salvage (PCS) 65 6.1.4 Acute normovolaemic haemodilution (ANH) 66 6.2 Pharmacological measures to reduce transfusion 66 6.2.1 Antifibrinolytic and procoagulant drugs 66 6.2.2 Aprotinin 67 6.2.3 Tissue sealants 67 6.2.4 Recombinant activated Factor VII (rFVIIa, NovoSeven™) 67 6.2.5 Desmopressin (DDAVP) 68 6.2.6 Erythropoiesis stimulating agents (ESAs) 68 6.3 Thrombopoietin mimetics 69 6.4 Parenteral iron 69 7 Effective transfusion in surgery and critical care 71 7.1 Transfusion in surgery 74 7.1.1 Red cell transfusion 74 7.1.2 Bleeding problems in surgical patients 76 7.1.3 Newer oral anticoagulants 78 7.1.4 Heparins 78 7.1.5 Antiplatelet drugs 78 7.1.6 Systemic fibrinolytic agents 79 7.1.7 Cardiopulmonary bypass 79 7.1.8 Liver transplantation 79 7.2 Transfusion in critically ill patients 80 7.2.1 Red cell transfusion in critical care 80 7.2.2 Platelet transfusion in critical care 80 7.2.3 Plasma component transfusion in critical care 82 7.3 Transfusion management of major haemorrhage 82 7.3.1 Red cell transfusion in major haemorrhage 83 7.3.2 Coagulation and major haemorrhage 85 7.3.3 Platelets and major haemorrhage 86 7.3.4 Pharmacological treatments in major haemorrhage 86 7.3.5 Acute upper gastrointestinal bleeding 86 v HANDBOOK OF TRANSFUSION MEDICINE 7.3.6 Major obstetric haemorrhage 87 7.3.7 Audit of the management of major haemorrhage 87 8 Effective transfusion in medical patients 89 8.1 Haematinic deficiencies 92 8.1.1 Iron deficiency anaemia 92 8.1.2 Vitamin B12 or folate deficiency 92 8.2 Anaemia of chronic disease (ACD) 92 8.3 Anaemia in cancer patients 93 8.4 Anaemia and renal disease 93 8.5 Transfusion and organ transplantation 93 8.5.1 Renal transplantation 93 8.5.2 Haemolysis after ABO-incompatible solid organ transplantation 94 8.6 Haemoglobinopathies 94 8.6.1 β-thalassaemia major 95 8.6.2 Red cell alloimmunisation in thalassaemia 95 8.6.3 Sickle cell disease 95 8.6.4 Red cell transfusion in sickle cell disease 96 8.6.5 Red cell alloimmunisation in sickle cell disease 97 8.6.6 Hyperhaemolytic transfusion reactions 97 8.7 Transfusion in haemato-oncology 98 8.7.1 Transfusion support for myelosuppressive treatment 98 8.7.2 Red cell transfusion 98 8.7.3 Prophylactic platelet transfusion 98 8.7.4 Refractoriness to platelet transfusion 99 8.7.5 Selection of compatible blood for patients who have received a marrow or peripheral blood HSC transplant from an ABO or RhD-incompatible donor 100 8.7.6 Prevention of transfusion-associated graft-versus-host disease (TA-GvHD) 102 8.7.7 Prevention of cytomegalovirus transmission by transfusion 103 8.7.8 Long-term transfusion support for patients with myelodysplasia 103 8.8 Indications for intravenous immunoglobulin (IVIg) 103 9 Effective transfusion in obstetric practice 105 9.1 Normal haematological values in pregnancy 107 9.2 Anaemia and pregnancy 108 9.2.1 Iron deficiency 108 9.2.2 Folate deficiency 109 9.3 Red cell transfusion in pregnancy 109 9.4 Major obstetric haemorrhage 109 vi CONteNts 9.5 Prevention of haemolytic disease of the fetus and newborn (HDFN) 110 9.5.1 HDFN due to anti-D 111 9.5.2 Potentially sensitising events 111 9.5.3 Routine antenatal anti-D prophylaxis (RAADP) 112 9.5.4 Anti-D Ig prophylaxis after the birth of a RhD positive baby or intrauterine death 113 9.5.5 Inadvertent transfusion of RhD positive blood 113 10 Effective transfusion in paediatric practice 115 10.1 Fetal transfusion 118 10.1.1 Intrauterine transfusion of red cells for HDFN 118 10.1.2 Intrauterine transfusion of platelets and management of NAIT 119 10.2 Neonatal transfusion 120 10.2.1 Neonatal red cell exchange transfusion 120 10.2.2 Large volume neonatal red cell transfusion 121 10.2.3 Neonatal ‘top-up’ transfusion 121 10.2.4 Neonatal platelet transfusions 123 10.2.5 Neonatal FFP and cryoprecipitate transfusion 123 10.2.6 Neonatal granulocyte transfusion 124 10.2.7 T-antigen activation 124 10.3 Transfusion of infants and children 125 10.3.1 Paediatric intensive care 125 10.3.2 Haemato-oncology patients 125 10.4 Major haemorrhage in infants and children 126 11 Therapeutic apheresis 127 11.1 Therapeutic plasma exchange (TPE) 129 11.1.1 Indications for therapeutic plasma exchange 129 11.1.2 Risks associated with therapeutic plasma exchange 130 11.1.3 Thrombotic thrombocytopenic purpura (TTP) 131 11.2 Therapeutic erythrocytapheresis 131 11.3 Therapeutic leucapheresis 132 11.4 Therapeutic plateletpheresis 132 11.5 Therapeutic extracorporeal photopheresis 132 11.6 Column immunoadsorption 132 vii HANDBOOK OF TRANSFUSION MEDICINE 12 Management of patients who do not accept transfusion 133 12.1 Anxiety about the risks of blood transfusion 135 12.2 Jehovah’s Witnesses and blood transfusion 135 12.3 Mental competence and refusal of transfusion 136 Appendices 139 Appendix 1: Key websites and references 141 Appendix 2: Acknowledgements 147 Abbreviations and glossary 149 Abbreviations 151 Glossary 155 Index 161 viii List of figures Figure 3.1 Production of blood components and blood derivatives 19 Figure 4.1 Identity check between patient and blood component 37 Figure 5.1 Clinical flowchart for the management of acute transfusion reactions 46 Figure 7.1 Guidelines for red cell transfusion in critical care 81 Figure 7.2 Algorithm for the management of major haemorrhage 84 ix List of tables Table 2.1 Distribution of ABO blood groups and antibodies 8 Table 2.2 Choice of group of red cells, platelets, fresh frozen plasma (FFP) and cryoprecipitate according to recipient’s ABO group 9 Table 3.1 Red cells in additive solution
Recommended publications
  • What Does a Diagnosis of Myeloma Mean in 2015
    What does a diagnosis of Myeloma mean in 2015 Dr Aristeidis Chaidos Consultant Haematologist Hammersmith Hospital Learning objectives • define myeloma and related disorders • diagnosis & disease monitoring • “many myelomas”: staging & prognostic systems • the evolving landscape in myeloma treatment • principles of management with emphasis to care in the community • future challenges and novel therapies Myeloma – overview • malignancy of the plasma cells (PC): the terminally differentiated, antibody producing B cells • myeloma cells infiltrate the bone marrow • IgG or IgA paraprotein (PP) and/or free light chains in blood and urine • bone destruction • kidney damage • anaemia • despite great advances in the last 15 years myeloma remains an incurable disease Myeloma in figures • 1% of all cancers – 13% of blood cancers • median age at diagnosis: 67 years • only 1% of patients <40 years • 4 – 5 new cases per 100,000 population annually, but different among ethnic groups • 4,800 new myeloma patients in the UK each year • the prevalence of myeloma in the community increases with outcome improvements and aging population Myeloma related conditions smoldering symptomatic remitting plasma cell MGUS refractory myeloma myeloma relapsing leukaemia <10% PC ≥10% PC +/- ≥10% PC or plasmacytoma circulating PC PP <30g/L PP ≥30g/L Any PP in serum and/or urine extramedullary no organ no organ disease damage or damage or organ damage & symptoms symptoms symptoms Death MGUS monoclonal gammopathy of unknown significance • The most common pre-malignant condition:
    [Show full text]
  • Transfusion Service Introduction Blood/Blood Products Requests and Turnaround Time Expectations
    Transfusion Service Introduction All blood products and blood components are supplied to UnityPoint Health-Meriter Hospital by the American Red Cross Blood Services. Pathology consultation is available regarding blood and/or components and dosages. ABO and Rho(D)—specific type is used whenever possible for leuko-poor packed cell transfusions. ABO-compatible blood is used for all plasma and platelet components whenever possible. For any orders involving HLA-matched components, the patient must have been HLA typed (sent to the American Red Cross) a minimum of 48 hours prior to intended infusion of the component. HLA typing is only required once. Blood components that are thawed, pooled, washed, volume-reduced, or deglycerolized for a patient will be charged to the patient even if not transfused. The charge is done because these components may not be suitable for another patient. Examples include: Autologous or directed donations Pooled cryoprecipitate 4-hour expiration Thawed fresh frozen plasma 24-hour expiration Thawed cryoprecipitate 6-hour expiration Deglycerolized red cells 24-hour expiration Washed red cells 24-hour expiration All blood components must be completely infused within 4 hours of release from UnityPoint Health-Meriter Laboratories Blood Bank, or be infused within the expiration time. Refer to UnityPoint Health -Meriter’s Blood and Blood Products Transfusion Policy #123 for additional information located on MyMeriter. Blood/Blood Products Requests and Turnaround Time Expectations Requests from UnityPoint Health-Meriter Hospital are entered in the hospital computer system and print in the UnityPoint Health- Meriter Laboratories Blood Bank. For the comfort of the patient, it is important to coordinate collection for other tests with Blood Bank specimens.
    [Show full text]
  • Guidelines on the Assessment of Bleeding Risk Prior to Surgery Or Invasive Procedures
    guideline Guidelines on the assessment of bleeding risk prior to surgery or invasive procedures British Committee for Standards in Haematology Y. L. Chee, 1 J. C. Crawford, 2 H. G. Watson1 and M. Greaves3 1Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, 2Department of Anaesthetics, Southern General Hospital, Glasgow, and 3Department of Medicine and Therapeutics, School of Medicine, University of Aberdeen, Aberdeen, UK surgery or invasive procedures to predict bleeding risk. The Summary aim is to evaluate the use of indiscriminate testing. Appro- Unselected coagulation testing is widely practiced in the priate testing of patients with relevant clinical features on process of assessing bleeding risk prior to surgery. This may history or examination is not the topic of this guideline. The delay surgery inappropriately and cause unnecessary concern target population includes clinicians responsible for assess- in patients who are found to have ‘abnormal’ tests. In addition ment of patients prior to surgery and other invasive it is associated with a significant cost. This systematic review procedures. was performed to determine whether patient bleeding history and unselected coagulation testing predict abnormal periop- Methods erative bleeding. A literature search of Medline between 1966 and 2005 was performed to identify appropriate studies. The writing group was made up of UK haematologists with Studies that contained enough data to allow the calculation of a special interest in bleeding disorders and an anaesthetist. the predictive value and likelihood ratios of tests for periop- First, the commonly employed coagulation screening tests erative bleeding were included. Nine observational studies were identified and their general and specific limitations (three prospective) were identified.
    [Show full text]
  • Fresh Frozen Plasma in General Practice
    Practical guide to using frozen and fresh frozen plasma in general practice Why every practice should keep a bag in the freezer Kit Sturgess; MA; VetMB; PhD; CertVR; DSAM; CertVC; FRCVS RCVS Recognised Specialist in Small Animal Medicine Advanced Practitioner in Veterinary Cardiology Introduction Keeping stock at reasonable levels in a practice is vital to good business management balancing the need to have a product available against the costs of keeping stock that is not used and potentially may go out of date and need to be replaced (as well as subtle small costs of space, stock taking, disposal of out-of-date product etc.). Practices need, therefore, to make decisions about preparedness for ‘what if’ scenarios and have protocols in place. The difficult question for many practices is how bizarre/uncommon should these scenarios be to warrant keeping a drug or treatment in stock or buying a specialist piece of equipment. This can only really be answered on an individual practice basis as it will depend on the type of cases seen as well as the likely ability of clients to want to pay if the treatment/investigation is expensive and the relationship with other local practices in terms of borrowing treatments or using equipment. It is also important to try and understand the value that a particular drug or treatment will have on morbidity and mortality of a particular condition and whether the patient could be referred onwards if necessary so not having calcium available if presented with a seizuring hypocalcaemic patient would be a significant issue in that patient’s care.
    [Show full text]
  • Blood Banking/Transfusion Medicine Fellowship Program
    DEPARTMENT OF PATHOLOGY AND LABORATORY MEDICINE BLOOD BANKING/TRANSFUSION MEDICINE FELLOWSHIP PROGRAM THIS NEW ONE-YEAR ACGME-ACCREDITED FELLOWSHIP IN BLOOD BANKING/TRANSFUSION MEDICINE OFFERS STATE OF THE ART COMPREHENSIVE TRAINING IN BLOOD BANKING, COAGULATION, APHERESIS, AND HEMOTHERAPY AT THE MEMORIAL HERMANN HOSPITAL (MHH)-TEXAS MEDICAL CENTER (TMC) FOR PEDIATRICS AND ADULTS. This clinically-oriented fellowship is ideal for the candidate looking for exceptional experience in hemotherapy decision-making and coagulation consultation. We have a full spectrum of medical and surgical specialties, including a level 1 trauma center, as well as a busy solid organ transplant service (renal, liver, pancreas, cardiac, and lung). Fellows will rotate through: Our unique hemotherapy service: This innovative clinical consultative service for the Heart and Vascular Institute (HVI) allows fellows to serve as interventional blood banking consultants at the bed side as part of a multidisciplinary care team; our patients have complex bleeding and coagulopathy issues. Therapeutic apheresis service: This consultative service provide 24/7 direct patient care covering therapeutic plasmapheresis, red blood cell (RBC) exchanges, photopheresis, plateletpheresis, leukoreduction, therapeutic phlebotomies, and other related procedures on an inpatient and outpatient basis. We performed approximately over 1000 therapeutic plasma exchanges and RBC exchanges every year. Bloodbank: The MHH-TMC reference lab is one of the largest in Southeast Texas. This rotation provides extensive experience in interpreting antibody panel reports, working up transfusion reactions, investigating blood compatibility/incompatibility issues, and monitoring component usage. Gulf Coast Regional Blood Center: This rotation provides donor exposure in one of the largest community blood donation centers in the US as well as cellular therapy and immunohematology training.
    [Show full text]
  • Transfusion Medicine/Blood Banking
    Transfusion Medicine/Blood Banking REQUIRED rotation This is a onetime rotation and is not planned by PGY level. Objective: The objective of this rotation is to teach fellows the clinical and laboratory aspects of Transfusion Medicine and Blood Banking as it impacts hematology/oncology. Goals: The goal of this rotation is to teach fellows blood ordering practices, the difference of type and screen and type and cross matches and selection of appropriate products for transfusion. Fellows will also learn to perform, watch type and screen red cell antibodies and will learn the significance of ABO, Rh and other blood group antigen systems briefly so as to understand the significance of red cell antibodies in transfusion practices. Fellows will learn the different types of Blood components, their indications and contraindications and component modification. e.g. Irradiated and washed products, and special product request and transfusions e.g. granulocyte transfusion, CMV negative products etc. Fellows will learn and become proficient in the laboratory aspects of autoimmune hemolytic anemia, coagulopathies and bleeding disorders in relation to massive transfusions and the laboratory aspects and management of platelet refractoriness. Fellows will learn some aspects of coagulation factor replacement for factor deficiencies and inhibitors. Activities: Fellows will rotate in the Blood Bank at UMC and learn to perform, observe and interpret standard blood bank procedures such as ABO Rh typing, Antibody Screen, Antibody Identification and Direct Antiglobulin Test (DAT). Fellows will also watch platelet cross matching for platelet refractoriness. Fellows will attend and present a few didactic lectures of about 40 minutes on Blood Bank related topics as they apply to hematology/oncology like blood group antigens, Blood Component therapy, Transfusion reactions, Autoimmune hemolytic anemia, Platelet immunology and HLA as it applies to transfusion medicine.
    [Show full text]
  • Current Practice in Transfusion Medicine April 2019
    CURRENT PRACTICE IN TRANSFUSION MEDICINE APRIL 2019 Faculty/Speakers Luzmary Alverez Suzanne A. Arinsburg, DO Assistant Director, Blood Bank and Transfusion Services - Mount Sinai Hospital; Assistant Professor of Pathology - Icahn School of Medicine at Mount Sinai Scott Avecilla, MD, PhD Medical Director of Cellular Therapy and Assistant Medical Director of Transfusion Medicine, Department of Laboratory Medicine - Memorial Sloan Kettering Cancer Center Ian Bain, MD, PhD Ian received his medical training and PhD at the Albert Einstein College of Medicine in the Bronx, with his research work focusing on the transcriptional mechanisms underlying anergy in natural Regulatory T cells. He completed his training in Clinical Pathology, as well as subspecialty training in Molecular Genetic Pathology. Currently is a fellow in Transfusion Medicine and Apheresis at Yale-New Haven. He will be transitioning to a role as an Assistant Professor in the Department of Pathology at Mt Sinai Hospital/Icahn School of Medicine with a focus on transfusion medicine, apheresis and cell therapy. His academic interests center around mechanisms and sources of red cell alloimmunization, as well as the impact of novel immmunotherapies on autoantibody formation. Anna Burgos, MT(ASCP) SBB Senior Immunohematologist, Laboratory of Immunohematology and Genomics – New York Blood Center Carmelita Carrier, PhD Director, Fred H. Allen Laboratory of Immunogenetics, New York Blood Center Connie Cai Immunohematology, New York Blood Center Stephanie Dormesy Manager-Apheresis &
    [Show full text]
  • Donor Sex, Age and Ethnicity Impact Stored Red Blood Cell Antioxidant Metabolism Through Mechanisms in Part Explained by Glucose
    Blood Transfusion SUPPLEMENTARY APPENDIX Donor sex, age and ethnicity impact stored red blood cell antioxidant metabolism through mechanisms in part explained by glucose 6-phosphate dehydrogenase levels and activity Angelo D’Alessandro, 1,2,3 Xiaoyun Fu, 4 Tamir Kanias, 3,5 Julie A. Reisz, 1 Rachel Culp-Hill, 1 Yuelong Guo, 6 Mark T. Gladwin, 5 Grier Page, 6 Steve Kleinman, 7 Marion Lanteri, 8 Mars Stone, 8 Michael P. Busch, 8# and James C. Zimring 9# for the Recipi - ent Epidemiology and Donor Evaluation Study-III (REDS III) 1Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA; 2De - partment of Medicine – Division of Hematology, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA; 3Vitalant Re - search Institute (previously Blood Systems Research Institute), Denver, CO, USA; 4Bloodworks Northwest Research Institute, Seattle, WA, USA; 5University of Pittsburgh, Pittsburgh, PA, USA; 6RTI International, Atlanta, GA, USA; 7University of British Columbia, Victoria, Canada; 8Vi - talant Research Institute (previously Blood Systems Research Institute), San Francisco, CA, USA and 9University of Virginia, Charlotesville, VA, USA #MPB and JCZ contributed equally as co-senior authors ©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2020.246603 Received: January 7, 2020. Accepted: March 27, 2020. Pre-published: April 2, 2020. Correspondence: ANGELO D’ALESSANDRO - [email protected] SUPPLEMENTARY MATERIAL
    [Show full text]
  • Blood Establishment Registration and Product Listing .3 Change in Information
    FORM APPROVED: OMB No. 0910-0052. Expiration Date: March 31, 2015. See page 3 for Burden Statement. 1. REGISTRATION NUMBER 3. REASON FOR SUBMISSION FOR FDA USE ONLY DEPARTMENT OF HEALTH AND HUMAN SERVICES FEI : .1 ANNUAL REGISTRATION FOOD AND DRUG ADMINISTRATION CFN : .2 INITIAL REGISTRATION 2. U.S. LICENSE NUMBER BLOOD ESTABLISHMENT REGISTRATION AND PRODUCT LISTING .3 CHANGE IN INFORMATION PLEASE READ INSTRUCTIONS CAREFULLY. Be sure to indicate any changes in your legal This form is authorized by Sections 510(b), (j) and 704 of the Federal Food, Drug, and Cosmetic Act (Title name or actual location in item 4, and any changes in your mailing address in item 6. Print all 21, United States Code 360(b), (j) and 374). Failure to report this information is a violation of Section 301(f) entries and make all corrections in red ink, if possible. Enter your phone number in item 8.3 and and (p) of the Act (Title 21, United States Code 331(f) and (p)) and can result in a fine of up to $1,000 or the phone number of your actual location in item 4.1. Sign the form and return to FDA. After imprisonment up to one year or both, pursuant to Section 303(a) of the Act (Title 21, United States Code validation, you will receive your Official Registration for the ensuing year. 33.3(a)). DISTRICT OFFICE: ENTER ALL CHANGES IN RED INK AND CIRCLE. 9. TYPE OF OWNERSHIP 10. TYPE ESTABLISHMENT (Check all boxes that describe routine or autologous operations.) 4. LEGAL NAME AND LOCATION (Include legal name, number and street, city, .1 SINGLE PROPRIETORSHIP .1 COMMUNITY (NON-HOSPITAL) BLOOD BANK state, country, and post office code.) .2 PARTNERSHIP .2 HOSPITAL BLOOD BANK .3 CORPORATION profit ___ non-profit ___ .3 PLASMAPHERESIS CENTER .4 COOPERATIVE ASSOCIATION .4 PRODUCT TESTING LABORATORY .5 FEDERAL (non-military) a.
    [Show full text]
  • Cryoprecipitate
    VUMC Blood Bank Website Products Page Cryoprecipitate Dosage: The VUMC blood bank maintains two distinct cryoprecipitate products. Adult patients will receive pre-pooled units of cryoprecipitate, these units contain 5 individual cryo units. Providers caring for adult patients can order pre-pooled cryoprecipitate in increments, with a traditional order of 2 pre-pooled cryoprecipitate units for an adult patient. Pediatric patients at VUMC receive cryoprecipitate via individual units according to weight based transfusion guidelines (recommended 10-15 mL/kg). Orders for cryoprecipitate that deviate from this algorithm - as well as orders for cryoprecipitate for patients without a recent fibrinogen level document in Starpanel - are flagged for review by the blood bank resident and/or the medical director. Introduction: According to standards set by the AABB, each unit of cryoprecipitate must contain at least 150 mg of fibrinogen. Cryoprecipitate also contains at least 80 IU of Factor VIII and appreciable amounts of von Willebrand Factor (vWF) and Factor XIII. Cryoprecipitate does not contain appreciable amounts of the other clotting factors. Indications: The most common indication for cryoprecipitate transfusion is hypofibrinogenemia, usually in the setting of DIC or major surgery but occasionally do to hereditary hypofibrinogenemia. Less commonly, cryoprecipitate has been used to provide factor replacement in Factor XIII deficiency. Please note, that human factor XIII concentrates are FDA approved for maintenance therapy (www.corifact.com). Cryoprecipitate should NOT be used for treatment of hemophilia A (Factor VIII deficiency) or von Willebrand’s disease. Vanderbilt discourages the use of cryoprecipitate as a post-surgical fibrin sealant. Special Information Unlike RBCs, platelets, and FFP, once cryoprecipitate is thawed, it cannot be re-stocked (re-frozen) by the blood bank.
    [Show full text]
  • Red Blood Cell Transfusions –
    Peer Reviewed VETcpd - Internal Medicine Jenny Walton BVM&S MRCVS Jenny qualified from R(D)SVS in Red blood cell transfusions – 1998 - she worked in mixed practice when, what and how to do it! for 4 years before moving into the Red cell transfusions are now a relatively common intervention in veterinary practice field of small in the UK and help in the treatment of many patients. This is largely due to the animal emergency availability of blood products, such as Packed Red Blood Cells (PRBC) , from blood and critical care banks supplying directly to practices. After donation, red cells are separated from with Vets Now for 12 years. Through plasma into a concentrated packed cell form, a nutrient extender is then added to Vets Now, she ran the practical trial them. This allows the red cells to be stored for up to 42 days before being transfused researching canine blood banking in 2005-2006 – launching Pet Blood Bank into patients. DEA 1 blood typing prior to transfusion is essential and cross matching UK (PBB) alongside Wendy Barnett should be performed for second transfusions. Blood products are administered in 2007. She acts as the Veterinary through a filtered giving set and patients monitored closely for transfusion reactions. Supervisor for PBB, her role includes Transfusion reactions are thankfully rare but potentially life threatening. advising practitioners daily on the appropriate use of PBB blood products, Key words: Canine, Packed Red Blood Cells (PRBC), transfusion, blood typing, overseeing the practical and VMD cross matching, transfusion reactions legislative veterinary aspects of blood collection at PBB and leading research on future development opportunities.
    [Show full text]
  • Platelet Transfusion in the Real Life
    4 Editorial Commentary Page 1 of 4 Platelet transfusion in the real life Pilar Solves1,2 1Blood Bank, Hematology Service, Hospital Universitari I Politècnic la Fe, Valencia, Spain; 2CIBERONC, Instituto Carlos III, Madrid, Spain Correspondence to: Pilar Solves. Blood Bank, Hematology Unit, Hospital Universitari I Politècnic La Fe, Avda Abril Martorell, 106, Valencia 46026, Spain. Email: [email protected]. Provenance and Peer Review: This article was commissioned by the editorial office,Annals of Blood. The article did not undergo external peer review. Comment on: Gottschall J, Wu Y, Triulzi D, et al. The epidemiology of platelet transfusions: an analysis of platelet use at 12 US hospitals. Transfusion 2020;60:46-53. Received: 06 April 2020. Accepted: 24 April 2020; Published: 30 June 2020. doi: 10.21037/aob-20-30 View this article at: http://dx.doi.org/10.21037/aob-20-30 Platelet transfusion is a common practice in thrombocytopenic period, between January 2013 and December 2016. patients for preventing or treating hemorrhages. Platelets The results provide a general view on current platelet are mostly transfused to patients diagnosed of onco- transfusion practice in US. A total of 163,719 platelets hematological diseases and/or undergoing hematopoietic representing between 3% and 5% of all platelets stem cell transplantation (1). With the aim to help transfused in the country, were transfused into 31821 physicians to take the most accurate decisions on platelet patients of whom 60.5% were males. More than 60% of transfusion, some guidelines have been developed (2-6). platelets were from single donor apheresis and 72.5% The scientific evidence supporting the recommendations were irradiated.
    [Show full text]