Time, Hardware, and Uniformity

Total Page:16

File Type:pdf, Size:1020Kb

Time, Hardware, and Uniformity This is page Printer Opaque this Time Hardware and Uniformity David Mix Barrington Neil Immerman ABSTRACT We describ e three orthogonal complexity measures parallel time amount of hardware and degree of nonuniformity which together parametrize most complexity classes Weshow that the descriptive com plexity framework neatly captures these measures using three parameters quantier depth number of variables and typ e of numeric predicates re sp ectively A fairly simple picture arises in which the basic questions in complexity theory solved and unsolved can b e understo o d as ques tions ab out tradeos among these three dimensions Intro duction An initial presentation of complexity theory usually makes the implicit as sumption that problems and hence complexity classes are linearly ordered by diculty In the Chomsky Hierarchyeach new typ e of automaton can decide more languages and the Time Hierarchy Theorem tells us that adding more time allowsaTuring machine to decide more languages In deed the word complexity is often used eg in the study of algorithms to mean worstcase Turing machine running time under which problems are linearly ordered Those of us who study structural complexityknow that the situation is actually more complicated For one thing if wewant to mo del parallel com putation we need to distinguish b etween algorithms whichtakethesame amountofwork ie sequential time wecarehowmany pro cesses are op erating in parallel and howmuch parallel time is taken These two dimen sions of complexity are identiable in all the usual mo dels b o olean circuits width and depth PRAMs or other explicit parallel machines number of pro cessors and parallel time alternating Turing machines space and alternations or even deterministic Turing machines space and reversals Hongs b o ok H gives an interesting general treatment of similarity b e tween mo dels and duality b etween these two complexity measures Figure gives a twodimensional layout of some wellknown and less wellknown complexity classes To b e precise ab out our axes wehave chosen unb ounded fanin circuit depth as our measure of parallel time and circuit width as our measure of numb er of pro cesses This assumes that the circuits have b een arranged into levels and that eachedgeinto David Mix Barrington Neil Immerman O n PH PSPACE EXPTIME O log n q AC q NC q P O n AC AC NC P PSPACE O log n SC q NC PSPACE O log n LOGSPACE q NC PSPACE O NC q NC PSPACE O O O O log n n O O log n log n n width d e p t h Figure Two Dimensions of Complexity Classes a gate comes from either an input or a gate on the immediately previous level Thus the depth is the numb er of levels and the width is dened as the size of the largest level The columns of our chart represent b ounds on depth and the rows b ounds on width Blanks indicate classes where b oth are b ounded b elow p olynomiallyandthus the resulting circuits cannot access the entire input The named classes are fairly standard except for the use of a prex q to indicate a change from a p olynomial to a quasip olynomial size b ound B Thus q NC is the class of languages decidable by circuit families of p olylog depth and quasip olynomial size it is a robust class which o ccurs several times on the chart Finally question marks denote classes whichhaveno distinctive names known to the authors and ab out whichweknow nothing other than the obvious containment relations with their neighbors Of course merely sp ecifying combinatorial b ounds on the circuits in a family do es not fully sp ecify a complexity class For example any unary language even an uncomputable one has a circuit family of O size and depth which decides it In the circuit context we usually sp eak of restricting circuit families byauniformity condition wesay that the circuit must b e computable or that questions ab out it must b e answerable by resourceb ounded computation It is equally sensible to sp eak of non uniformity as a resource more of whichallows a circuit family to decide more languages This resource forms the third axis of our parametrization of complexity classes It exists in other mo dels as well advice given to Turing machines KL or precomputation in parallel machines A Ateach p oint on our twodimensional chart wehave a range of com plexity classes obtained byvarying the uniformity condition For example if b oth size and depth are p olynomially b ounded the chart indicates the class P of languages decided by p olynomialtime Turing machines This claim is true if the circuits are Puniform computable by a p olytime Turing machine or if they are DLOGTIME uniform direct connection language decidable by a randomaccess Turing machine in time O log n see BIS or any uniformity condition in b etween Howeverifweallow ourselves more than p olynomial time to compute the circuit wemaybe Time Hardware and Uniformity able to decide more languages If we allow ourselves enough extra time we can denitely do so For example if we allow more than exp onential time we can decide the unary version of the universal language for Turing machines with some sup erp olynomial time b ound On the other hand one can imagine uniformity conditions so restrictive that a general simulation of a Turing machine is imp ossible In general as wepassupward adding more nonuniformity along the third axis we pass through three regions one with to o little nonuniformity where the basic constructions relating the circuit mo del to other mo d els cannot b e carried out a second robust region where a wide range of denitions give the same class and a third region where additional non uniformity gives steadily larger classes The distinction can b e quite imp or tant as we see in the case of the class NC Asshown in BIS we can dene avery restrictive uniformity notion under whichNC b ecomes the class of regular languages If our nonuniformity resource is b etween DLOGTIME and NC itself we get a robust class equal to ALOGTIME And if weallow p olynomial time to build our circuits we can then do integer division and related problems BCH which as far as weknow we couldnt do b efore This may b e an example of where nonuniformity can replace one of the other two resources In some cases we know of limits on the p otential p ower of nonuniformity to do so at least sub ject to complexitytheoretic assump tions For example Karp and Lipton KL haveshown that no amountof nonuniformity can allowPtosimulate all of uniform NP unless the p olynomial hierarchy collapses to the second level It would b e interesting to have a parallel result for P and NC and recentwork of Ogihara Cai and Sivakumar O CS has made progress toward this One would liketo derive unlikely complexitytheoretic consequences from for example the hyp othesis that nonuniform NC contains uniform P or equivalently that there is a sparse set complete for P under NC Turing reductions Cai and Sivakumar show that if there is a sparse set complete for P under logspace uniform NC manyone reductions then P is equal to logspace uniform NC Dvan Melkeb eek vM has subsequently shown a similar result for sparse sets complete under truthtable reductions In general our techniques for proving lower b ounds on circuit complexity are combinatorial and algebraic and apply to the total ly nonuniform ver sions of the circuit classes A notable exception is the result by Allender and Gore AG that the integer p ermanent function is not in DPOLYLOGTIME uniform q ACC though for all weknowitmightbeinLOGSPACEuniform ACC There is a certain amountofoversimplication in thinking of eachof our three parameters as a single axis For one thing our nonuniformity resource is dened in terms of the complexity of languages which talk ab out the circuits so this dimension may b e as nonlinear as the whole picture However the uniformity conditions we normally consider happ en to b e linearly ordered More imp ortantly the parallel time axis is dened David Mix Barrington Neil Immerman in terms of particular primitive op erations on the data In the circuit mo del a single gate computes an AND or OR in a parallel machine the most powerful op erations are the concurrent read and concurrent write and the alternations of a Turing machine are also dened in terms of AND and OR But there is nothing sacred ab out AND and OR in each mo del wecan consider other op erations such as MAJORITY more p owerful than AND and OR or mo dular counting orthogonal to them In the circuit mo del these op erations are emb o died as new kinds of gates in Turing machines as new acceptance conditions as in the classes P or PP and in parallel machines as new global op erations such as the scan op eration on the Connection Machine Here we consider these three dimensions and the variety of op erations in the framework of descriptive complexity where we measure the complexity of a language by the syntactic resources in a particular logical formalism needed to express the prop ertyofmembershipinitIIIb We review this framework in Section b elow It has b een known for some time that two parameters in descriptive complexitynumber of variables and quantier depth corresp ond exactly to space and parallel time in either the circuit or PRAM mo dels Ib More recently along with Straubing BIS B wehave extended the framework to deal with the third dimension and with more general op erations in the context of rstorder formulas or constantdepth p olysize circuits There varying uniformity conditions corresp ond to new atomic predicates and any asso ciative op eration with an identity can b e mo deled by a new typ
Recommended publications
  • On Uniformity Within NC
    On Uniformity Within NC David A Mix Barrington Neil Immerman HowardStraubing University of Massachusetts University of Massachusetts Boston Col lege Journal of Computer and System Science Abstract In order to study circuit complexity classes within NC in a uniform setting we need a uniformity condition which is more restrictive than those in common use Twosuch conditions stricter than NC uniformity RuCo have app eared in recent research Immermans families of circuits dened by rstorder formulas ImaImb and a unifor mity corresp onding to Buss deterministic logtime reductions Bu We show that these two notions are equivalent leading to a natural notion of uniformity for lowlevel circuit complexity classes Weshow that recent results on the structure of NC Ba still hold true in this very uniform setting Finallyweinvestigate a parallel notion of uniformity still more restrictive based on the regular languages Here we givecharacterizations of sub classes of the regular languages based on their logical expressibility extending recentwork of Straubing Therien and Thomas STT A preliminary version of this work app eared as BIS Intro duction Circuit Complexity Computer scientists have long tried to classify problems dened as Bo olean predicates or functions by the size or depth of Bo olean circuits needed to solve them This eort has Former name David A Barrington Supp orted by NSF grant CCR Mailing address Dept of Computer and Information Science U of Mass Amherst MA USA Supp orted by NSF grants DCR and CCR Mailing address Dept of
    [Show full text]
  • Week 1: an Overview of Circuit Complexity 1 Welcome 2
    Topics in Circuit Complexity (CS354, Fall’11) Week 1: An Overview of Circuit Complexity Lecture Notes for 9/27 and 9/29 Ryan Williams 1 Welcome The area of circuit complexity has a long history, starting in the 1940’s. It is full of open problems and frontiers that seem insurmountable, yet the literature on circuit complexity is fairly large. There is much that we do know, although it is scattered across several textbooks and academic papers. I think now is a good time to look again at circuit complexity with fresh eyes, and try to see what can be done. 2 Preliminaries An n-bit Boolean function has domain f0; 1gn and co-domain f0; 1g. At a high level, the basic question asked in circuit complexity is: given a collection of “simple functions” and a target Boolean function f, how efficiently can f be computed (on all inputs) using the simple functions? Of course, efficiency can be measured in many ways. The most natural measure is that of the “size” of computation: how many copies of these simple functions are necessary to compute f? Let B be a set of Boolean functions, which we call a basis set. The fan-in of a function g 2 B is the number of inputs that g takes. (Typical choices are fan-in 2, or unbounded fan-in, meaning that g can take any number of inputs.) We define a circuit C with n inputs and size s over a basis B, as follows. C consists of a directed acyclic graph (DAG) of s + n + 2 nodes, with n sources and one sink (the sth node in some fixed topological order on the nodes).
    [Show full text]
  • Collapsing Exact Arithmetic Hierarchies
    Electronic Colloquium on Computational Complexity, Report No. 131 (2013) Collapsing Exact Arithmetic Hierarchies Nikhil Balaji and Samir Datta Chennai Mathematical Institute fnikhil,[email protected] Abstract. We provide a uniform framework for proving the collapse of the hierarchy, NC1(C) for an exact arith- metic class C of polynomial degree. These hierarchies collapses all the way down to the third level of the AC0- 0 hierarchy, AC3(C). Our main collapsing exhibits are the classes 1 1 C 2 fC=NC ; C=L; C=SAC ; C=Pg: 1 1 NC (C=L) and NC (C=P) are already known to collapse [1,18,19]. We reiterate that our contribution is a framework that works for all these hierarchies. Our proof generalizes a proof 0 1 from [8] where it is used to prove the collapse of the AC (C=NC ) hierarchy. It is essentially based on a polynomial degree characterization of each of the base classes. 1 Introduction Collapsing hierarchies has been an important activity for structural complexity theorists through the years [12,21,14,23,18,17,4,11]. We provide a uniform framework for proving the collapse of the NC1 hierarchy over an exact arithmetic class. Using 0 our method, such a hierarchy collapses all the way down to the AC3 closure of the class. 1 1 1 Our main collapsing exhibits are the NC hierarchies over the classes C=NC , C=L, C=SAC , C=P. Two of these 1 1 hierarchies, viz. NC (C=L); NC (C=P), are already known to collapse ([1,19,18]) while a weaker collapse is known 0 1 for a third one viz.
    [Show full text]
  • A Short History of Computational Complexity
    The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns.
    [Show full text]
  • Multiparty Communication Complexity and Threshold Circuit Size of AC^0
    2009 50th Annual IEEE Symposium on Foundations of Computer Science Multiparty Communication Complexity and Threshold Circuit Size of AC0 Paul Beame∗ Dang-Trinh Huynh-Ngoc∗y Computer Science and Engineering Computer Science and Engineering University of Washington University of Washington Seattle, WA 98195-2350 Seattle, WA 98195-2350 [email protected] [email protected] Abstract— We prove an nΩ(1)=4k lower bound on the random- that the Generalized Inner Product function in ACC0 requires ized k-party communication complexity of depth 4 AC0 functions k-party NOF communication complexity Ω(n=4k) which is in the number-on-forehead (NOF) model for up to Θ(log n) polynomial in n for k up to Θ(log n). players. These are the first non-trivial lower bounds for general 0 NOF multiparty communication complexity for any AC0 function However, for AC functions much less has been known. for !(log log n) players. For non-constant k the bounds are larger For the communication complexity of the set disjointness than all previous lower bounds for any AC0 function even for function with k players (which is in AC0) there are lower simultaneous communication complexity. bounds of the form Ω(n1=(k−1)=(k−1)) in the simultaneous Our lower bounds imply the first superpolynomial lower bounds NOF [24], [5] and nΩ(1=k)=kO(k) in the one-way NOF for the simulation of AC0 by MAJ ◦ SYMM ◦ AND circuits, showing that the well-known quasipolynomial simulations of AC0 model [26]. These are sub-polynomial lower bounds for all by such circuits are qualitatively optimal, even for formulas of non-constant values of k and, at best, polylogarithmic when small constant depth.
    [Show full text]
  • Limits to Parallel Computation: P-Completeness Theory
    Limits to Parallel Computation: P-Completeness Theory RAYMOND GREENLAW University of New Hampshire H. JAMES HOOVER University of Alberta WALTER L. RUZZO University of Washington New York Oxford OXFORD UNIVERSITY PRESS 1995 This book is dedicated to our families, who already know that life is inherently sequential. Preface This book is an introduction to the rapidly growing theory of P- completeness — the branch of complexity theory that focuses on identifying the “hardest” problems in the class P of problems solv- able in polynomial time. P-complete problems are of interest because they all appear to lack highly parallel solutions. That is, algorithm designers have failed to find NC algorithms, feasible highly parallel solutions that take time polynomial in the logarithm of the problem size while using only a polynomial number of processors, for them. Consequently, the promise of parallel computation, namely that ap- plying more processors to a problem can greatly speed its solution, appears to be broken by the entire class of P-complete problems. This state of affairs is succinctly expressed as the following question: Does P equal NC ? Organization of the Material The book is organized into two parts: an introduction to P- completeness theory, and a catalog of P-complete and open prob- lems. The first part of the book is a thorough introduction to the theory of P-completeness. We begin with an informal introduction. Then we discuss the major parallel models of computation, describe the classes NC and P, and present the notions of reducibility and com- pleteness. We subsequently introduce some fundamental P-complete problems, followed by evidence suggesting why NC does not equal P.
    [Show full text]
  • Lecture 13: Circuit Complexity 1 Binary Addition
    CS 810: Introduction to Complexity Theory 3/4/2003 Lecture 13: Circuit Complexity Instructor: Jin-Yi Cai Scribe: David Koop, Martin Hock For the next few lectures, we will deal with circuit complexity. We will concentrate on small depth circuits. These capture parallel computation. Our main goal will be proving circuit lower bounds. These lower bounds show what cannot be computed by small depth circuits. To gain appreciation for these lower bound results, it is essential to first learn about what can be done by these circuits. In next two lectures, we will exhibit the computational power of these circuits. We start with one of the simplest computations: integer addition. 1 Binary Addition Given two binary numbers, a = a1a2 : : : an−1an and b = b1b2 : : : bn−1bn, we can add the two using the elementary school method { adding each column and carrying to the next. In other words, r = a + b, an an−1 : : : a1 a0 + bn bn−1 : : : b1 b0 rn+1 rn rn−1 : : : r1 r0 can be accomplished by first computing r0 = a0 ⊕ b0 (⊕ is exclusive or) and computing a carry bit, c1 = a0 ^ b0. Now, we can compute r1 = a1 ⊕ b1 ⊕ c1 and c2 = (c1 ^ (a1 _ b1)) _ (a1 ^ b1), and in general we have rk = ak ⊕ bk ⊕ ck ck = (ck−1 ^ (ak _ bk)) _ (ak ^ bk) Certainly, the above operation can be done in polynomial time. The main question is, can we do it in parallel faster? The computation expressed above is sequential. Before computing rk, one needs to compute all the previous output bits.
    [Show full text]
  • Parameterized Circuit Complexity and the W Hierarchy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science ELSEVIER Theoretical Computer Science 191 (1998) 97-115 Parameterized circuit complexity and the W hierarchy Rodney G. Downey a, Michael R. Fellows b,*, Kenneth W. Regan’ a Department of Mathematics, Victoria University, P.O. Box 600, Wellington, New Zealand b Department of Computer Science, University of Victoria, Victoria, BC, Canada V8W 3P6 ‘Department of Computer Science, State University of New York at Buffalo, 226 Bell Hall, Buffalo, NY 14260-2000 USA Received June 1995; revised October 1996 Communicated by M. Crochemore Abstract A parameterized problem (L,k) belongs to W[t] if there exists k’ computed from k such that (L, k) reduces to the weight-k’ satisfiability problem for weft-t circuits. We relate the fundamental question of whether the w[t] hierarchy is proper to parameterized problems for constant-depth circuits. We define classes G[t] as the analogues of AC0 depth-t for parameterized problems, and N[t] by weight-k’ existential quantification on G[t], by analogy with NP = 3 . P. We prove that for each t, W[t] equals the closure under fixed-parameter reductions of N[t]. Then we prove, using Sipser’s results on the AC0 depth-t hierarchy, that both the G[t] and the N[t] hierarchies are proper. If this separation holds up under parameterized reductions, then the kF’[t] hierarchy is proper. We also investigate the hierarchy H[t] defined by alternating quantification over G[t].
    [Show full text]
  • Circuit Complexity Contents 1 Announcements 2 Relation to Other
    CS221: Computational Complexity Prof. Salil Vadhan Lecture 19: Circuit Complexity 11/6 Scribe: Chris Crick Contents 1 Announcements ² Problem Set 3, problem 2: You may use ², the regular expression for the empty string. ² PS3 due tomorrow. ² Be aware that you do not necessarily have to solve all of the problems on the problem set — the point is to get you to think about them. ² Reading: Papadimitriou x4.3, x11.4 2 Relation to other complexity measures Definition: The circuit complexity or circuit size of a function f : f0; 1gn ! f0; 1g is the number of gates in the smallest boolean circuit that computes f. Circuit complexity depends our choice of a universal basis, but only up to a constant. We can therefore use any such basis to represent our circuit. Because it’s familiar and convenient, then, we will usually use AND, OR and NOT, though sometimes the set of all boolean functions of two inputs and one output is more natural. Example: To provide a sense for how one programs with circuits, we will examine the thresh- 1 if at least two x s are 1 old function Th (x ; ¢ ¢ ¢ ; x ) = f i g. Figure 1 shows a simple circuit to 2 1 n 0 otherwise compute this function. In this circuit, li = 1 if at least one of (x1; : : : ; xi) = 1. ri becomes 1 once two xis equal 1. li is just xi _ li¡1, and ri is ri¡1 _ (li¡1 ^ xi). The output node is rn. Conventions for counting circuit gates vary a little – for example, some people count the inputs in the total, while others don’t.
    [Show full text]
  • Circuit Complexity and Computational Complexity
    Circuit Complexity and Computational Complexity Lecture Notes for Math 267AB University of California, San Diego January{June 1992 Instructor: Sam Buss Notes by: Frank Baeuerle Sam Buss Bob Carragher Matt Clegg Goran Gogi¶c Elias Koutsoupias John Lillis Dave Robinson Jinghui Yang 1 These lecture notes were written for a topics course in the Mathematics Department at the University of California, San Diego during the winter and spring quarters of 1992. Each student wrote lecture notes for between two and ¯ve one and one half hour lectures. I'd like to thank the students for a superb job of writing up lecture notes. January 9-14. Bob Carragher's notes on Introduction to circuit complexity. Theorems of Shannon and Lupanov giving upper and lower bounds of circuit complexity of almost all Boolean functions. January 14-21. Matt Clegg's notes on Spira's theorem relating depth and formula size Krapchenko's lower bound on formula size over AND/OR/NOT January 23-28. Frank Baeuerle's notes on Neciporuk's theorem Simulation of time bounded TM's by circuits January 30 - February 4. John Lillis's notes on NC/AC hierarchy Circuit value problem Depth restricted circuits for space bounded Turing machines Addition is in NC1. February 6-13. Goran Gogi¶c's notes on Circuits for parallel pre¯x vector addition and for symmetric functions. February 18-20. Dave Robinson's notes on Schnorr's 2n-3 lower bound on circuit size Blum's 3n-o(n) lower bound on circuit size February 25-27. Jinghui Yang's notes on Subbotovskaya's theorem Andreev's n2:5 lower bound on formula size with AND/OR/NOT.
    [Show full text]
  • BQP and the Polynomial Hierarchy∗
    BQP and the Polynomial Hierarchy∗ Scott Aaronson† MIT ABSTRACT 1. INTRODUCTION The relationship between BQP and PH has been an open A central task of quantum computing theory is to un- problem since the earliest days of quantum computing. We derstand how BQP—Bounded-Error Quantum Polynomial- present evidence that quantum computers can solve prob- Time, the class of all problems feasible for a quantum computer— lems outside the entire polynomial hierarchy, by relating this fits in with classical complexity classes. In their original question to topics in circuit complexity, pseudorandomness, 1993 paper defining BQP, Bernstein and Vazirani [9] showed #P 1 and Fourier analysis. that BPP BQP P . Informally, this says that quan- ⊆ ⊆ First, we show that there exists an oracle relation problem tum computers are at least as fast as classical probabilistic (i.e., a problem with many valid outputs) that is solvable in computers and no more than exponentially faster (indeed, BQP, but not in PH. This also yields a non-oracle relation they can be simulated using an oracle for counting). Bern- problem that is solvable in quantum logarithmic time, but stein and Vazirani also gave evidence that BPP = BQP, 6 not in AC0. by exhibiting an oracle problem called Recursive Fourier Ω(log n) Second, we show that an oracle decision problem separat- Sampling that requires n queries on a classical com- ing BQP from PH would follow from the Generalized Linial- puter but only n queries on a quantum computer. The Nisan Conjecture, which we formulate here and which is evidence for the power of quantum computers became dra- likely of independent interest.
    [Show full text]
  • A Small Span Theorem Within P 1 Introduction
    A Small Span Theorem within P Wolfgang Lindner and Rainer Schuler Abteilung Theoretische Informatik Universitat Ulm Ob erer Eselsb erg Ulm GERMANY Abstract The development of Small Span Theorems for various complexity classes and re ducibili ties plays a basic role in resource b ounded measuretheoretic investigations of ecient reductions A Small Span Theorem for a complexity class C and reducibil ity is the assertion that for all sets A in C at least one of the cones b elowor r ab ove A is a negligible small class with resp ect to C where the cones b eloworabove A refer to the sets fB B Ag and fB A B g resp ectively That is a Small r r Span Theorem rules out one of the four p ossibilities of the size of upp er and lower cones for a set in C Here we use the recent formulation of resourceb ounded measure of Allender and Strauss whichallows meaningful notions of measure on p olynomialtime complexity classes Weshowtwo Small Span Theorems for p olynomialtime complexity classes and sublineartime reducibili ties namely a Small Span Theorem for P and Dlogtime NP uniform NC computable reductions and for P and Dlogtimetransformations Furthermore weshow that for every xed k the hard set for P under Dlogtime k uniform AC reductions of depth k and size n is a small class In contrast weshow that every upp er cone under Puniform NC reductions is not small Intro duction Resourceb ounded measure provides a to ol to investigate abundance phenomena in complexity classes Besides insights in the measuretheoretic structure of complexity classes
    [Show full text]