Conjugated Linoleic Acids: All the Same Or to Everyone Its Own Function? Jean-Charles Martin, Karine Valeille

Total Page:16

File Type:pdf, Size:1020Kb

Conjugated Linoleic Acids: All the Same Or to Everyone Its Own Function? Jean-Charles Martin, Karine Valeille Conjugated linoleic acids: all the same or to everyone its own function? Jean-Charles Martin, Karine Valeille To cite this version: Jean-Charles Martin, Karine Valeille. Conjugated linoleic acids: all the same or to everyone its own function?. Reproduction Nutrition Development, EDP Sciences, 2002, 42 (6), pp.525-536. 10.1051/rnd:2002042. hal-00900428 HAL Id: hal-00900428 https://hal.archives-ouvertes.fr/hal-00900428 Submitted on 1 Jan 2002 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reprod. Nutr. Dev. 42 (2002) 525–536 525 © INRA, EDP Sciences, 2003 DOI: 10.1051/rnd:2002042 Review Conjugated linoleic acids: all the same or to everyone its own function? Jean-Charles MARTIN*, Karine VALEILLE Laboratoire de Physiologie de la Nutrition, Université de Paris-Sud, 91400 Orsay, France (Received 14 June 2002; accepted 6 November 2002) Abstract — Conjugated linoleic acid (CLA) is a generic term referring to a mixture of geometrical and positional isomers of linoleic acid in which up to 16 members have been identified. Many poten- tially beneficial health effects have been ascribed to these fatty acids when consumed as a mixture, and where generally 2 isomers dominate, e.g. the 9c,11t-isomer, the so-called rumenic acid, and the 10t,12c-isomer: anti-carcinogenic, immune modulator, anti-atherosclerotic, and anti-obesity among the most spectacular. The question arises as to whether the pleiotropic biological activity is sup- ported by one or several of the isomers. Recent studies using pure individual isomers have started to elucidate this issue, but many others are required to ascribe a respective role to each CLA isomer (the main ones as well as the minor ones), such as those occurring in some complex mixtures already commercially available, or even in foodstuff. The aim of the present study was to focus on the CLA-isomer specific effects depicted in the literature up to now. CLA isomers / rumenic acid / cancer / obesity / atherosclerosis 1. INTRODUCTION are 18 carbon chain-length fatty acids with 2 double bonds. These are therefore isomers A great deal of concern has arisen from of linoleic acid, but to the contrary to this the study of conjugated linoleic acids (CLA), essential fatty acid where the double bonds because of their considerable pleiotropic are methylene-interrupted, they are consec- effects: anti-carcinogenic, immune modu- utive (e.g. conjugated) in CLA (Fig. 1). The lator, anti-diabetic, anti-obesity, anti-throm- double bond system is localized on carbons botic and anti-atherogenic [4, 5, 47]. CLA 7,9; 8,10, etc. up to carbon 12,14 of the * Correspondence and reprints E-mail: [email protected] 526 J.-C. Martin, K. Valeille Figure 1. Natural origin of rumenic acid: rumenal synthesis from linoleic acid, and endogenous occurrence from delta-9 desaturation of trans-vaccenic acid (from [26], with permission). olefinic chain, including all possible geo- and ingested by ruminants (Fig. 1). Some of metrical combinations (cis/cis, cis/trans, the rumenic acid formed escapes total hydro- trans/cis et trans/trans). As many as genation and is taken up by the intestines 16 members have been identified thus far and reaches milk and muscle lipids. Trans- in marketed products [38]. The latter are vaccenic acid (18 carbons long, one trans- obtained by alkaline isomerization of veg- double bond located in the D-11 position, etable oil enriched with linoleic acid (saf- another by-product of the biohydrogenation flower oil, sunflower oil) and sold as food reaction), can also undergo delta-9 desatu- supplements. In this example, the CLA iso- ration in the intestines, liver, mammary meric distribution is generally dominated gland, and adipose tissue, and there it forms by 2 main isomers, e.g. the 9c,11t-isomer rumenic acid endogenously [25] (Fig.1). In and 10t,12c-isomer, including in some prepa- humans, trans-vaccenic acid occurring from rations the 8t,10c- and 11t,13c-isomers. Con- the intake of ruminant products can be versely, the 9c,11t-isomer is the main CLA similarly converted to the 9c,11t-isomer [1, occurring naturally in foodstuff (up to 80% 48], This comes in addition to the daily of total isomers) [23, 43], although the other 200–400 mg of pre-formed ingested rumenic isomers are also present in minor amounts acid [15]. and should therefore be considered as “nat- ural” compounds [43]. Importantly, the bal- When dealing with the bioactivity of ance between the various isomers is not the CLA, it is likely that their structural pecu- same in synthetic CLA products and those liarities underly some of their radically dif- occurring from natural sources. Since most ferent actions when compared to linoleic of the CLA intake and therefore the 9c,11t- acid (reviewed in [4, 47]). Nevertheless, isomer arise from ruminant products, this only a few studies have addressed the dis- isomer is called rumenic acid. It is a by- crete potency of each isomer (Tab. I), or the product of microbial biohydrogenation that particular synergistic or competitive iso- takes place in the rumen from linoleic acid mers-effects of several isomers present (and a-linolenic acid) occurring from plants together in the same mixture. Table I. Summary of the biological effects involving selected isomers of CLA. Biological effects 9c,11t-CLA 10t,12c-CLA Other isomers Comments Anti-cancer + + ? Strong evidence for the 9c,11t- in animal models Decrease of fat body mass 0 + 0 (9t,11t-) Efficiency is species-dependent (requires confirmation in humans) Anti-atherosclerosis + (?) + (?) ? Needs further confirmation Insulin resistance 0 + or – ? In rats, not in humans, 10t,12c-CLA may improve glucose Biological effectofCLAisomers tolerance or induce strong insulin resistance depending on the initial physiological status Immune modulation ? ? ? No study reported with individual isomers Fatty acid desaturation – (delta 6) – (delta 9) + (delta 5) ? Eisosanoid synthesis – – – 9c,11t- is more potent for the constitutive PGH synthase, followed by 9c,11c, 9t,11t, and 10t,12c. All of these isomers are equally potent for COX-2 (inducible) Pro-inflammatory agents – – – 9c,11t-; 9c,11c-; 9t,11t-; and 10t,12c- isomers equally potent (cytokines and NO) PPARa ligand & activator + + + (9t,11t-) 9c,11t- is more potent PPARg activator + + + (9c,11c-; 9t,11t-) +: positive effect; –: negative effect; 0: neutral. For further details, refer to appropriate references and text section. 527 528 J.-C. Martin, K. Valeille 2. CANCER AND CLA: ble for the fat reduction observed upon CLA WHICH ISOMER IS POTENT? treatment [34]. This was demonstrated effec- tively by a mouse study in which different Fifteen years ago Pariza et al. [17] found purified isomers were used (10t,12c-, 9c,11t, that CLA of a fried ground beef extract was 9t,11t) and in which the 10t,12c-isomer was highly potent in reducing epidermal tumor the most efficacious in decreasing body fat incidence of mice topically treated with mass [35]. According to Pariza [34], CLA 12-O-tetradecanoylphorbol-13-acetate. This and specifically the 10t,12c-isomer blocks suggests that the anticarcinogenic effect body fat gain, but does not necessarily was due to one isomer, since the CLA in reduce the body fat level which had accu- ruminant products are mainly made up of mulated prior to the CLA administration 9c,11t-CLA. The potency of this isomer has (Fig. 2). been further confirmed by us [22] and Ip [19] in another carcinogenic model, e.g. We reached the same conclusion in our NMU-induced rat mammary carcinogene- experiments. We fed hamsters a lipid- sis. In these experiments, female rats were enriched diet (33% in energy) for 8 weeks, injected with a pro-carcinogen and fed for supplemented or not with CLA (1% by 6 months with diets containing either a CLA weight). Only the CLA diet containing the mixture (complex mixture), or a chemically- 10t,12c-isomer prevented the accretion of prepared 9c,11t-CLA [22], or a butter diet body triglyceride over time, while the diet naturally enriched in the 9c,11t-CLA, or containing the sole 9c,11t-isomer failed to artificially increased with a CLA mixture do so [8]. A recent human study examined (Ip study). In both experiments, CLA the effects of feeding obese men with the amounted to 1% by weight. The cancer risk metabolic syndrome for 12 weeks 3.4 g of was decreased in all CLA-diets, including either 10t,12c-CLA, or a CLA mixture con- those enriched with only the 9c,11t-isomer, taining equal amounts of both the 9c,11t- thereby indicating a high anticarcinogenic and 10t,12c-CLA [40]. The sagittal abdom- potency for this isomer, the so-called inal diameter and % body fat (determined rumenic acid. In addition, a recent case- by bioelectrical impedance analysis) control study carried out on Finish women decreased similarly in both CLA groups [3] demonstrated that breast cancer risk is compared to the baseline values, but not decreased by 2.5 fold (odds ratio of 0.4) compared to the placebo values at the com- in the women with the highest serum pletion of the study. It is noteworthy that 9c,11t-CLA concentrations as compared to those with the lowest concentrations. On the the treatment with 10t,12c-CLA, but not contrary, in vitro studies have also demon- with the CLA mixture, worsened the insulin strated that the 10t,12c-isomer is even more sensitivity in that population.
Recommended publications
  • Redalyc.Chemical and Physiological Aspects of Isomers of Conjugated
    Ciência e Tecnologia de Alimentos ISSN: 0101-2061 [email protected] Sociedade Brasileira de Ciência e Tecnologia de Alimentos Brasil Teixeira de CARVALHO, Eliane Bonifácio; Louise Pereira de MELO, Illana; MANCINI- FILHO, Jorge Chemical and physiological aspects of isomers of conjugated fatty acids Ciência e Tecnologia de Alimentos, vol. 30, núm. 2, abril-junio, 2010, pp. 295-307 Sociedade Brasileira de Ciência e Tecnologia de Alimentos Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=395940100002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciência e Tecnologia de Alimentos ISSN 0101-2061 Chemical and physiological aspects of isomers of conjugated fatty acids Aspectos químicos e fisiológicos de isômeros conjugados de ácidos graxos Revisão Eliane Bonifácio Teixeira de CARVALHO1, Illana Louise Pereira de MELO1, Jorge MANCINI-FILHO1* Abstract Conjugated fatty acid (CFA) is the general term to describe the positional and geometric isomers of polyunsaturated fatty acids with conjugated double bonds. The CFAs of linoleic acid (CLAs) are found naturally in foods derived from ruminant animals, meat, or dairy products. The CFAs of α-linolenic acid (CLNAs) are found exclusively in various types of seed oils of plants. There are many investigations to assess the effects to health from CFAs consumption, which have been associated with physiological processes that are involved with non transmissible chronic diseases such as cancer, atherosclerosis, inflammation, and obesity. Conclusive studies about the CFAs effects in the body are still scarce and further research about their participation in physiological processes are necessary.
    [Show full text]
  • A Review of Fatty Acid Profiles and Antioxidant Content in Grass-Fed And
    Daley et al. Nutrition Journal 2010, 9:10 http://www.nutritionj.com/content/9/1/10 REVIEW Open Access A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef Cynthia A Daley1*, Amber Abbott1, Patrick S Doyle1, Glenn A Nader2, Stephanie Larson2 Abstract Growing consumer interest in grass-fed beef products has raised a number of questions with regard to the per- ceived differences in nutritional quality between grass-fed and grain-fed cattle. Research spanning three decades suggests that grass-based diets can significantly improve the fatty acid (FA) composition and antioxidant content of beef, albeit with variable impacts on overall palatability. Grass-based diets have been shown to enhance total conjugated linoleic acid (CLA) (C18:2) isomers, trans vaccenic acid (TVA) (C18:1 t11), a precursor to CLA, and omega-3 (n-3) FAs on a g/g fat basis. While the overall concentration of total SFAs is not different between feed- ing regimens, grass-finished beef tends toward a higher proportion of cholesterol neutral stearic FA (C18:0), and less cholesterol-elevating SFAs such as myristic (C14:0) and palmitic (C16:0) FAs. Several studies suggest that grass- based diets elevate precursors for Vitamin A and E, as well as cancer fighting antioxidants such as glutathione (GT) and superoxide dismutase (SOD) activity as compared to grain-fed contemporaries. Fat conscious consumers will also prefer the overall lower fat content of a grass-fed beef product. However, consumers should be aware that the differences in FA content will also give grass-fed beef a distinct grass flavor and unique cooking qualities that should be considered when making the transition from grain-fed beef.
    [Show full text]
  • Influence of Dietary Fat Sources and Conjugated Fatty Acid on Egg Quality, Yolk Cholesterol, and Yolk Fatty Acid Composition of Laying Hens
    Revista Brasileira de Zootecnia Full-length research article Brazilian Journal of Animal Science © 2018 Sociedade Brasileira de Zootecnia ISSN 1806-9290 R. Bras. Zootec., 47:e20170303, 2018 www.sbz.org.br https://doi.org/10.1590/rbz4720170303 Non-ruminants Influence of dietary fat sources and conjugated fatty acid on egg quality, yolk cholesterol, and yolk fatty acid composition of laying hens Moung-Cheul Keum1, Byoung-Ki An1, Kyoung-Hoon Shin1, Kyung-Woo Lee1* 1 Konkuk University, Department of Animal Science and Technology, Laboratory of Poultry Science, Seoul, Republic of Korea. ABSTRACT - This study was conducted to investigate the effects of dietary fats (tallow [TO] or linseed oil [LO]) or conjugated linoleic acid (CLA), singly or in combination, on laying performance, yolk lipids, and fatty acid composition of egg yolks. Three hundred 50-week-old laying hens were given one of five diets containing 2% TO; 1% TO + 1% CLA (TO/CLA); 2% LO; 1% LO + 1% CLA (LO/CLA); and 2% CLA (CLA). Laying performance, egg lipids, and serum parameters were not altered by dietary treatments. Alpha-linolenic acid or long-chain ω-3 fatty acids including eicosapentaenoic and docosahexaenoic acids were elevated in eggs of laying hens fed diets containing LO (i.e., LO or LO/CLA groups) compared with those of hens fed TO-added diets. Dietary CLA, alone or when mixed with different fat sources (i.e., TO or LO), increased the amounts of CLA in egg yolks, being the highest in the CLA-treated group. The supplementation of an equal portion of CLA and LO into the diet of laying hens (i.e., LO/CLA group) increase both CLA and ω-3 fatty acid contents in the chicken eggs.
    [Show full text]
  • The Role of Conjugated Linoleic Acid in Breast Cancer Growth and Development
    30 The Open Nutraceuticals Journal, 2010, 3, 30-46 Open Access The Role of Conjugated Linoleic Acid in Breast Cancer Growth and Development Danielle L. Amarù, Patricia D. Biondo and Catherine J. Field* Alberta Institute for Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2P5 Abstract: Conjugated linoleic acid (CLA) consists of a group of naturally occurring and synthetic positional and geomet- ric (cis-trans) stereoisomers of the polyunsaturated fatty acid linoleic acid. The cis-9,trans-11 (c9,t11) CLA isomer (the most prevalent form found in ruminant-derived foods) and the trans-10,cis-12 (t10,c12) CLA isomer (present in commer- cial preparations) are the two most widely studied CLA isomers in breast cancer. Studies using both animal and cell cul- ture models indicate that these CLA isomers, when added to the diet or included in the cell culture medium, inhibit mam- mary tumour initiation, promotion and progression in rodents, and alter tumour cell viability in vitro. The mechanism of CLA’s anticancer effect is not well understood, but may involve interference with the cell cycle, induction of apoptosis, modulation of gene expression via the activation of peroxisome proliferator-activated receptors, lipid peroxidation, modu- lation of the tumour microenvironment, changes to the structure and/or function of the cell membrane, and interference with growth factor receptor signaling. A greater understanding of the mechanism of action of CLA will support the devel- opment of clinical trials to evaluate the potential effectiveness of CLA in the treatment of breast cancer. Keywords: Breast cancer, conjugated linoleic acid, mammary, mechanisms, tumour.
    [Show full text]
  • Derived Omega-5 Nanoemulsion Improves Hepatic Steatosis
    www.nature.com/scientificreports OPEN Punica granatum L.‑derived omega‑5 nanoemulsion improves hepatic steatosis in mice fed a high fat diet by increasing fatty acid utilization in hepatocytes K. Zamora‑López1,4, L. G. Noriega2,4, A. Estanes‑Hernández1, I. Escalona‑Nández1, S. Tobón‑Cornejo2, A. R. Tovar2, V. Barbero‑Becerra3 & C. Pérez‑Monter1* Pomegranate seed oil (PSO) is mainly composed of punicic acid (PA), a polyunsaturated fatty acid also known as omega‑5 (ω‑5), a potent antioxidant associated with a variety of metabolic and cellular benefcial efects. However, the potential benefts of a nanoemulsifed version of ω‑5 (PSOn) have not been evaluated in a pathological liver condition. Here, we examined whether PSOn had benefcial efects on C57BL/6N mice fed a high‑fat diet (HFD), specifcally on hepatic steatosis. We observed that PSOn supplementation decreased body weight and body fat mass in control mice, whereas glucose intolerance, insulin resistance, energy expenditure, and hepatic steatosis were improved in both control mice and in mice fed a HFD. Interestingly, PSOn increased fatty acid oxidation in primary hepatocytes and antioxidant gene expression. Altogether, our data indicate that PSOn efectively reduces some of the HFD‑derived metabolic syndrome indicators by means of an increase in fatty acid oxidation within hepatocytes. Pomegranate fruit (Punica granatum L.) is originally from the Middle East and is grown in countries such as Argentina, Israel, and the USA, among others1. Pomegranates can be transformed into edible products such as juice, nectars, jellies, and seed oil, all of which might have therapeutic efects, such as anti-proliferative properties against skin, prostate or breast cancer cells 2–5, and the improvement in insulin resistance 6.
    [Show full text]
  • Uncommon Fatty Acids and Cardiometabolic Health
    Review Uncommon Fatty Acids and Cardiometabolic Health Kelei Li 1, Andrew J. Sinclair 2,3, Feng Zhao 1 and Duo Li 1,3,* 1 Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; [email protected] (K.L.); [email protected] (F.Z.) 2 Faculty of Health, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia; [email protected] 3 Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia * Correspondence: [email protected]; Tel.: +86-532-8299-1018 Received: 7 September 2018; Accepted: 18 October 2018; Published: 20 October 2018 Abstract: Cardiovascular disease (CVD) is a major cause of mortality. The effects of several unsaturated fatty acids on cardiometabolic health, such as eicosapentaenoic acid (EPA) docosahexaenoic acid (DHA), α linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) have received much attention in past years. In addition, results from recent studies revealed that several other uncommon fatty acids (fatty acids present at a low content or else not contained in usual foods), such as furan fatty acids, n-3 docosapentaenoic acid (DPA), and conjugated fatty acids, also have favorable effects on cardiometabolic health. In the present report, we searched the literature in PubMed, Embase, and the Cochrane Library to review the research progress on anti-CVD effect of these uncommon fatty acids. DPA has a favorable effect on cardiometabolic health in a different way to other long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), such as EPA and DHA. Furan fatty acids and conjugated linolenic acid (CLNA) may be potential bioactive fatty acids beneficial for cardiometabolic health, but evidence from intervention studies in humans is still limited, and well-designed clinical trials are required.
    [Show full text]
  • Effects of Dietary Conjugated Linoleic Acid on Broiler Performance and Carcass Characteristics
    Journal of Agricultural Science; Vol. 9, No. 5; 2017 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Effects of Dietary Conjugated Linoleic Acid on Broiler Performance and Carcass Characteristics Kátia Maria Cardinal1, Mariana Lemos de Moraes1, Rodrigo Borille1, Gustavo Dias Lovato1, 1 1 1 Marcos Speroni Ceron , Lucas de Marques Vilella & Andréa Machado Leal Ribeiro 1 Laboratório de Ensino Zootécnico, Departamento de Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil Correspondence: Kátia Maria Cardinal, Laboratório de Ensino Zootécnico, Departamento de Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Rua Bento Gonçalves, 7712, Bairro Agronomia, CEP: 915400-000, Porto Alegre, Rio Grande do Sul, Brazil. Tel: 55-55-8125-4737. E-mail: [email protected] Received: March 2, 2017 Accepted: March 30, 2017 Online Published: April 15, 2017 doi:10.5539/jas.v9n5p208 URL: https://doi.org/10.5539/jas.v9n5p208 Abstract The effects of three levels of conjugated linoleic acid dietary inclusion on the carcass characteristics and performance of broilers were evaluated. A total of 405 chickens were raised from 1 until 42 days of age, housed in a room with water and food ad libitum. The experimental design was completely randomized, with three treatments (0.0, 0.5 and 1% CLA) and nine replications (pen) to performance analysis, 18 replications (two birds per pen) to carcass composition, and five replications (left legs) to lipid profile. Performance was determined weekly and after 42 days, 18 birds per treatment were slaughtered to quantify breast and leg yield.
    [Show full text]
  • Nutritional Indices for Assessing Fatty Acids: a Mini-Review
    International Journal of Molecular Sciences Review Nutritional Indices for Assessing Fatty Acids: A Mini-Review Jiapeng Chen 1 and Hongbing Liu 1,2,* 1 Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; [email protected] 2 Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China * Correspondence: [email protected]; Tel.: +86-0532-82031823 Received: 30 June 2020; Accepted: 6 August 2020; Published: 8 August 2020 Abstract: Dietary fats are generally fatty acids that may play positive or negative roles in the prevention and treatment of diseases. In nature, fatty acids occur in the form of mixtures of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), and polyunsaturated fatty acid (PUFA), so their nutritional and/or medicinal values must be determined. Herein, we do not consider the P P P P P classic indices, such as SFA, MUFA, PUFA, n-6 PUFA, n-3 PUFA, and n-6 PUFA/n-3 PUFA; instead, we summarize and review the definitions, implications, and applications of indices used in recent years, including the PUFA/SFA, index of atherogenicity (IA), the index of thrombogenicity (IT), the hypocholesterolemic/hypercholesterolemic ratio (HH), the health-promoting index (HPI), the unsaturation index (UI), the sum of eicosapentaenoic acid and docosahexaenoic acid (EPA + DHA), fish lipid quality/flesh lipid quality (FLQ), the linoleic acid/α-linolenic acid (LA/ALA) ratio, and trans fatty acid (TFA). Of these nutritional indices, IA and IT are the most commonly used to assess the composition of fatty acids as they outline significant implications and provide clear evidence.
    [Show full text]
  • Incorporation and Effects of Punicic Acid on Muscle and Adipose Tissues
    de Melo et al. Lipids in Health and Disease (2016) 15:40 DOI 10.1186/s12944-016-0214-7 RESEARCH Open Access Incorporation and effects of punicic acid on muscle and adipose tissues of rats Illana Louise Pereira de Melo1*, Ana Mara de Oliveira e Silva2, Eliane Bonifácio Teixeira de Carvalho1, Luciana Tedesco Yoshime1, José Augusto Gasparotto Sattler1 and Jorge Mancini-Filho1 Abstract Background: This study evaluated the effect of pomegranate seed oil (PSO) supplementation, rich in punicic acid (55 %/C18:3-9c,11 t,13c/CLNA), on the lipid profile and on the biochemical and oxidative parameters in the gastrocnemius muscle and adipose tissues of healthy rats. Linseed oil (LO), rich in linolenic acid (52 %/C18:3-9c12c15c/LNA) was used for comparison. Methods: Male Wistar rats (n = 56) were distributed in seven groups: control (water); LNA 1 %, 2 % and 4 % (treated with LO); CLNA 1 %, 2 % and 4 % (treated with PSO), po for 40 days. The percentages were compared to the daily feed intake. Fatty acid profile were performed by gas chromatography, antioxidant enzymes activity by spectrophotometer and the adipocytes were isolated by collagenase tissue digestion. Analysis of variance (ANOVA) was applied to check for differences between the groups (control, LNAs and CLNAs) and principal component analysis (PCA) was used to project the groups in the factor-place (PC1 vs PC2) based on the biochemical responses assessed in the study. Results: The fatty acids profile of tissues showed that the LNA percentages were higher in the animals that were fed LO. However, PA was only detected in the adipose tissues.
    [Show full text]
  • CLA): a Review
    Review Article Adv Biotech & Micro Volume 7 Issue 2 November 2017 Copyright © All rights are reserved by Ranganathan TV DOI: 10.19080/AIBM.2017.07.555707 Current Knowledge on Source and Synthesis of Conjugated Linoleic Acid (CLA): A Review Prem Kumar J and Ranganathan TV* Department of Food Processing and Engineering, Karunya University, India Submission: September 18, 2017; Published: November 14, 2017 *Corresponding author: Ranganathan TV, Professor and Program Co-ordinator, Department of Food Processing and Engineering, School of Agriculture and Biosciences, Karunya University, Coimbatore-641114, Tamilnadu, India, Email: Abstract Conjugated linoleic acid is an important conjugated fatty acid with a mixture of positional and geometric isomers of linoleic acid (C18:2, n-6). Dietary fatty acids are highly recognized as an important biologic controller and having potential to provide number of health benefits. CLA can be synthesized endogenously in tissues and partial bio hydrogenation of unsaturated fatty acids in rumen stomach. Also, it can be synthesizedIn the last three by using decades, microbial this particular strains like type Lactobacillus of PUFA has spp gained and significant Butyrivibrio attention fibrislovens for their but thebiologically amount ofactive yield properties obtained isand not health satisfactory. effects. Application of homogenous and heterogeneous catalysts and photoisomerization methods increased the conversion of linoleic acid to CLA. In 2008, CLA got generally recognized as safe (GRAS) status by FDA, which increased the consumption of CLA and used as a nutraceutical in dietary supplements/foods. With the increasing market demand, the research should focus in developing innovative synthesis methods with enhanced isomers and sources rich in CLA.
    [Show full text]
  • Bioactive Dietary Long-Chain Fatty Acids: Emerging Mechanisms of Action 170.106.202.226
    Downloaded from https://www.cambridge.org/core British Journal of Nutrition (2008), 100, 1152–1157 doi:10.1017/S0007114508992576 q The Authors 2008 Review Article . IP address: Bioactive dietary long-chain fatty acids: emerging mechanisms of action 170.106.202.226 Robert S. Chapkin1,2,3*, David N. McMurray1,2,4, Laurie A. Davidson1,2, Bhimanagouda S. Patil1,3, Yang-Yi Fan1 and Joanne R. Lupton1,2 , on 25 Sep 2021 at 18:00:38 1Faculty of Nutrition, Texas A&M University, College Station, TX, USA 2Center for Environmental and Rural Health, Texas A&M University, College Station, TX, USA 3Vegetable and Fruit Improvement Center, Texas A&M University, College Station, TX, USA 4Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Science Center, College Station, TX, USA (Received 1 February 2008 – Revised 28 March 2008 – Accepted 31 March 2008 – First published online 20 May 2008) , subject to the Cambridge Core terms of use, available at The plasma membranes of all eukaryotic cells contain heterogeneous self-organising intrinsically unstable liquid ordered domains or lipid assem- blies in which key signal transduction proteins are localised. These assemblies are classified as ‘lipid rafts’ (10–200 nm), which are composed mostly of cholesterol and sphingolipid microdomains and therefore do not integrate well into the fluid phospholipid bilayers. In addition, caveolae represent a subtype of lipid raft macrodomain that form flask-shaped membrane invaginations containing structural proteins, i.e. caveolins. With respect to the diverse biological effects of long-chain PUFA, increasing evidence suggests that n-3 PUFA and perhaps conjugated fatty acids uniquely alter the basic properties of cell membranes.
    [Show full text]
  • Method for the Production of Calendic Acid, a Fatty
    (19) & (11) EP 1 208 203 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/29 (2006.01) 13.01.2010 Bulletin 2010/02 (86) International application number: (21) Application number: 00957459.1 PCT/US2000/022371 (22) Date of filing: 15.08.2000 (87) International publication number: WO 2001/012800 (22.02.2001 Gazette 2001/08) (54) METHOD FOR THE PRODUCTION OF CALENDIC ACID, A FATTY ACID CONTAINING DELTA- 8,10,12 CONJUGATED DOUBLE BONDS AND DIMORPHECOLIC ACID, A FATTY ACID CONTAINING A 9-HYDROXY GROUP AND DELTA-10,12 CONJUGATED DOUBLE BONDS VERFAHREN ZUR HERSTELLUNG VON CALENDULASÄURE, EINER FETTSÄURE MIT DELTA- 8,10,12 KONJUGIERTEN DOPPELBINDUNGEN UND DIMORPHEKOLINSÄURE, EINER FETTSÄURE MIT EINER 9-HYDROXYL-GRUPPE UND DELTA-10,12 KONJUGIERTEN DOPPELBINDUNGEN PROCEDE DE PRODUCTION D’ACIDE CALENDIQUE, UN ACIDE GRAS CONTENANT DES DOUBLES LIAISONS CONJUGUEES DELTA-8,10,12, ET DES ACIDES GRAS ASSOCIES PRESENTANT UNE MODIFICATION AU NIVEAU DE LA POSITION DELTA-9 (84) Designated Contracting States: WO-A-00/11176 WO-A-94/11516 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE • CROMBIE, L. AND HOLLOWAY, S.J.: "The biosynthesis of calendic acid, octadeca-(8E, 10E, (30) Priority: 16.08.1999 US 149050 P 12Z)-trienoic acid, by developing marigold seeds: origins of E,E,Z) conjugated triene acids in higher (43) Date of publication of application: plants" JOURNAL OF THE CHEMICAL SOCIETY 29.05.2002 Bulletin 2002/22 PERKIN TRANSACTIONS I, vol.
    [Show full text]