On Uniformity Within NC

Total Page:16

File Type:pdf, Size:1020Kb

On Uniformity Within NC On Uniformity Within NC David A Mix Barrington Neil Immerman HowardStraubing University of Massachusetts University of Massachusetts Boston Col lege Journal of Computer and System Science Abstract In order to study circuit complexity classes within NC in a uniform setting we need a uniformity condition which is more restrictive than those in common use Twosuch conditions stricter than NC uniformity RuCo have app eared in recent research Immermans families of circuits dened by rstorder formulas ImaImb and a unifor mity corresp onding to Buss deterministic logtime reductions Bu We show that these two notions are equivalent leading to a natural notion of uniformity for lowlevel circuit complexity classes Weshow that recent results on the structure of NC Ba still hold true in this very uniform setting Finallyweinvestigate a parallel notion of uniformity still more restrictive based on the regular languages Here we givecharacterizations of sub classes of the regular languages based on their logical expressibility extending recentwork of Straubing Therien and Thomas STT A preliminary version of this work app eared as BIS Intro duction Circuit Complexity Computer scientists have long tried to classify problems dened as Bo olean predicates or functions by the size or depth of Bo olean circuits needed to solve them This eort has Former name David A Barrington Supp orted by NSF grant CCR Mailing address Dept of Computer and Information Science U of Mass Amherst MA USA Supp orted by NSF grants DCR and CCR Mailing address Dept of Computer and Information Science U of Mass Amherst MA USA Supp orted by NSF grant CCR Mailing address Dept of Computer Science Boston College Chestnut Hill MA USA develop ed into the eld of circuit complexity theory where classes of problems are dened in terms of constraints up on circuits solving them This study has b ecome more imp ortant recently b ecause of the connections b etween size and depth of Bo olean circuits and number of pro cessors and running time on a parallel computer see Co ok Co for a general survey The complexityclass NC consists of those Bo olean functions functions from f g to f g which can b e computed by circuits of fanin two and depth O log n That is f is in NC if for each n there is a circuit C which computes f correctly on inputs of size n n and each C has depth at most c log n for some constant c This is nonuniform NC n we discuss uniformity b elow Problems in NC are usually considered particularly easy to solve in parallel and thus NC is considered a small complexity class for example it is the smallest of the ten surveyed by Co ok Co But it lies ab ove a certain frontier our current techniques for proving lower b ounds on circuit complexityhave not allowed us to proveany signicant problems to b e outside of it for example even any NP complete problems This motivates a study of sub classes of NC whichmight lie b elow this frontier in an eort to develop new techniques and new understanding There is a sub class of NC for which separation results are known AC is the class of problems whichhave circuits of p olynomial size and constant depth in a mo del with unb ounded fanin Furst Saxe and Sipser FSS and indep endently Ajtai Aj proved that the exclusive OR function is not in AC separating this class from NC Laterwork has attempted to extend the frontier upward from AC byproving lower b ounds for more powerful sub classes Razb orov Ra considered the extension of AC obtained by also allowing unb ounded fanin exclusive OR gates and showed that the ma jority function dened by f x x n i the ma jorityofthex are is not in this class Barrington Ba dened the class i AC C AC with counters which further extends Razb orovs class by allowing unb ounded fanin gates whichcount their inputs mo dulo some constant He conjectured that the ma jority problem was not in AC C and hence that AC C NC This remains op en though Smolensky Sm has proved some imp ortant partial results in this direction intro ducing what promises to b e a p owerful new pro of technique Existing techniques have b een unable to showeven an NP complete problem to b e outside of AC C Between AC C and NC is another class which has excited considerable interest A threshold gate counts its Bo olean inputs which are and compares the total with some predetermined numb er to determine its output This generalizes unb ounded fanin AND threshold indegree OR threshold and ma jority threshold half the indegree gates but any threshold gate can b e built out of these three basic typ es TC is the class of problems solvable by families of circuits of unb ounded fanin threshold gates where circuit depth is b ounded by a constant and circuit size by a p olynomial in the input size As individual threshold gates can b e simulated in NC TC NC also it is fairly easy to see that AC C TC Considerable recentwork has dealt with TC someofitmotivated by analogies with neural computing PSHMPSTRe Uniformity In their nonuniform versions these circuit complexity classes contain problems which are not computable at all in the ordinary sense eg any unary language is in AC To compute with a circuit family wemust b e able to construct the circuit for each input size Wemay lo osely dene a uniform circuit family as one in which the b ehavior on all inputs of any size is sp ecied by a single nite bit string A weak uniformity condition would b e to allow this string to b e the description of a Turing machine which on input n pro duces the circuit C Since we are concerned with complexity and not just computabilitya better n denition places resource restrictions on the Turing machine A circuit family hC C i is P uniform if the circuit C can b e constructed from n n in time p olynomial in n It is Luniform if C can b e constructed using space O log n n These denitions suce to prove the classical result that uniform circuits of p olynomial size are equivalent in computing p ower to Turing machines using p olynomial time In fact the same pro of shows the result either for P uniform or Luniform circuits showing these two classes equivalent to each other There is a sense in whichtheLuniform version of this result is more satisfying than the P uniform one In the latter case if webelieve P Lwe know that wehave isolated an imp ortant fact ab out circuits and machines That is the p olynomialsize circuits were able to simulate the p olynomialtime machines on their own without the p otential help of a p olynomialtime machine used to construct them As we study a given circuit complexityclasswewould like to use a uniformity condition which separates these two sources of computational p ower That is wewant to allow strictly less p ower to construct the circuits than the circuits themselves p osess In this pap er we explore a variety of conditions suitable for the study of the classes AC AC C TC and NC unifor There is a reasonable though complicated notion of NC uniformityU E mity due to Ruzzo Ru see also Co which has the consequence that NC uniform NC is equivalent to alternating logarithmic time mo dulo appropriate conventions on the alternating Turing machines This denition is based not on constructing the circuit but on answering certain classes of questions ab out it in alternating logarithmic time Most pro ofs involving P orLuniform circuit families go through under this denition making it a go o d to ol for studying complexity classes ab ove NC But to go within NC itself we will require new notions still more restrictive We note that one may still sp eak of say P uniform NC and that this may b e a class of considerable interest At least by analogy it represents problems for whicha very fast chip could b e manufactured by a sequential pro cess in reasonable time Many natural problems have b een shown to b e in P uniform NC and are not known to b e in more uniform versions BCHRe Recentwork by Allender Al shows P uniform NC to b e a fairly robust class with a numb er of equivalent denitions Summary of Results In this pap er we consider three candidates for a suitable notion of uniformity within the class NC Each is based on a sub class of NC the computational p ower used in sp ecifying the circuits in a family is limited to this sub class In Section wemake precise the denitions of the circuit classes already mentioned and the ways in which circuits are sp ecied The rst notion is based on Immermans theory of expressibility as a complexity measure ImaImb The basic complexity class in this scheme is the class FO of languages which can b e expressed by rstorder formulas in a certain formal system to b e explained in detail in Section First order formulas can b e evaluated by AC circuits of a particularly regular form so that FO is a uniform version of AC In Section we will examine classes dened by rstorder formulas which include new typ es of quantiers giving uniform versions of AC C TC andNC Whereas ordinary quantiers express whether an instance or all instances of the quantied variable are satis fying the new quantiers will p erform some other function on the sequence of truth values given by the sequence of instances For example we will dene quantiers which can count the satisfying instances mo dulo some constant determine whether the ma jority of the in stances are satisfying or even interpret the truth values as elements of some nite group and multiply them In fact we will dene quantiers for any function meeting a certain technical condition that of b eing monoidal The expressibilityscheme
Recommended publications
  • On the NP-Completeness of the Minimum Circuit Size Problem
    On the NP-Completeness of the Minimum Circuit Size Problem John M. Hitchcock∗ A. Pavany Department of Computer Science Department of Computer Science University of Wyoming Iowa State University Abstract We study the Minimum Circuit Size Problem (MCSP): given the truth-table of a Boolean function f and a number k, does there exist a Boolean circuit of size at most k computing f? This is a fundamental NP problem that is not known to be NP-complete. Previous work has studied consequences of the NP-completeness of MCSP. We extend this work and consider whether MCSP may be complete for NP under more powerful reductions. We also show that NP-completeness of MCSP allows for amplification of circuit complexity. We show the following results. • If MCSP is NP-complete via many-one reductions, the following circuit complexity amplifi- Ω(1) cation result holds: If NP\co-NP requires 2n -size circuits, then ENP requires 2Ω(n)-size circuits. • If MCSP is NP-complete under truth-table reductions, then EXP 6= NP \ SIZE(2n ) for some > 0 and EXP 6= ZPP. This result extends to polylog Turing reductions. 1 Introduction Many natural NP problems are known to be NP-complete. Ladner's theorem [14] tells us that if P is different from NP, then there are NP-intermediate problems: problems that are in NP, not in P, but also not NP-complete. The examples arising out of Ladner's theorem come from diagonalization and are not natural. A canonical candidate example of a natural NP-intermediate problem is the Graph Isomorphism (GI) problem.
    [Show full text]
  • Week 1: an Overview of Circuit Complexity 1 Welcome 2
    Topics in Circuit Complexity (CS354, Fall’11) Week 1: An Overview of Circuit Complexity Lecture Notes for 9/27 and 9/29 Ryan Williams 1 Welcome The area of circuit complexity has a long history, starting in the 1940’s. It is full of open problems and frontiers that seem insurmountable, yet the literature on circuit complexity is fairly large. There is much that we do know, although it is scattered across several textbooks and academic papers. I think now is a good time to look again at circuit complexity with fresh eyes, and try to see what can be done. 2 Preliminaries An n-bit Boolean function has domain f0; 1gn and co-domain f0; 1g. At a high level, the basic question asked in circuit complexity is: given a collection of “simple functions” and a target Boolean function f, how efficiently can f be computed (on all inputs) using the simple functions? Of course, efficiency can be measured in many ways. The most natural measure is that of the “size” of computation: how many copies of these simple functions are necessary to compute f? Let B be a set of Boolean functions, which we call a basis set. The fan-in of a function g 2 B is the number of inputs that g takes. (Typical choices are fan-in 2, or unbounded fan-in, meaning that g can take any number of inputs.) We define a circuit C with n inputs and size s over a basis B, as follows. C consists of a directed acyclic graph (DAG) of s + n + 2 nodes, with n sources and one sink (the sth node in some fixed topological order on the nodes).
    [Show full text]
  • Collapsing Exact Arithmetic Hierarchies
    Electronic Colloquium on Computational Complexity, Report No. 131 (2013) Collapsing Exact Arithmetic Hierarchies Nikhil Balaji and Samir Datta Chennai Mathematical Institute fnikhil,[email protected] Abstract. We provide a uniform framework for proving the collapse of the hierarchy, NC1(C) for an exact arith- metic class C of polynomial degree. These hierarchies collapses all the way down to the third level of the AC0- 0 hierarchy, AC3(C). Our main collapsing exhibits are the classes 1 1 C 2 fC=NC ; C=L; C=SAC ; C=Pg: 1 1 NC (C=L) and NC (C=P) are already known to collapse [1,18,19]. We reiterate that our contribution is a framework that works for all these hierarchies. Our proof generalizes a proof 0 1 from [8] where it is used to prove the collapse of the AC (C=NC ) hierarchy. It is essentially based on a polynomial degree characterization of each of the base classes. 1 Introduction Collapsing hierarchies has been an important activity for structural complexity theorists through the years [12,21,14,23,18,17,4,11]. We provide a uniform framework for proving the collapse of the NC1 hierarchy over an exact arithmetic class. Using 0 our method, such a hierarchy collapses all the way down to the AC3 closure of the class. 1 1 1 Our main collapsing exhibits are the NC hierarchies over the classes C=NC , C=L, C=SAC , C=P. Two of these 1 1 hierarchies, viz. NC (C=L); NC (C=P), are already known to collapse ([1,19,18]) while a weaker collapse is known 0 1 for a third one viz.
    [Show full text]
  • Two-Way Automata Characterizations of L/Poly Versus NL
    Two-way automata characterizations of L/poly versus NL Christos A. Kapoutsis1;? and Giovanni Pighizzini2 1 LIAFA, Universit´eParis VII, France 2 DICo, Universit`adegli Studi di Milano, Italia Abstract. Let L/poly and NL be the standard complexity classes, of languages recognizable in logarithmic space by Turing machines which are deterministic with polynomially-long advice and nondeterministic without advice, respectively. We recast the question whether L/poly ⊇ NL in terms of deterministic and nondeterministic two-way finite automata (2dfas and 2nfas). We prove it equivalent to the question whether every s-state unary 2nfa has an equivalent poly(s)-state 2dfa, or whether a poly(h)-state 2dfa can check accessibility in h-vertex graphs (even under unary encoding) or check two-way liveness in h-tall, h-column graphs. This complements two recent improvements of an old theorem of Berman and Lingas. On the way, we introduce new types of reductions between regular languages (even unary ones), use them to prove the completeness of specific languages for two-way nondeterministic polynomial size, and propose a purely combinatorial conjecture that implies L/poly + NL. 1 Introduction A prominent open question in complexity theory asks whether nondeterminism is essential in logarithmic-space Turing machines. Formally, this is the question whether L = NL, for L and NL the standard classes of languages recognizable by logarithmic-space deterministic and nondeterministic Turing machines. In the late 70's, Berman and Lingas [1] connected this question to the comparison between deterministic and nondeterministic two-way finite automata (2dfas and 2nfas), proving that if L = NL, then for every s-state σ-symbol 2nfa there is a poly(sσ)-state 2dfa which agrees with it on all inputs of length ≤ s.
    [Show full text]
  • The Boolean Formula Value Problem Is in ALOGTIME (Preliminary Version)
    The Boolean formula value problem is in ALOGTIME (Preliminary Version) Samuel R. Buss¤ Department of Mathematics University of California, Berkeley January 1987 Abstract The Boolean formula value problem is in alternating log time and, more generally, parenthesis context-free languages are in alternating log time. The evaluation of reverse Polish notation Boolean formulas is also in alternating log time. These results are optimal since the Boolean formula value problem is complete for alternating log time under deterministic log time reductions. Consequently, it is also complete for alternating log time under AC0 reductions. 1. Introduction The Boolean formula value problem is to determine the truth value of a variable-free Boolean formula, or equivalently, to recognize the true Boolean sentences. N. Lynch [11] gave log space algorithms for the Boolean formula value problem and for the more general problem of recognizing a parenthesis context-free grammar. This paper shows that these problems have alternating log time algorithms. This answers the question of Cook [5] of whether the Boolean formula value problem is log space complete | it is not, unless log space and alternating log time are identical. Our results are optimal since, for an appropriately de¯ned notion of log time reductions, the Boolean formula value problem is complete for alternating log time under deterministic log time reductions; consequently, it is also complete for alternating log time under AC0 reductions. It follows that the Boolean formula value problem is not in the log time hierarchy. There are two reasons why the Boolean formula value problem is interesting. First, a Boolean (or propositional) formula is a very fundamental concept ¤Supported in part by an NSF postdoctoral fellowship.
    [Show full text]
  • A Short History of Computational Complexity
    The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns.
    [Show full text]
  • Multiparty Communication Complexity and Threshold Circuit Size of AC^0
    2009 50th Annual IEEE Symposium on Foundations of Computer Science Multiparty Communication Complexity and Threshold Circuit Size of AC0 Paul Beame∗ Dang-Trinh Huynh-Ngoc∗y Computer Science and Engineering Computer Science and Engineering University of Washington University of Washington Seattle, WA 98195-2350 Seattle, WA 98195-2350 [email protected] [email protected] Abstract— We prove an nΩ(1)=4k lower bound on the random- that the Generalized Inner Product function in ACC0 requires ized k-party communication complexity of depth 4 AC0 functions k-party NOF communication complexity Ω(n=4k) which is in the number-on-forehead (NOF) model for up to Θ(log n) polynomial in n for k up to Θ(log n). players. These are the first non-trivial lower bounds for general 0 NOF multiparty communication complexity for any AC0 function However, for AC functions much less has been known. for !(log log n) players. For non-constant k the bounds are larger For the communication complexity of the set disjointness than all previous lower bounds for any AC0 function even for function with k players (which is in AC0) there are lower simultaneous communication complexity. bounds of the form Ω(n1=(k−1)=(k−1)) in the simultaneous Our lower bounds imply the first superpolynomial lower bounds NOF [24], [5] and nΩ(1=k)=kO(k) in the one-way NOF for the simulation of AC0 by MAJ ◦ SYMM ◦ AND circuits, showing that the well-known quasipolynomial simulations of AC0 model [26]. These are sub-polynomial lower bounds for all by such circuits are qualitatively optimal, even for formulas of non-constant values of k and, at best, polylogarithmic when small constant depth.
    [Show full text]
  • Limits to Parallel Computation: P-Completeness Theory
    Limits to Parallel Computation: P-Completeness Theory RAYMOND GREENLAW University of New Hampshire H. JAMES HOOVER University of Alberta WALTER L. RUZZO University of Washington New York Oxford OXFORD UNIVERSITY PRESS 1995 This book is dedicated to our families, who already know that life is inherently sequential. Preface This book is an introduction to the rapidly growing theory of P- completeness — the branch of complexity theory that focuses on identifying the “hardest” problems in the class P of problems solv- able in polynomial time. P-complete problems are of interest because they all appear to lack highly parallel solutions. That is, algorithm designers have failed to find NC algorithms, feasible highly parallel solutions that take time polynomial in the logarithm of the problem size while using only a polynomial number of processors, for them. Consequently, the promise of parallel computation, namely that ap- plying more processors to a problem can greatly speed its solution, appears to be broken by the entire class of P-complete problems. This state of affairs is succinctly expressed as the following question: Does P equal NC ? Organization of the Material The book is organized into two parts: an introduction to P- completeness theory, and a catalog of P-complete and open prob- lems. The first part of the book is a thorough introduction to the theory of P-completeness. We begin with an informal introduction. Then we discuss the major parallel models of computation, describe the classes NC and P, and present the notions of reducibility and com- pleteness. We subsequently introduce some fundamental P-complete problems, followed by evidence suggesting why NC does not equal P.
    [Show full text]
  • Verifying Proofs in Constant Depth
    This is a repository copy of Verifying proofs in constant depth. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/74775/ Proceedings Paper: Beyersdorff, O, Vollmer, H, Datta, S et al. (4 more authors) (2011) Verifying proofs in constant depth. In: Proceedings MFCS 2011. Mathematical Foundations of Computer Science 2011, 22 - 26 August 2011, Warsaw, Poland. Springer Verlag , 84 - 95 . ISBN 978-3-642-22992-3 https://doi.org/10.1007/978-3-642-22993-0_11 Reuse See Attached Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Verifying Proofs in Constant Depth∗ Olaf Beyersdorff1, Samir Datta2, Meena Mahajan3, Gido Scharfenberger-Fabian4, Karteek Sreenivasaiah3, Michael Thomas1, and Heribert Vollmer1 1 Institut f¨ur Theoretische Informatik, Leibniz Universit¨at Hannover, Germany 2 Chennai Mathematical Institute, India 3 Institute of Mathematical Sciences, Chennai, India 4 Institut f¨ur Mathematik und Informatik, Ernst-Moritz-Arndt-Universit¨at Greifswald, Germany Abstract. In this paper we initiate the study of proof systems where verification of proofs proceeds by NC0 circuits. We investigate the ques- tion which languages admit proof systems in this very restricted model. Formulated alternatively, we ask which languages can be enumerated by NC0 functions. Our results show that the answer to this problem is not determined by the complexity of the language. On the one hand, we con- struct NC0 proof systems for a variety of languages ranging from regular to NP-complete.
    [Show full text]
  • Lecture 13: Circuit Complexity 1 Binary Addition
    CS 810: Introduction to Complexity Theory 3/4/2003 Lecture 13: Circuit Complexity Instructor: Jin-Yi Cai Scribe: David Koop, Martin Hock For the next few lectures, we will deal with circuit complexity. We will concentrate on small depth circuits. These capture parallel computation. Our main goal will be proving circuit lower bounds. These lower bounds show what cannot be computed by small depth circuits. To gain appreciation for these lower bound results, it is essential to first learn about what can be done by these circuits. In next two lectures, we will exhibit the computational power of these circuits. We start with one of the simplest computations: integer addition. 1 Binary Addition Given two binary numbers, a = a1a2 : : : an−1an and b = b1b2 : : : bn−1bn, we can add the two using the elementary school method { adding each column and carrying to the next. In other words, r = a + b, an an−1 : : : a1 a0 + bn bn−1 : : : b1 b0 rn+1 rn rn−1 : : : r1 r0 can be accomplished by first computing r0 = a0 ⊕ b0 (⊕ is exclusive or) and computing a carry bit, c1 = a0 ^ b0. Now, we can compute r1 = a1 ⊕ b1 ⊕ c1 and c2 = (c1 ^ (a1 _ b1)) _ (a1 ^ b1), and in general we have rk = ak ⊕ bk ⊕ ck ck = (ck−1 ^ (ak _ bk)) _ (ak ^ bk) Certainly, the above operation can be done in polynomial time. The main question is, can we do it in parallel faster? The computation expressed above is sequential. Before computing rk, one needs to compute all the previous output bits.
    [Show full text]
  • Relationships Among PL, #L, and the Determinant
    Relationships Among PL, L, and the Determinant y z Eric Allender Mitsunori Ogihara Department of Computer Science Department of Computer Science Hill Center, Busch Campus, P.O. Box 1179 UniversityofRochester Piscataway, NJ 08855-117 9, USA Ro chester, NY 14627 [email protected] [email protected] Abstract Recent results byTo da, Vinay, Damm, and Valianthave shown that the complexity of the determinantischaracterized by the complexity of counting the numb er of accepting compu- tations of a nondeterministic logspace-b ounded machine. This class of functions is known as L. By using that characterization and by establishing a few elementary closure prop erties, we givea very simple pro of of a theorem of Jung, showing that probabilistic logspace-b ounded PL machines lose none of their computational p ower if they are restricted to run in p olynomial time. We also present new results comparing and contrasting the classes of functions reducible to PL, L, and the determinant, using various notions of reducibility. 1 Intro duction One of the most imp ortant and in uential early results of complexity theory is the theorem of [47] showing that the complexity of computing the p ermanentofaninteger matrix is characterized by the complexity class P of functions that count the numb er of accepting computation paths of a nondeterministic p olynomial-time machine. It is p erhaps surprising that well over a decade passed b efore it was discovered that an equally-close connection exists b etween the complexityof computing the determinant of a matrix and the class L de ned in [5] of functions that count the numb er of accepting computation paths of a nondeterministic logspace-b ounded machine.
    [Show full text]
  • On a Theory of Computation and Complexity Over the Real Numbers: Np-Completeness, Recursive Functions and Universal Machines1
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 21, Number 1, July 1989 ON A THEORY OF COMPUTATION AND COMPLEXITY OVER THE REAL NUMBERS: NP-COMPLETENESS, RECURSIVE FUNCTIONS AND UNIVERSAL MACHINES1 LENORE BLUM2, MIKE SHUB AND STEVE SMALE ABSTRACT. We present a model for computation over the reals or an arbitrary (ordered) ring R. In this general setting, we obtain universal machines, partial recursive functions, as well as JVP-complete problems. While our theory reflects the classical over Z (e.g., the computable func­ tions are the recursive functions) it also reflects the special mathematical character of the underlying ring R (e.g., complements of Julia sets provide natural examples of R. E. undecidable sets over the reals) and provides a natural setting for studying foundational issues concerning algorithms in numerical analysis. Introduction. We develop here some ideas for machines and computa­ tion over the real numbers R. One motivation for this comes from scientific computation. In this use of the computer, a reasonable idealization has the cost of multiplication independent of the size of the number. This contrasts with the usual theoretical computer science picture which takes into account the number of bits of the numbers. Another motivation is to bring the theory of computation into the do­ main of analysis, geometry and topology. The mathematics of these sub­ jects can then be put to use in the systematic analysis of algorithms. On the other hand, there is an extensively developed subject of the theory of discrete computation, which we don't wish to lose in our theory.
    [Show full text]