Introductory Lecture II: an Overview of Space Storms

Total Page:16

File Type:pdf, Size:1020Kb

Introductory Lecture II: an Overview of Space Storms Introductory Lecture II: An Overview of Space Storms Jan J. Sojka Center for Atmospheric and Space Science Utah State University Logan, Utah 28 July 2010 Heliophysics Summer School Year IV 28 July - 4 August 2010 Overview • Space weather and its storms. • Super storms and the Sun. • Geospace response. • Heliospheric current sheet. • “Cosmic” ray. • Sun: solar storms. • Heliosphere Heliophysics: Sun + Solar Wind + Geospace + Planets + . Heliophysics Summer School Year IV 28 July - 4 August 2010 Space Weather and Its Storms What we “see” Aurora “(Sun spots)” Magnetometer fluctuations Cosmic rays Time Scales Minutes, seconds, hours, days Years - solar cycle Maunder periods Space Scales High latitudes - OVAL Night time - all longitudes Heliophysics Summer School Year IV 28 July - 4 August 2010 Early drawing of the aurora, depicted as candles in the sky; c. 1570 (Original print in Crawford Library, Royal Observatory, Edinburgh.) Book 2, pp. 16. Heliophysics Summer School Year IV 28 July - 4 August 2010 Schematic diagram of an auroral substorm. View from above the North Pole, circles of constant geomagnetic latitude, Sun toward the top (Akasofu, 1964). Book 2, pp. 266 Heliophysics Summer School Year IV 28 July - 4 August 2010 Schematic time history of geomagnetic field variation for two characteristic magnetic storms. Time range; several days. Vertical variation range: ~100–200 nT. SSC: storm sudden commencement. SO: storm onset. The top panel shows the storm development in response to a characteristic interplanetary coronal mass ejection (ICME), and the bottom panel that for the passage of a corotating intersection region (CIR). (Figure adapted from Tsurutani et al., 2006.) Book 2, pp. 264. Heliophysics Summer School Year IV 28 July - 4 August 2010 Polar airline routes used by United Airlines c. 2006 carrying 1500 flights per year. (Courtesy Hank Krakowski.) Book 2, pp. 28. Heliophysics Summer School Year IV 28 July - 4 August 2010 Back-of-the-Envelope Estimation Given that United Airlines have 1500 polar crossing flights per year, Estimate how many passengers take polar flights each year? Note 1: you need to include an estimate for all airlines. Note 2: Estimation means no calculators needed, no computers,….. Average vertical temperature profile through Earth’s atmosphere. The general shape of the temperature profile is reasonably consistent, to the point where it can be used to define the four main neutral-atmosphere “layers”, from the troposphere to the thermosphere. Book 1, pp. 327. Heliophysics Summer School Year IV 28 July - 4 August 2010 Illustration of the large enhancement “bulge” in TEC at mid-latitudes during a geomagnetic storm, and showing the plume of plasma (storm-enhanced density, or SED) connecting the bulge to the high latitudes. (Courtesy of J. Foster.) Book 2, pp. 339. Heliophysics Summer School Year IV 28 July - 4 August 2010 Back-of-the-Envelope Estimation Given that the atomic oxygen ion is the dominant ion in the F-region, that the F-region is a layer 40km thick at an altitude of 300km above the Earth, and the layer density is 1x1012 m-3 on the dayside and 2x1011 m-3 on the night side, Estimate the mass of the F-region? Note 1: You need to estimate the total number of O+ ions. Note 2: Estimation means no calculators needed, no computers,….. Note 3: Earth radius is 6371 km, mass of proton 1.6x10-27 kg Book 1, pp. 350. Heliophysics Summer School Year IV 28 July - 4 August 2010 Super Storms and the Sun • Carrington White Light Flare 1859, 1 September • Coronal Mass Ejection (CME) • High energy particles • Time scales Heliophysics Summer School Year IV 28 July - 4 August 2010 Carrington’s sketch at 11:18 GMT on September 1, 1859, of the sunspot and the lettered (white) flaring regions. (From Carrington, 1859.) Book 2, pp. 26. Heliophysics Summer School Year IV 28 July - 4 August 2010 Example of GOES XRS measurements during a large (X1.5) solar flare. Book 2, pp. 347. Heliophysics Summer School Year IV 28 July - 4 August 2010 A TRACE observation of the 171Å, or 17.1 nm, EUV emission from the X1.5 solar flare (See Table 5.1 for the flare magnitude scale) on 21 April 2002. (From Gallagher et al., 2002.) Book 2, pp. 86. Heliophysics Summer School Year IV 28 July - 4 August 2010 Back-of-the-Envelope Estimation Given that light takes 8 minutes to travel from the Sun to the Earth, Estimate how far the Earth is from the Sun ? Note 1: Answer in km. Note 2: Estimation means no calculators needed, no computers,….. GEOSPACE Responses r r • Energy, Momentum, Mass, E, B, J • Magnetosphere – Bow shock – Magnetopause – Magnetosheath – Neutral sheet – Plasma sheet – Ring currents • Plasmasphere – Plasmapause – Radiation belts • Ionosphere – Exosphere – F-region, E-region, D-region • Thermosphere – Atmosphere, mesopause • Mesosphere – Stratopause • Stratosphere – • Troposphere – Heliophysics Summer School Year IV 28 July - 4 August 2010 Schematic view of a magnetically closed magnetosphere, cut in the noon- midnight meridian plane. Open arrows, solar wind bulk flow; solid lines within magnetosphere, magnetic field lines (directions appropriate for Earth). Book 1, pp. 259. Heliophysics Summer School Year IV 28 July - 4 August 2010 Sources of plasma for the Earth’s magnetosphere (after Chappell, 1988). The shaded and dotted area illustrates the boundary layer through which solar wind plasma enters the magnetosphere. Book 1, pp. 369. Heliophysics Summer School Year IV 28 July - 4 August 2010 Back-of-the-Envelope Estimation Given that the magnetosphere can be “viewed” as a cylinder that has a diameter of 10 Re and a length of 60 Re, and that its total proton content is approximately equal to the F-region O+ content, Estimate the average proton density in the magnetosphere? Note 1: Re is Earth radius. Note 2: Estimation means no calculators needed, no computers,….. Schematic representation of a magnetically open magnetosphere. The upper panel shows a cut in the noon-midnight meridian plane; the bold lines are magnetic field lines within the separatrix surfaces separating open lines from closed lines or open lines from interplanetary field lines. Book 1, pp.264. Heliophysics Summer School Year IV 28 July - 4 August 2010 Thermospheric density enhancements measured by accelerometers on the CHAMP satellite (altitude ~400 km) and GRACE satellite (altitude ~490 km) during the October 28, 2003 flare. (Sutton et al., 2006.) Book 2, pp. 355. Heliophysics Summer School Year IV 28 July - 4 August 2010 Statistical pattern of auroral energy input derived from TIROS/NPAA satellite data during a single transit of the polar region. (From Evans et al., 1988.) From Book 2, pp. 328. Heliophysics Summer School Year IV 28 July - 4 August 2010 Satellite observations of the erosion of the plasmasphere during a storm, from observations by the IMAGE satellite before and after the Halloween storm of October 28, 2003. (Courtesy of J. Goldstein.) The plasmaspheric tail, or plume, can be seen in the dusk sector during the storm event. Book 2, pp.341. Heliophysics Summer School Year IV 28 July - 4 August 2010 Schematic depiction of Earth’s electron radiation belts. (Courtesy of the NASA/Goddard Space Flight Center Scientific Visualization Studies.) Book 2, pp.294. Heliophysics Summer School Year IV 28 July - 4 August 2010 Heliospheric Current Sheet • Solar wind • Parker Spiral • Solar rotation • CME – Superstorm source Heliophysics Summer School Year IV 28 July - 4 August 2010 (Upper panel) The heliospheric current sheet, labeled “field reversal”, and its plasma sheet (Gosling et al., 1981) and (lower panel) the magnetospheric current sheet, here the “neutral sheet”, and its plasma sheet (Ness 1969.) Book 1, pp. 144. Heliophysics Summer School Year IV 28 July - 4 August 2010 The heliospheric current sheet modeled for a 15° tilt of the solar magnetic equator. For a slow wind at 400 km/s, the figure is 25 AU across, extending to beyond Saturn’s orbit. Book 1, pp. 143. Heliophysics Summer School Year IV 28 July - 4 August 2010 The heliospheric current sheet forms a warped, undulating structure extending from the top ridge of the helmet streamer belt (cf. Figs. 1.3 (top panel) and 8.1) that sweeps by the Earth as the Sun rotates once per 27 days (the synodic period). Book 1, pp.234. Heliophysics Summer School Year IV 28 July - 4 August 2010 Schematic comparison of shocks around CMEs, the heliosphere, and the magnetosphere. The figure shows some of the types of shocks and sheaths that exist in the heliosphere and their universal basic structures; (a) a CME, (b) the outer heliosphere, and (c) Earth’s magnetosphere. Book 2, pp. 195. Heliophysics Summer School Year IV 28 July - 4 August 2010 Back-of-the-Envelope Estimation Given a fast CME has an Earthward velocity of 1000km/s, Estimate how long it takes to reach the Earth? Note 1: Answer in units of hours Note 2: Estimation means no calculators needed, no computers,….. Coronagraph observation of a CME that nicely shows the three-part structure: front, cavity, and (the bright core) filament (this is a file image taken from the LASCO database, presented in a reverse grey scale). Right: Correlation between inferred CME kinetic energy and peak GOES soft X-ray flux. (From Burkepile et al., 2004.) Book 2, pp. 136. Heliophysics Summer School Year IV 28 July - 4 August 2010 “Cosmic” Rays Energization • Acceleration of charged particles occurs in the Sun, in the solar wind, and in geospace. • Van Alan Radiation Belts. • Shocks in solar wind (CME, CIRs). • Solar events generated solar energetic particles. Heliophysics Summer School Year IV 28 July - 4 August 2010 The explosive release of energy, mass, momentum, and magnetic field from (top panel, SOHO-ESA and NASA) the solar corona. Book 1, pp. 37. Heliophysics Summer School Year IV 28 July - 4 August 2010 Representative profiles of 20 MeV proton events for different positions of the observatory with respect to a shock.
Recommended publications
  • Fundamentals of Impulsive Energy Release in the Corona Heliophysics 2050 Workshop White Paper A
    Heliophysics 2050 White Papers (2021) 4093.pdf Fundamentals of impulsive energy release in the corona Heliophysics 2050 Workshop white paper A. Y. Shih (NASA Goddard Space Flight Center), L. Glesener (UMN), S. Krucker (UCB), S. Guidoni (Amer. Univ.), S. Christe (GSFC), K. Reeves (SAO), S. Gburek (PAS), A. Caspi (SwRI), M. Alaoui (GSFC/CUA), J. Allred (GSFC), M. Battaglia (FHNW), W. Baumgartner (MSFC), B. Dennis (GSFC), J. Drake (UMD), K. Goetz (UMN), L. Golub (SAO), I. Hannah (Univ. of Glasgow), L. Hayes (GSFC/USRA), G. Holman (GSFC/Emeritus), A. Inglis (GSFC/CUA), J. Ireland (GSFC), G. Kerr (GSFC/CUA), J. Klimchuk (GSFC), D. McKenzie (MSFC), C. Moore (SAO), S. Musset (Univ. of Glasgow), J. Reep (NRL), D. Ryan (GSFC/AU), P. Saint-Hilaire (UCB), S. Savage (MSFC), R. Schwartz (GSFC/AU), D. Seaton (NOAA), M. Stęślicki (PAS), T. Woods (LASP) Introduction Solar eruptive events are the most energetic and geo-effective space-weather drivers. They originate in the corona near the Sun’s surface as a combination of solar flares (impulsive bursts of radiation across the entire electromagnetic spectrum) and coronal mass ejections (CMEs; expulsions of magnetized plasma into interplanetary space). The radiation and energetic particles they produce can damage satellites, disrupt telecommunications and GPS navigation, and endanger astronauts in space. Many of the processes involved in triggering, driving, and sustaining solar eruptive events–including magnetic reconnection, particle acceleration, plasma heating, and energy transport in magnetized plasmas–also play important roles in phenomena throughout the Universe, such as in magnetospheric substorms, gamma-ray bursts, and accretion disks. The Sun is a unique laboratory to better understand these fundamental physical processes.
    [Show full text]
  • Solar and Space Physics: a Science for a Technological Society
    Solar and Space Physics: A Science for a Technological Society The 2013-2022 Decadal Survey in Solar and Space Physics Space Studies Board ∙ Division on Engineering & Physical Sciences ∙ August 2012 From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outwards to a region far beyond Pluto where the Sun’s influence wanes, advances during the past decade in space physics and solar physics have yielded spectacular insights into the phenomena that affect our home in space. This report, the final product of a study requested by NASA and the National Science Foundation, presents a prioritized program of basic and applied research for 2013-2022 that will advance scientific understanding of the Sun, Sun- Earth connections and the origins of “space weather,” and the Sun’s interactions with other bodies in the solar system. The report includes recommendations directed for action by the study sponsors and by other federal agencies—especially NOAA, which is responsible for the day-to-day (“operational”) forecast of space weather. Recent Progress: Significant Advances significant progress in understanding the origin from the Past Decade and evolution of the solar wind; striking advances The disciplines of solar and space physics have made in understanding of both explosive solar flares remarkable advances over the last decade—many and the coronal mass ejections that drive space of which have come from the implementation weather; new imaging methods that permit direct of the program recommended in 2003 Solar observations of the space weather-driven changes and Space Physics Decadal Survey. For example, in the particles and magnetic fields surrounding enabled by advances in scientific understanding Earth; new understanding of the ways that space as well as fruitful interagency partnerships, the storms are fueled by oxygen originating from capabilities of models that predict space weather Earth’s own atmosphere; and the surprising impacts on Earth have made rapid gains over discovery that conditions in near-Earth space the past decade.
    [Show full text]
  • Heliophysics Division Space Weather Strategy HPAC, June 30 – July 1, 2020
    Heliophysics Division Space Weather Strategy HPAC, June 30 – July 1, 2020 1 Heliophysics Space Weather Strategy This strategy outlines the goals and objectives of NASA Heliophysics Division with respect to space weather. It is consistent with the goals and agency responsibilities articulated in the 2019 National Space Weather Strategy and Action Plan, as well as the Agency’s efforts in human and robotic exploration. Context • Understanding space weather is the domain of Heliophysics. Space weather is the applied expression of Heliophysics. In Priority 1 of the 2020 NASA Science Plan, Strategy 1.4 pertains directly to space weather: Develop a Directorate-wide, target-user focused approach to applied programs, including Earth Science Applications, Space Weather, Planetary Defense, and ⁻ Space Situational Awareness. 2 Space Weather Strategy Vision • Advance the science of space weather to empower a technological society safely thriving on Earth and expanding into space. Mission • Establish a preeminent space weather capability that supports robotic and human space exploration and meets national, international, and societal needs by advancing measurement and analysis techniques, and by expanding knowledge and understanding for transitioning into improved operational space weather forecasts and nowcasts. 3 1. Observe • Advance observation techniques, technology, Goals and capability 2. Analyze • NASA plays a vital role in space • Advance research, analysis and modeling weather research by providing capability unique, significant, and exploratory 3. Predict observations and data streams for • Improve space weather forecast and nowcast theory, modeling, and data analysis capabilities research, and for operations. 4. Transition • NASA’s contributions to observing • Transition capabilities to operational and understanding space weather environments are critical for the success of the National and International space 5.
    [Show full text]
  • A Decadal Strategy for Solar and Space Physics
    Space Weather and the Next Solar and Space Physics Decadal Survey Daniel N. Baker, CU-Boulder NRC Staff: Arthur Charo, Study Director Abigail Sheffer, Associate Program Officer Decadal Survey Purpose & OSTP* Recommended Approach “Decadal Survey benefits: • Community-based documents offering consensus of science opportunities to retain US scientific leadership • Provides well-respected source for priorities & scientific motivations to agencies, OMB, OSTP, & Congress” “Most useful approach: • Frame discussion identifying key science questions – Focus on what to do, not what to build – Discuss science breadth & depth (e.g., impact on understanding fundamentals, related fields & interdisciplinary research) • Explain measurements & capabilities to answer questions • Discuss complementarity of initiatives, relative phasing, domestic & international context” *From “The Role of NRC Decadal Surveys in Prioritizing Federal Funding for Science & Technology,” Jon Morse, Office of Science & Technology Policy (OSTP), NRC Workshop on Decadal Surveys, November 14-16, 2006 2 Context The Sun to the Earth—and Beyond: A Decadal Research Strategy in Solar and Space Physics Summary Report (2002) Compendium of 5 Study Panel Reports (2003) First NRC Decadal Survey in Solar and Space Physics Community-led Integrated plan for the field Prioritized recommendations Sponsors: NASA, NSF, NOAA, DoD (AFOSR and ONR) 3 Decadal Survey Purpose & OSTP* Recommended Approach “Decadal Survey benefits: • Community-based documents offering consensus of science opportunities
    [Show full text]
  • Extreme Solar Eruptions and Their Space Weather Consequences Nat
    Extreme Solar Eruptions and their Space Weather Consequences Nat Gopalswamy NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Abstract: Solar eruptions generally refer to coronal mass ejections (CMEs) and flares. Both are important sources of space weather. Solar flares cause sudden change in the ionization level in the ionosphere. CMEs cause solar energetic particle (SEP) events and geomagnetic storms. A flare with unusually high intensity and/or a CME with extremely high energy can be thought of examples of extreme events on the Sun. These events can also lead to extreme SEP events and/or geomagnetic storms. Ultimately, the energy that powers CMEs and flares are stored in magnetic regions on the Sun, known as active regions. Active regions with extraordinary size and magnetic field have the potential to produce extreme events. Based on current data sets, we estimate the sizes of one-in-hundred and one-in-thousand year events as an indicator of the extremeness of the events. We consider both the extremeness in the source of eruptions and in the consequences. We then compare the estimated 100-year and 1000-year sizes with the sizes of historical extreme events measured or inferred. 1. Introduction Human society experienced the impact of extreme solar eruptions that occurred on October 28 and 29 in 2003, known as the Halloween 2003 storms. Soon after the occurrence of the associated solar flares and coronal mass ejections (CMEs) at the Sun, people were expecting severe impact on Earth’s space environment and took appropriate actions to safeguard technological systems in space and on the ground.
    [Show full text]
  • Current Sheets, Magnetic Islands, and Associated Particle Acceleration in the Solar Wind As Observed by Ulysses Near the Ecliptic Plane
    The Astrophysical Journal, 881:116 (20pp), 2019 August 20 https://doi.org/10.3847/1538-4357/ab289a © 2019. The American Astronomical Society. All rights reserved. Current Sheets, Magnetic Islands, and Associated Particle Acceleration in the Solar Wind as Observed by Ulysses near the Ecliptic Plane Olga Malandraki1 , Olga Khabarova2,17 , Roberto Bruno3 , Gary P. Zank4 , Gang Li4 , Bernard Jackson5 , Mario M. Bisi6 , Antonella Greco7 , Oreste Pezzi8,9,10 , William Matthaeus11 , Alexandros Chasapis Giannakopoulos11 , Sergio Servidio7, Helmi Malova12,13 , Roman Kislov2,13 , Frederic Effenberger14,15 , Jakobus le Roux4 , Yu Chen4 , Qiang Hu4 , and N. Eugene Engelbrecht16 1 IAASARS, National Observatory of Athens, Penteli, Greece 2 Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow, Russia; [email protected] 3 Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (IAPS-INAF), Roma, Italy 4 Center for Space Plasma and Aeronomic Research (CSPAR) and Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35805, USA 5 University of California, San Diego, CASS/UCSD, La Jolla, CA, USA 6 RAL Space, United Kingdom Research and Innovation—Science & Technology Facilities Council—Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire, OX11 0QX, UK 7 Physics Department, University of Calabria, Italy 8 Gran Sasso Science Institute, Viale F. Crispi 7, I-67100 L’Aquila, Italy 9 INFN/Laboratori
    [Show full text]
  • Unique Heliophysics Science Opportunities Along the Interstellar Probe Journey up to 1000 AU from the Sun
    EGU21-10504, updated on 02 Oct 2021 https://doi.org/10.5194/egusphere-egu21-10504 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Unique heliophysics science opportunities along the Interstellar Probe journey up to 1000 AU from the Sun Elena Provornikova1, Pontus C. Brandt1, Ralph L. McNutt, Jr.1, Robert DeMajistre1, Edmond C. Roelof1, Parisa Mostafavi1, Drew Turner1, Matthew E. Hill1, Jeffrey L. Linsky2, Seth Redfield3, Andre Galli4, Carey Lisse1, Kathleen Mandt1, Abigail Rymer1, and Kirby Runyon1 1Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 2JILA, University of Colorado and NIST, Boulder, CO, USA 3Wesleyan University, Middletown, CT, USA 4University of Bern, Bern, 3012, Switzerland The Interstellar Probe is a space mission to discover physical interactions shaping globally the boundary of our Sun`s heliosphere and its dynamics and for the first time directly sample the properties of the local interstellar medium (LISM). Interstellar Probe will go through the boundary of the heliosphere to the LISM enabling for the first time to explore the boundary with a dedicated instrumentation, to take the image of the global heliosphere by looking back and explore in-situ the unknown LISM. The pragmatic concept study of such mission with a lifetime 50 years that can be implemented by 2030 was funded by NASA and has been led by the Johns Hopkins University Applied Physics Laboratory (APL). The study brought together a diverse community of more than 400 scientists and engineers spanning a wide range of science disciplines across the world. Compelling science questions for the Interstellar Probe mission have been with us for many decades.
    [Show full text]
  • ESA Heliophysics Missions
    ESA Heliophysics missions C. Philippe Escoubet ESA/ESTEC With help from J. Benkhoff, B. Fleck, D. Mueller, M. Taylor, J. Zender ESA Heliophysics Missions • In operations • In Implementation - SOHO - Solar Orbiter - Hinode - Cluster - Proba 2 • In Technology - Proba 3 • Earth observation - Swarm • BepiColombo and Rosetta ESA Heliophysics Missions: current mission results • In operations - SOHO - Hinode - Cluster - Proba 2 • Earth observation - Swarm SOHO Overview 1. Joint ESA/NASA mission, studying the Sun and its effects on Earth 2. Launched on 2 Dec 1995 (18 years) 3. Spacecraft and Science operation centre at GSFC 4. 4754 papers in refereed literature 5. Extension up to end 2016 and preliminary extension to end 2018 (to be decided in fall) 6. ESA/NASA Memorandum Of Understanding (MOU) extended up to 31 Dec 2016. Comet Ison: faded glory SOHO image Evidence for a deeply penetrating meridional flow Radial Horizontal flow flow 1. Novel global helioseismic analysis method to MDI data to infer the meridional flow in the deep solar interior 2. Method based on perturbation of eigenfunctions of solar p modes due to meridional flow 3. Evidence of a very deep meridional flow down to the base of the convection zone 4. Meridional flow plays key role in determining strength of Sun’s polar magnetic field, which determines the strength of sunspot cycle 5. Knowledge of meridional flow therefore important for understanding of global solar dynamo Schad et al.: ApJ 778, L38 Comet ISON: Faded Glory Knight and Battams, ApJ, 2014: • ISON brightened continuously up to perihelion • Nucleon was destroyed before perihelion Hinode Overview • Hinode is a Japanese mission, with NASA (USA), STFC (UK), ESA and NSC (Norway) as international partners • ESA support (ground station and data centre) was one of contribution to ILWS • Mission objective: to understand generation, transport and dissipation of solar magnetic fields • Launched 22 September 2006 • 838 publications in refereed literature since launch 1.
    [Show full text]
  • Collecting Dust: Heliophysics Delivers New Results and Data on Dust
    Collecting Dust: Heliophysics Delivers New Results and Data on Dust The part of space we live in, the heliosphere, is filled with tiny grains of dust. When dust impacts spacecraft, it shatters and ionizes. As these ionized particles pass by a spacecraft’s electric field antenna, it creates a voltage spike in the data. In the past, dust impacts were seen in much the same way as many people see dust on Earth, as contamination. But those voltage spikes were not just noise in the data. Analyses of dust data has helped us learn more about the conditions of the pre-solar nebula from which our solar system evolved. Examining dust distribution patterns in deep space can reveal planetary orbits, helping scientists identify exoplanets. And, dust can be observed close to home as Zodiacal light – a faint white light you can see on clear, moonless nights in the direction of the sun during sunrise and sunset. Zodiacal light occurs when sunlight near the sun reflects off dust in the solar environment, revealing the disk of dust particles in orbit close to the sun. NASA Heliophysics is studying fundamental properties of our space environment, like dust. Left Image: Zodiacal light, labeled by the text and cone shape in the image, captured at the site of the Giant Credit: Yuri Beletsky Magellan Telescope at Las Campanas Observatory. The Heliophysics Supporting Research program recently supported dust research at the Laboratory for Astrophysical and Space Physics in Boulder, Colorado that produced a number of new findings on dust and its impacts. The researchers studied dust signals in the solar wind recorded by the Heliophysics Wind mission and simulated dust impact conditions in the laboratory, learning to interpret what the size and shape of these voltage spikes tell us about dust type and velocity.
    [Show full text]
  • Solar Flare Energy Source Homework W/Solution
    ASTRO 101 – M.M. Montgomery - montgomery@physics,ucf.edu Solar Flare Energy Source Homework Problem LWS Heliophysics Summer School 2013 Target Audience: Upper Division Undergraduate Majors or First Year Grad Students Concepts Learned: Four fundamental sources in nature and which is/are the source to CMEs and solar flares Methodology: Calculations Delivery: Handwritten calculations on one side of a standard 8½”x11” white copy paper, folded lengthwise, with printed name on outside jacket Materials: standard 8½”x11” white copy paper, pencil, scientific calculator Assessment: Correct identification from the list of givens, of what is to be found, and of correct assumptions to find the correct answers Texts and chapters used in this homework assignment: 1. Heliophysics I Plasma Physics of Local Cosmos, Chapter 8 2. Heliophysics II Space Storms and Radiation: Causes and Effects, Chapter 5 Usage: To be assigned after the student sees the CME.ppt and prior to the student performing the “Introduction to the “Introduction to the CME Evolution NASA ENLIL Software” Lab. Goal Your goal in this exercise is to determine if the source to the energy is from gravitational, electrical, nuclear, and/or magnetic field sources. Given White light solar flares are observed to have energy E~1032 ergs. These flares occur in localized, transient regions through the chromosphere and corona. For the solar flare, assume the shape is an arch of area A=1018 cm2 height L~109 cm particle mass column density (from the top of the arch to the location in the Sun’s photosphere where the temperature is minimum) ζ=10-2 g/cm2 -6 2 column mass density in the corona ζcor~10 g/cm magnetic field strength B~103 G in the photosphere near the transient region For the Sun, g is acceleration due to gravity 6 Tcor~10 K is the temperature of the corona 4 Tchrom~10 K is the temperature of the chromosphere For constants, -24 mass of hydrogen is mH~10 g k is Boltzmann’s constant in cgs units Find 1.
    [Show full text]
  • Modeling Observations of Solar Coronal Mass Ejections with Heliospheric Imagers Verified with the Heliophysics System Observatory
    Space Weather, in press, 2017 July 7 Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory C. Möstl1,2*, A. Isavnin3, P. D. Boakes1,2, E. K. J. Kilpua3, J. A. Davies4, R. A. Harrison4, D. Barnes4,5, V. Krupar6, J. P. Eastwood7, S. W. Good7, R. J. Forsyth7, V. Bothmer8, M. A. Reiss2, T. Amerstorfer1, R. M. Winslow9, B. J. Anderson10, L. C. Philpott11, L. Rodriguez12, 13,14 15 16 1 A. P. Rouillard , P. Gallagher , T. Nieves-Chinchilla and T. L. Zhang 1Space Research Institute, Austrian Academy of Sciences, Graz, Austria. 2IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, Austria. 3Department of Physics, University of Helsinki, Helsinki, Finland. 4RAL Space, Rutherford Appleton Laboratory, Harwell, Oxford, UK. 5University College London, UK. 6Institute of Atmospheric Physics CAS, Prague, Czech Republic. 7The Blackett Laboratory, Imperial College London, London, UK. 8Institute for Astrophysics, University of Göttingen, Göttingen, Germany. 9Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA 10The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA. 11Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada. 12Solar–Terrestrial Center of Excellence – SIDC, Royal Observatory of Belgium, Brussels, Belgium. 13Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS), France. 14Centre National de la Recherche Scientifique, Toulouse, France. 15School of Physics, Trinity College Dublin, Ireland. 16Heliophysics Science Division, GSFC/NASA, Greenbelt, MD, USA Corresponding author: Christian Möstl ([email protected]) Key Points: ● Hindsight predictions of CMEs by modeling observations from the STEREO heliospheric imagers science data are analyzed for 2007-2014.
    [Show full text]
  • Solar Orbiter: Exploring the Sun-Heliosphere Connection
    Solar Orbiter: Exploring the Sun-Heliosphere Connection Mission White Paper Submitted to the Decadal Survey Panel on Solar and Heliospheric Physics [From the Solar Orbiter Assessment Study Report, ESA/SRE(2009)5] 2010-11-08 O. C. St. Cyr, NASA-GSFC, [email protected] , 301-286-2575 R. Marsden, ESA-ESTEC R. A. Howard, Naval Research Laboratory D. Hassler, Southwest Research Institute G. Mason, Applied Physics Laboratory S. Livi, Southwest Research Institute We live in the extended atmosphere of the Sun, a region of space known as the heliosphere. Understanding the connections and the coupling between the Sun and the heliosphere is of fundamental importance to addressing the major scientific questions outlined in the 2010 NASA Science Plan for the Science Mission Directorate Heliophysics Division: What causes the Sun to vary? How do the Earth and the heliosphere respond? What are the impacts on humanity? The heliosphere also represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth, or to study from astronomical distances. The results from missions such as Helios, Ulysses, Yohkoh, SOHO, TRACE and RHESSI, as well as the recently launched Hinode, STEREO, and SDO missions, have formed the foundation of our understanding of the solar corona, the solar wind, and the three-dimensional heliosphere. Each of these missions had a specific focus, being part of an overall strategy of coordinated solar and heliospheric research. However, an important element of this strategy has yet to be implemented. None of these missions have been able to fully explore the interface region where the solar wind is born and heliospheric structures are formed with sufficient instrumentation to link solar wind structures back to their source regions at the Sun.
    [Show full text]