CS151 Complexity Theory

Total Page:16

File Type:pdf, Size:1020Kb

CS151 Complexity Theory Introduction A puzzle: depth CS151 two kinds n of trees Complexity Theory . Lecture 4 April 8, 2004 • cover up nodes with c colors • promise: never color “arrow” same as “blank” • determine which kind of tree in poly(n, c) steps? April 8, 2004 CS151 Lecture 4 2 A puzzle A puzzle depth depth n n . April 8, 2004 CS151 Lecture 4 3 April 8, 2004 CS151 Lecture 4 4 Introduction Outline • Ideas – depth-first-search; stop if see • sparse languages and NP – how many times may we see a given “arrow • nondeterminism applied to space color”? • at most n+1 • reachability – pruning rule? • if see a color > n+1 times, it can’t be an • Savitch’s Theorem arrow node; prune – # nodes visited before know answer? • Immerman/Szelepcsényi Theorem • at most c(n+2) April 8, 2004 CS151 Lecture 4 5 April 8, 2004 CS151 Lecture 4 6 1 Sparse languages and NP Sparse languages and NP • We often say NP-compete languages are • Sparse language: one that contains at “hard” most poly(n) strings of length ≤ n • not very expressive – can we show this cannot be NP-complete (assuming P ≠ • More accurate: NP-complete languages NP) ? are “expressive” – yes: Mahaney ’82 (homework problem) – lots of languages reduce to them • Unary language: subset of 1* (at most n strings of length ≤ n) April 8, 2004 CS151 Lecture 4 7 April 8, 2004 CS151 Lecture 4 8 Sparse languages and NP Sparse languages and NP Theorem (Berman ’78): if a unary language – self-reduction tree for : is NP-complete then P = NP. (x1,x2,…,xn) • Proof: (0,x2,…,xn) (1,x2,…,xn) – let U ⊂ 1* be a unary language and assume . SAT ≤ U via reduction R . – (x1,x2,…,xn) instance of SAT (0,0,…,0) (1,1,…,1) satisfying assignm ent April 8, 2004 CS151 Lecture 4 9 April 8, 2004 CS151 Lecture 4 10 Sparse languages and NP Sparse languages and NP • Applying reduction R: • on input of length ≤ |(x1,x2,…,xn)|, R R( (x1,x2,…,xn)) produces string of length ≤ p(n) • R’s different outputs are “colors” R( (0,x ,…,x )) R( (1,x ,…,x )) 2 n 2 n – 1 color for strings not in 1* . – at most p(n) other colors . R( (0,0,…,0)) R( (1,1,…,1)) • puzzle solution can solve SAT in satisfying assignm ent poly(p(n)+1, n+1) = poly(n) time! April 8, 2004 CS151 Lecture 4 11 April 8, 2004 CS151 Lecture 4 12 2 Nondeterministic space Nondeterministic space • NSPACE(f(n)) = languages decidable by a • Robust nondeterministic space classes: multi-tape NTM that touches at most f(n) squares of its work tapes along any NL = NSPACE(log n) computation path, where n is the input length, and f :N N ∪ k NPSPACE = k NSPACE(n ) April 8, 2004 CS151 Lecture 4 13 April 8, 2004 CS151 Lecture 4 14 Reachability Reachability • Recall: at most nk configurations of given • Conclude: NL ⊂ P NTM M running in NSPACE(log n). – and NPSPACE ⊂ EXP • easy to qstartx1x2x3…xn determine if C x∈L x∉L • S-T-Connectivity (STCONN): given yields C’ in one directed graph G = (V, E) and nodes s, t, is step there a path from s to t • configuration graph for M on Theorem: STCONN is NL-complete under input x: logspace reductions. qaccept qreject qaccept qreject April 8, 2004 CS151 Lecture 4 15 April 8, 2004 CS151 Lecture 4 16 Reachability Two startling theorems • Proof: • Strongly believe P NP – in NL: guess path from s to t one node at a • nondeterminism seems to add enormous time power ∈ – given L NL decided by NTM M construct • for space: Savitch ‘70: configuration graph for M on input x (can be done in logspace) NPSPACE = PSPACE – s = starting configuration; t = qaccept and NL ⊂ SPACE(log2n) April 8, 2004 CS151 Lecture 4 17 April 8, 2004 CS151 Lecture 4 18 3 Two startling theorems Savitch’s Theorem • Strongly believe NP coNP Theorem: STCONN ∈ SPACE(log2 n) • seems impossible to convert existential into universal • Corollary: NL ⊂ SPACE(log2n) • for space: Immerman/Szelepscényi ’87/’88: • Corollary: NPSPACE = PSPACE NL = coNL April 8, 2004 CS151 Lecture 4 19 April 8, 2004 CS151 Lecture 4 20 Proof of Theorem Proof of Theorem – input: G = (V, E), two nodes s and t – answer to STCONN: PATH(s, t, log n) – recursive algorithm: – space used: • (depth of recursion) x (size of “stack record”) i /* return true iff path from x to y of length at most 2 */ – depth = log n PATH(x, y, i) – claim stack record: “(x, y, i)” sufficient if i = 0 return ( (x, y) ∈ E ) /* base case */ • size O(log n) for z in V if PATH(x, z, i-1) and PATH(z, y, i-1) return(true); – when return from PATH(a, b, i) can figure out return(false); what to do next from record (a, b, i) and end previous record April 8, 2004 CS151 Lecture 4 21 April 8, 2004 CS151 Lecture 4 22 I-S Theorem I-S Theorem Theorem: ST-NON-CONN ∈ NL – want nondeterministic procedure using only • Proof: slightly tricky setup: O(log n) space with behavior: – input: G = (V, E), two nodes s, t s s “yes” “no” input input “yes” “no” qreject qaccept t t April 8, 2004 CS151 Lecture 4 23 April 8, 2004 CS151 Lecture 4 24 4 I-S Theorem I-S Theorem – observation: given count of # nodes – every computation path has sequence of reachable from s, can solve problem guesses… • for each v ∈ V, guess if it is reachable – only way computation path can lead to accept: • if yes, guess path from s to v • correctly guessed reachable/unreachable – if guess doesn’t lead to v, reject. for each node v – if v = t, reject. • correctly guessed path from s to v for each – else counter++ reachable node v • if counter = count accept • saw all reachable nodes • t not among reachable nodes April 8, 2004 CS151 Lecture 4 25 April 8, 2004 CS151 Lecture 4 26 I-S Theorem I-S Theorem – R(i) = # nodes reachable from s in at most i – Outline: in n phases, compute steps R(1), R(2), R(3), … R(n) – R(0) = 1: node s – only O(log n) bits of storage between phases – in end, lots of computation paths that lead to – we will compute R(i+1) from R(i) using reject O(log n) space and nondeterminism – only computation paths that survive have computed correct value of R(n) – computation paths with “bad guesses” all lead – apply observation. to reject April 8, 2004 CS151 Lecture 4 27 April 8, 2004 CS151 Lecture 4 28 I-S Theorem I-S Theorem – computing R(i+1) from R(i): – if “yes”, guess path from s to v of at most i+1 steps. Increment R(i+1) – if “no”, visit R(i) nodes reachable in at most i R(i) = R(2) = 6 steps, check that none is v or adjacent to v • for u ∈ V guess if reachable in ≤ i steps; guess path to u; counter++ – Initialize R(i+1) = 0 • KEY: if counter ≠ R(i), reject – For each v ∈ V, guess if v reachable from s in • at this point: can be sure v not reachable at most i+1 steps April 8, 2004 CS151 Lecture 4 29 April 8, 2004 CS151 Lecture 4 30 5 I-S Theorem I-S Theorem • (2) might guess v is not reachable in at • correctness of procedure: most i+1 steps when it is • two types of errors we can make – then must not see v or neighbor of v while • (1) might guess v is reachable in at most visiting nodes reachable in i steps. i+1 steps when it is not – but forced to visit R(i) distinct nodes – won’t be able to guess path from s to v of – therefore must try to visit node v that is not correct length, so we will reject. reachable in ≤ i steps – won’t be able to guess path from s to v of easy” type of error correct length, so we will reject. “easy” type of error April 8, 2004 CS151 Lecture 4 31 April 8, 2004 CS151 Lecture 4 32 Summary Summary • unary languages not NP-complete unless • Savitch: NPSPACE = PSPACE P = NP – Proof: ST-CONN ∈ SPACE(log2 n) – true for sparse languages as well (homework) – open question: NL = L? • nondeterministic space classes NL and NPSPACE • Immerman/Szelepcsényi : NL = coNL – Proof: ST-NON-CONN ∈ NL • ST-CONN NL-complete April 8, 2004 CS151 Lecture 4 33 April 8, 2004 CS151 Lecture 4 34 6.
Recommended publications
  • On Uniformity Within NC
    On Uniformity Within NC David A Mix Barrington Neil Immerman HowardStraubing University of Massachusetts University of Massachusetts Boston Col lege Journal of Computer and System Science Abstract In order to study circuit complexity classes within NC in a uniform setting we need a uniformity condition which is more restrictive than those in common use Twosuch conditions stricter than NC uniformity RuCo have app eared in recent research Immermans families of circuits dened by rstorder formulas ImaImb and a unifor mity corresp onding to Buss deterministic logtime reductions Bu We show that these two notions are equivalent leading to a natural notion of uniformity for lowlevel circuit complexity classes Weshow that recent results on the structure of NC Ba still hold true in this very uniform setting Finallyweinvestigate a parallel notion of uniformity still more restrictive based on the regular languages Here we givecharacterizations of sub classes of the regular languages based on their logical expressibility extending recentwork of Straubing Therien and Thomas STT A preliminary version of this work app eared as BIS Intro duction Circuit Complexity Computer scientists have long tried to classify problems dened as Bo olean predicates or functions by the size or depth of Bo olean circuits needed to solve them This eort has Former name David A Barrington Supp orted by NSF grant CCR Mailing address Dept of Computer and Information Science U of Mass Amherst MA USA Supp orted by NSF grants DCR and CCR Mailing address Dept of
    [Show full text]
  • 18.405J S16 Lecture 3: Circuits and Karp-Lipton
    18.405J/6.841J: Advanced Complexity Theory Spring 2016 Lecture 3: Circuits and Karp-Lipton Scribe: Anonymous Student Prof. Dana Moshkovitz Scribe Date: Fall 2012 1 Overview In the last lecture we examined relativization. We found that a common method (diagonalization) for proving non-inclusions between classes of problems was, alone, insufficient to settle the P versus NP problem. This was due to the existence of two orcales: one for which P = NP and another for which P =6 NP . Therefore, in our search for a solution, we must look into the inner workings of computation. In this lecture we will examine the role of Boolean Circuits in complexity theory. We will define the class P=poly based on the circuit model of computation. We will go on to give a weak circuit lower bound and prove the Karp-Lipton Theorem. 2 Boolean Circuits Turing Machines are, strange as it may sound, a relatively high level programming language. Because we found that diagonalization alone is not sufficient to settle the P versus NP problem, we want to look at a lower level model of computation. It may, for example, be easier to work at the bit level. To this end, we examine boolean circuits. Note that any function f : f0; 1gn ! f0; 1g is expressible as a boolean circuit. 2.1 Definitions Definition 1. Let T : N ! N.A T -size circuit family is a sequence fCng such that for all n, Cn is a boolean circuit of size (in, say, gates) at most T (n). SIZE(T ) is the class of languages with T -size circuits.
    [Show full text]
  • The Complexity of Unary Tiling Recognizable Picture Languages: Nondeterministic and Unambiguous Cases ∗
    Fundamenta Informaticae X (2) 1–20 1 IOS Press The complexity of unary tiling recognizable picture languages: nondeterministic and unambiguous cases ∗ Alberto Bertoni Massimiliano Goldwurm Violetta Lonati Dipartimento di Scienze dell’Informazione, Universita` degli Studi di Milano Via Comelico 39/41, 20135 Milano – Italy fbertoni, goldwurm, [email protected] Abstract. In this paper we consider the classes REC1 and UREC1 of unary picture languages that are tiling recognizable and unambiguously tiling recognizable, respectively. By representing unary pictures by quasi-unary strings we characterize REC1 (resp. UREC1) as the class of quasi-unary languages recognized by nondeterministic (resp. unambiguous) linearly space-bounded one-tape Turing machines with constraint on the number of head reversals. We apply such a characterization in two directions. First we prove that the binary string languages encoding tiling recognizable unary square languages lies between NTIME(2n) and NTIME(4n); by separation results, this implies there exists a non-tiling recognizable unary square language whose binary representation is a language in NTIME(4n log n). In the other direction, by means of results on picture languages, we are able to compare the power of deterministic, unambiguous and nondeterministic one-tape Turing machines that are linearly space-bounded and have constraint on the number of head reversals. Keywords: two-dimensional languages, tiling systems, linearly space-bounded Turing machine, head reversal-bounded computation. Address for correspondence: M. Goldwurm, Dip. Scienze dell’Informazione, Universita` degli Studi di Milano, Via Comelico 39/41, 20135 Milano, Italy ∗Partially appeared in Proc. 24th STACS, W. Thomas and P. Pascal eds, LNCS 4393, 381–392, Springer, 2007.
    [Show full text]
  • Computational Complexity: a Modern Approach
    i Computational Complexity: A Modern Approach Draft of a book: Dated January 2007 Comments welcome! Sanjeev Arora and Boaz Barak Princeton University [email protected] Not to be reproduced or distributed without the authors' permission This is an Internet draft. Some chapters are more finished than others. References and attributions are very preliminary and we apologize in advance for any omissions (but hope you will nevertheless point them out to us). Please send us bugs, typos, missing references or general comments to [email protected] | Thank You!! ii Chapter 2 NP and NP completeness \(if φ(n) ≈ Kn2)a then this would have consequences of the greatest magnitude. That is to say, it would clearly indicate that, despite the unsolvability of the (Hilbert) Entscheidungsproblem, the mental effort of the mathematician in the case of the yes-or-no questions would be completely replaced by machines.... (this) seems to me, however, within the realm of possibility." Kurt G¨odelin a letter to John von Neumann, 1956 aIn modern terminology, if SAT has a quadratic time algorithm \I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same as for any mathematical conjecture: (1) It is a legitimate mathematical possibility, and (2) I do not know." Jack Edmonds, 1966 \In this paper we give theorems that suggest, but do not imply, that these problems, as well as many others, will remain intractable perpetually." Richard Karp, 1972 If you have ever attempted a crossword puzzle, you know that it is much harder to solve it from scratch than to verify a solution provided by someone else.
    [Show full text]
  • Circuit Complexity Circuit Model Aims to Offer Unconditional Lower Bound Results
    Circuit Complexity Circuit model aims to offer unconditional lower bound results. Computational Complexity, by Fu Yuxi Circuit Complexity 1 / 58 Synopsis 1. Boolean Circuit Model 2. Uniform Circuit 3. P=poly 4. Karp-Lipton Theorem 5. NC and AC 6. P-Completeness Computational Complexity, by Fu Yuxi Circuit Complexity 2 / 58 Boolean Circuit Model Computational Complexity, by Fu Yuxi Circuit Complexity 3 / 58 Boolean circuit is a nonuniform computation model that allows a different algorithm to be used for each input size. Boolean circuit model appears mathematically simpler, with which one can talk about combinatorial structure of computation. Computational Complexity, by Fu Yuxi Circuit Complexity 4 / 58 Boolean Circuit An n-input, single-output boolean circuit is a dag with I n sources (vertex with fan-in 0), and I one sink (vertex with fan-out 0). All non-source vertices are called gates and are labeled with I _; ^ (vertex with fan-in 2), and I : (vertex with fan-in 1). A Boolean circuit is monotone if it contains no :-gate. If C is a boolean circuit and x 2 f0; 1gn is some input, then the output of C on x, denoted by C(x), is defined in the natural way. Computational Complexity, by Fu Yuxi Circuit Complexity 5 / 58 Example 1. f1n j n 2 Ng. 2. fhm; n; m+ni j m; n 2 Ng. Computational Complexity, by Fu Yuxi Circuit Complexity 6 / 58 Boolean Circuit Family The size of a circuit C, notation jCj, is the number of gates in it. Let S : N ! N be a function.
    [Show full text]
  • Lecture Notes: Boolean Circuits
    Lecture Notes: Boolean Circuits Neeldhara Misra STATUTORY WARNING This document is a draft version. 1 Introduction Most of us have encountered circuits before. Visually, Figure 1 shows a typical circuit, a network of nodes engi- neered to perform a specific computation. There are designated input nodes, that take binary values, and we can work our way from these gates to a special gate called the output nodes, by performing all the intermediate com- putations that we encounter. These computational gates can perform one of the three basic boolean operations, namely and, or, and not. _. ^ ^ ^ _ _ ^ : : : Figure 1: A prototypical Boolean Circuit In this lecture, we will study boolean circuits as a candidate model of computation. These lecture notes are based on the chapter on Boolean Circuits in [1]. Definition 1 (Boolean circuits). • For every n 2 N, an n-input, single-output Boolean circuit C is a directed acyclic graph with n sources (vertices with no incoming edges) and one sink (vertex with no outgoing edges). Page 1 of 7 . • All non-source vertices are called gates and are labeled. with one of _; ^ or : (i.e.,the logical operations OR,AND,and NOT). The vertices labeled with _ and ^ have fan-in (i.e.,number of incoming edges) equal to two, and the vertices labeled with : have fan-in one. • The size of C,denoted by jCj, is the number of vertices in it. • If C is a Boolean circuit, and x 2 f0; 1gn is some input, then the output of C on x, denoted by C(x), is defined in the natural way.
    [Show full text]
  • Random Generation and Approximate Counting of Combinatorial Structures
    UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI SCIENZE DELL’INFORMAZIONE Generazione casuale e conteggio approssimato di strutture combinatorie Random Generation and Approximate Counting of Combinatorial Structures Tesi di Dottorato di Massimo Santini Relatori Prof. Alberto Bertoni Prof. Massimiliano Goldwurm Relatore esterno Prof. Bruno Codenotti arXiv:1012.3000v1 [cs.CC] 14 Dec 2010 DOTTORATO IN SCIENZE DELL’INFORMAZIONE —XICICLO Massimo Santini c/o Dipartimento di Scienze dell’Informazione Università Statale degli Studi di Milano Via Comelico 39/41, 20135 Milano — Italia e-mail [email protected] Ad Ilenia, la persona che più di tutte ha cambiato la mia vita. Voglio ringraziare Alberto Bertoni, per il sostegno e l’ispirazione che non mi ha mai fatto mancare, dal periodo della mia laurea ad oggi. Paola Campa- delli, che mi ha guidato in questi miei primi anni di ricerca, aiutandomi a maturare ed addolcire il mio carattere così bellicoso e critico. Massimiliano Goldwurm, per la pazienza e l’attenzione infinita che ha dedicato a questo lavoro, mostrandomi sempre rispetto ed amicizia. Ringrazio anche Giuliano Grossi, per le sue competenze ed il materiale che mi ha messo a disposizione in questi mesi di lavoro, in particolare riguardo al capitolo 6. Giovanni Pighizzini, per avermi offerto il suo tempo e per avermi reso partecipe di alcuni suoi interessanti risultati, in particolare riguardo alla sezione 4.2. Ringrazio infine Paolo Boldi e Sebastiano Vigna, per l’affetto che mi hanno dimostrato negli anni, i consigli ed il supporto che non mi hanno mai lesinato. Tutti i colleghi del dottorato, per aver costituito attorno a me, sin dall’inizio, un ambiente accogliente e stimolante per la ricerca.
    [Show full text]
  • Unary Pushdown Automata and Straight-Line Programs
    Unary Pushdown Automata and Straight-Line Programs Dmitry Chistikov and Rupak Majumdar Max Planck Institute for Software Systems (MPI-SWS) Kaiserslautern and Saarbr¨ucken, Germany {dch,rupak}@mpi-sws.org Abstract. We consider decision problems for deterministic pushdown automata over a unary alphabet (udpda, for short). Udpda are a sim- ple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed member- ship problems are P-complete, and inclusion is coNP-complete. Our upper bounds are based on a translation theorem between udpda and straight-line programs over the binary alphabet (SLPs). We show that the characteristic sequence of any udpda can be represented as a pair of SLPs—one for the prefix, one for the lasso—that have size linear in the size of the udpda and can be computed in polynomial time. Hence, decision problems on udpda are reduced to decision problems on SLPs. Conversely, any SLP can be converted in logarithmic space into a udpda, and this forms the basis for our lower bound proofs. We show coNP- hardness of the ordered matching problem for SLPs, from which we derive coNP-hardness for inclusion. In addition, we complete the complexity landscape for unary nondeterministic pushdown automata by showing that the universality problem is Π2P-hard, using a new class of inte- ger expressions. Our techniques have applications beyond udpda. We show that our results imply Π2P-completeness for a natural fragment of Presburger arithmetic and coNP lower bounds for compressed matching problems with one-character wildcards.
    [Show full text]
  • 15-251 "Great Ideas in Theoretical Computer Science
    CMU 15-251, Fall 2017 Great Ideas in Theoretical Computer Science Course Notes: Main File November 17, 2017 Please send comments and corrections to Anil Ada ([email protected]). Foreword These notes are based on the lectures given by Anil Ada and Ariel Procaccia for the Fall 2017 edition of the course 15-251 “Great Ideas in Theoretical Computer Science” at Carnegie Mellon University. They are also closely related to the previous editions of the course, and in particular, lectures prepared by Ryan O’Donnell. WARNING: The purpose of these notes is to complement the lectures. These notes do not contain full explanations of all the material covered dur- ing lectures. In particular, the intuition and motivation behind many con- cepts and proofs are explained during the lectures and not in these notes. There are various versions of the notes that omit certain parts of the notes. Go to the course webpage to access all the available versions. In the main version of the notes (i.e. the main document), each chapter has a preamble containing the chapter structure and the learning goals. The preamble may also contain some links to concrete applications of the topics being covered. At the end of each chapter, you will find a short quiz for you to complete before coming to recitation, as well as hints to selected exercise problems. Note that some of the exercise solutions are given in full detail, whereas for others, we give all the main ideas, but not all the details. We hope the distinction will be clear.
    [Show full text]
  • NP and NP Completeness
    Chapter 2 NP and NP completeness “(if φ(n) ≈ Kn2)a then this would have consequences of the greatest magnitude. That is to say, it would clearly indicate that, despite the unsolvability of the (Hilbert) Entscheidungsproblem, the mental effort of the mathematician in the case of the yes-or- no questions would be completely replaced by machines.... (this) seems to me, however, within the realm of possibility.” Kurt G¨odelin letter to John von Neumann, 1956; see [?] aIn modern terminology, if SAT has a quadratic time algorithm “I conjecture that there is no good algorithm for the traveling salesman problem. My reasons are the same as for any mathe- matical conjecture: (1) It is a legitimate mathematical possibility, and (2) I do not know.” Jack Edmonds, 1966 “In this paper we give theorems that suggest, but do not im- ply, that these problems, as well as many others, will remain intractable perpetually.” Richard Karp [?], 1972 If you have ever attempted a crossword puzzle, you know that there is often a big difference between solving a problem from scratch and verifying a given solution. In the previous chapter we already encountered P, the class of decision problems that can be efficiently solved. In this chapter, we define the complexity class NP that aims to capture the set of problems whose solution can be easily verified. The famous P versus NP question asks Web draft 2006-09-28 18:09 31 Complexity Theory: A Modern Approach. c 2006 Sanjeev Arora and Boaz Barak. DRAFTReferences and attributions are still incomplete. 32 2.1.
    [Show full text]
  • An Average-Case Lower Bound Against ACC0
    Electronic Colloquium on Computational Complexity, Report No. 173 (2017) An Average-Case Lower Bound against ACC0 Ruiwen Chen∗ Igor C. Oliveiray Rahul Santhanamz Department of Computer Science University of Oxford November 6, 2017 Abstract In a seminal work, Williams [26] showed that NEXP (non-deterministic exponential time) does not have polynomial-size ACC0 circuits. Williams' technique inherently gives a worst-case lower bound, and until now, no average-case version of his result was known. We show that there is a language L in NEXP (resp. EXPNP) and a function "(n) = 1= log(n)!(1) (resp. 1=nΩ(1)) such that no sequence of polynomial size ACC0 circuits solves L on more than a 1=2 + "(n) fraction of inputs of length n for all large enough n. Complementing this result, we give a nontrivial pseudo-random generator against polynomial- size AC0[6] circuits. We also show that learning algorithms for quasi-polynomial size ACC0 cir- cuits running in time 2n=n!(1) imply lower bounds for the randomised exponential time classes RE (randomized time 2O(n) with one-sided error) and ZPE=1 (zero-error randomized time 2O(n) with 1 bit of advice) against polynomial size ACC0 circuits. This strengthens results of Oliveira and Santhanam [17]. 1 Introduction 1.1 Motivation and Background Significant advances in unconditional lower bounds are few and far between, specially in non- monotone boolean circuit models. In the 80s, there was substantial progress in proving circuit lower bounds for AC0 (constant-depth circuits with unbounded fan-in AND and OR gates) [2,7, 28, 10] 0 0 and AC [p](AC circuits extended with MODp gates) for p prime [18, 21].
    [Show full text]
  • Ibas: a Tool for Finding Minimal Unary Nfas
    Ibas: A Tool for Finding Minimal Unary NFAs Daniel Cazalis and Geoffrey Smith School of Computing and Information Sciences, Florida International University, Miami, FL 33199, USA [email protected] Abstract. In the theory of regular languages, nondeterministic finite automata (NFAs) that are minimal in the number of states are compu- tationally challenging: there can be more than one minimal NFA recog- nizing a given language, and the problem of minimizing a given NFA is NP-hard, even over a unary alphabet. In this paper, we describe Ibas, a tool for finding minimal unary NFAs. The input to Ibas is a bit-vector describing an initial portion of a desired unary language; the output is a description of all minimal NFAs recognizing some extension of the given bit-vector. Searching exhaustively for such NFAs takes several hours for 6-state NFAs, and would take many trillions of year for 10-state NFAs. Ibas, in contrast, can often find minimal 10-state NFAs in about an hour. We present the theory underlying Ibas, which we call partial inductive bases, and present experimental results obtained with Ibas. 1 Introduction In the theory of finite automata, a natural question is the minimum number of states required for a finite automaton to recognize a given regular language. With respect to deterministic finite automata (DFAs), the Myhill-Nerode theorem [1] shows that each regular language has a unique minimal DFA, up to isomorphism. Moreover, this minimal DFA can be computed efficiently: Hopcroft [2] showed that an n-state DFA can be converted into the minimal equivalent DFA in time O(n log n).
    [Show full text]