Beneficial Impacts of Alpha-Eleostearic Acid from Wild

Total Page:16

File Type:pdf, Size:1020Kb

Beneficial Impacts of Alpha-Eleostearic Acid from Wild International Journal of Molecular Sciences Review Beneficial Impacts of Alpha-Eleostearic Acid from Wild Bitter Melon and Curcumin on Promotion of CDGSH Iron-Sulfur Domain 2: Therapeutic Roles in CNS Injuries and Diseases Woon-Man Kung 1 and Muh-Shi Lin 2,3,4,5,* 1 Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan; [email protected] 2 Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan 3 Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan 4 Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan 5 Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan * Correspondence: [email protected]; Tel.: +886-4-2665-1900 Abstract: Neuroinflammation and abnormal mitochondrial function are related to the cause of aging, neurodegeneration, and neurotrauma. The activation of nuclear factor κB (NF-κB), exaggerating these two pathologies, underlies the pathogenesis for the aforementioned injuries and diseases in the central nervous system (CNS). CDGSH iron-sulfur domain 2 (CISD2) belongs to the human NEET protein family with the [2Fe-2S] cluster. CISD2 has been verified as an NFκB antagonist through the Citation: Kung, W.-M.; Lin, M.-S. association with peroxisome proliferator-activated receptor-β (PPAR-β). This protective protein can Beneficial Impacts of be attenuated under circumstances of CNS injuries and diseases, thereby causing NFκB activation Alpha-Eleostearic Acid from Wild and exaggerating NFκB-provoked neuroinflammation and abnormal mitochondrial function. Conse- Bitter Melon and Curcumin on Promotion of CDGSH Iron-Sulfur quently, CISD2-elevating plans of action provide pathways in the management of various disease Domain 2: Therapeutic Roles in CNS categories. Various bioactive molecules derived from plants exert protective anti-oxidative and anti- Injuries and Diseases. Int. J. Mol. Sci. inflammatory effects and serve as natural antioxidants, such as conjugated fatty acids and phenolic 2021, 22, 3289. https://doi.org/ compounds. Herein, we have summarized pharmacological characters of the two phytochemicals, 10.3390/ijms22073289 namely, alpha-eleostearic acid (α-ESA), an isomer of conjugated linolenic acids derived from wild bitter melon (Momordica charantia L. var. abbreviata Ser.), and curcumin, a polyphenol derived from Academic Editor: Luigi Brunetti rhizomes of Curcuma longa L. In this review, the unique function of the CISD2-elevating effect of α-ESA and curcumin are particularly emphasized, and these natural compounds are expected to Received: 6 March 2021 serve as a potential therapeutic target for CNS injuries and diseases. Accepted: 21 March 2021 Published: 24 March 2021 Keywords: alpha-eleostearic acid; curcumin; aging; neurodegenerative disease; neurotrauma; CISD2; neuroinflammation; mitochondrial dysfunction; NFκB Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- iations. 1. Preface Neuroinflammation is critically involved in the pathophysiology of acute injuries and diseases (including aging and neurodegeneration) in the central nervous system (CNS) [1–4]. Profound inflammatory responses are characterized by the activation of glial Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. cells, which are primary innate immune cells of the CNS. Neuroinflammation can induce This article is an open access article mitochondrial dysfunction. The main feature is that these reactive glial cells produce distributed under the terms and nitric oxide (NO) as well as reactive oxygen species (ROS) [5]. Both mutually influencing conditions of the Creative Commons pathogeneses, inflammation, mitochondrial dysfunction, and eventually neuronal function Attribution (CC BY) license (https:// of the CNS [6,7]. creativecommons.org/licenses/by/ Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) has been shown 4.0/). to involve in inflammation and mitochondrial dysfunction [8,9]. NFκB activation can be Int. J. Mol. Sci. 2021, 22, 3289. https://doi.org/10.3390/ijms22073289 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 19 Int. J. Mol. Sci. 2021, 22, 3289 2 of 19 neuronal function of the CNS [6,7]. Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) has been shown to involve in inflammation and mitochondrial dysfunction [8,9]. NFκB activation inhibitedcan be inhibited by a distinctive by a distinctive zinc finger zinc finger in addition in addition to the to iron-sulfur the iron-sulfur protein, protein CDGSH, CDGSH iron- sulfuriron-sulfur domain domain 2 (CISD2) 2 (CISD2 [10]. The) [10] preventive. The preventive effect of CISD2effect of in oppositionCISD2 in opposition to inflammation, to in- andflammation abnormal, and mitochondrial abnormal mitochondrial function supports function its supports role to act itsas role a therapeuticto act as a therapeutic target for CNStarge injuriest for CNS and injuries diseases. and diseases. CISD2 expressionexpression levellevel isis decreaseddecreased duringduring CNSCNS injuriesinjuries andand diseasesdiseases [[1010––1313].]. AsAs aa controllercontroller ofof NFNFκκBB activation, activation, CISD2 CISD2 attenuation attenuation leads leads to to an an exaggerated exaggerated NF κNFB activation.κB activa- Thistion. reviewThis review has focused has focused on the on neuromodulatory the neuromodulatory effects effects of phytochemicals, of phytochemicals such as, such alpha- as eleostearicalpha-eleostearic acid (α acid-ESA) (α- fromESA)Momordica from Momordica charantia charantiaL. var. L. abbreviata var. abbreviata Ser. (Cucurbitaceae) Ser. (Cucurbi- (commonlytaceae) (commonly named asnamed wild bitteras wild melon, bitter WBM)melon, [ 10WBM)], and [10], curcumin and curcumin from Curcuma from Curcuma longa L. (Zingiberaceae)longa L. (Zingiberaceae) [12,13], along [12,13], with a thelong emphasis with the of emphasi CISD2-elevatings of CISD2 effects-elevating of these effects natural of compounds.these natural Natural compounds medicine. Natural beneficial medicine to CNS beneficial pathology-NF to CNSκ pathologyB-CISD2 axis-NFκB (Figure-CISD21) canaxisbe (Figure recommended 1) can be torecommended treat CNS injuries to treat and CNS diseases. injuries and diseases. FigureFigure 1. DiagramDiagram of of CNS CNS pathology pathology–CISD2-NF–CISD2-NFκBκ Baxis. axis. CDGSH CDGSH iron iron-sulfur-sulfur domain domain 2 (CISD2 2 (CISD2)) expression can be reduced under circumstances of CNS injuries and diseases, such as aging, neu- expression can be reduced under circumstances of CNS injuries and diseases, such as aging, neurode- rodegenerative disease, and neurotrauma. CISD2 serves as NFκB antagonist. As such, inju- generative disease, and neurotrauma. CISD2 serves as NFκB antagonist. As such, injury-induced ry-induced decline in CISD2 leads to enhanced NFκB and thereby NFκB-provokes neuroinflam- κ κ declinemation inand CISD2 mitochondrial leads to enhanced dysfunction. NF B CISD2 and thereby-elevating NF strategiesB-provokes help neuroinflammation to mitigate and mito- chondrialNFκB-provoked dysfunction. inflammation CISD2-elevating and mitochondrial strategies help dysfunction to mitigate. Curcumin NFκB-provoked from Curcuma inflammation longa L. and mitochondrialand α-ESA from dysfunction. Momordica Curcumincharantia L. from var. Curcumaabbreviata longa Ser. L.(w andild bitterα-ESA melon) from Momordicaexert an- charantia L. var.ti-inflammatory abbreviata Ser. and(wild CISD2 bitter-preservation melon) exert effect anti-inflammatorys. Any novel plant and e CISD2-preservationxtracts able to exhibit effects. neuro- Any novelmodulat plantory extractseffects on able this to axis exhibit of CNS neuromodulatory pathology–CISD2 effects-NFκB on thiscan axisbe co ofnsidered CNS pathology–CISD2- to be applied in NFCNSκB injuries can be consideredand diseases. to be applied in CNS injuries and diseases. 2.2. InnateInnate Immune Cells in the CNS—MicrogliaCNS—Microglia andand AstrocytesAstrocytes InIn general,general, microgliamicroglia andand astrocytesastrocytes areare residentresident glialglial cellscells inin thethe CNS,CNS, andand thesethese twotwo groupsgroups ofof cellscells cancan bebe activatedactivated inin responseresponse toto CNSCNS injuriesinjuries andand diseases,diseases, consequentlyconsequently causingcausing locallocal inflammatoryinflammatory response,response, i.e.,i.e., neuroinflammationneuroinflammation [[14].14]. AsAs withwith peripheralperipheral macrophages,macrophages, microgliamicroglia areare embryologicallyembryologically derivedderived fromfrom myeloidmyeloid progenitors,progenitors, whereaswhereas astrocytesastrocytes areare derivedderived fromfrom neuroepithelialneuroepithelial precursorsprecursors [[15].15]. To maintainmaintain CNSCNS homeostasis, homeostasis microglia, microglia and and astrocytes astrocytes provide provide support support and and supply sup- nutritionply nutrition for neurons.for neurons Microglia. Microglia provide provide neurotrophic neurotrophic support support for neurons for neurons and mainly and mediatemainly mediate immune immune responses responses to stabilize to stabilize the CNS the [16 CNS]. Astrocyte-mediated [16]. Astrocyte-mediated neuroprotec- neuro- tion has been proposed to
Recommended publications
  • Types of Gene Effects Governing the Inheritance of Oleic and Linoleic Acids in Peanut (Arachis Hypogaea L.)
    African Journal of Biotechnology Vol. 11(67), pp. 13147-13152, 21 August, 2012 Available online at http://www.academicjournals.org/AJB DOI:10.5897/AJB12.1498 ISSN 1684-5315 ©2012 Academic Journals Full Length Research Paper Types of gene effects governing the inheritance of oleic and linoleic acids in peanut (Arachis hypogaea L.) Nattawut Singkham1, Sanun Jogloy1*, Bhalang Suriharn1, Thawan Kesmala1, Prasan Swatsitang2, Prasit Jaisil1, Naveen Puppala3 and Aran Patanothai1 1Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand. 2Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand. 3Agricultural Science Center at Clovis, New Mexico State University, Clovis, New Mexico, 88101, USA. Accepted 3 August, 2012 Oleic and linoleic acids are major fatty acids in peanut determining the quality and shelf-life of peanut products. A better understanding on the inheritance of these characters is an important for high-oleic breeding programs. The objective of this research was to determine the gene actions for oleic acid, linoleic acid, the ratio of oleic to linoleic acids (O/L ratio) and percentage oil (% oil) in peanut. Georgia- 02C, SunOleic 97R (high-oleic genotypes) and KKU 1 (low-oleic genotypes) were used as parents to generate P1, P2, F2, F3, BC11S and BC12S. The entries were planted in a randomized complete block design with four replications in the rainy season (2008) and the dry season (2008/2009). Gas liquid chromatography (GLC) was used to analyze fatty acid compositions. The data were used in generation means analysis to understand gene effects. The differences in season, generation and generation season interactions were significant for oleic acid in the crosses Georgia-02C KKU 1 and SunOleic 97R KKU 1.
    [Show full text]
  • Use of Gamma-Linolenic Acid and Related Compounds for the Manufacture of a Medicament for the Treatment of Endometriosis
    ~" ' MM II II II II I II Ml Ml Ml I II I II J European Patent Office ooo Ats*% n i © Publication number: 0 222 483 B1 Office_„. europeen des brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 18.03.92 © Int. CI.5: A61 K 31/20, A61 K 31/1 6, A61K 31/23 © Application number: 86307533.9 @ Date of filing: 01.10.86 Use of gamma-linolenic acid and related compounds for the manufacture of a medicament for the treatment of endometriosis. © Priority: 02.10.85 GB 8524276 © Proprietor: EFAMOL HOLDINGS PLC Efamol House Woodbridge Meadows @ Date of publication of application: Guildford Surrey GU1 1BA(GB) 20.05.87 Bulletin 87/21 @ Inventor: Horrobin, David Frederick © Publication of the grant of the patent: c/o Efamol Ltd, Efamol House Woodbridge 18.03.92 Bulletin 92/12 Meadows Guildford, Surrey, GU1 1BA(GB) © Designated Contracting States: Inventor: Casper, Robert AT BE CH DE ES FR GB GR IT LI LU NL SE University Hospital 339 Windermere Road London Ontario N6A 5AS(CA) © References cited: EP-A- 0 003 407 EP-A- 0 115 419 © Representative: Miller, Joseph EP-A- 0 132 089 J. MILLER & CO. Lincoln House 296-302 High EP-A- 0 181 689 Holborn London WC1V 7JH(GB) J. GYNECOL. OBSTET. BIOL. REPROD. vol. 10, no. 5, 1981, pages 465-471 Masson, Paris, FR PH. CALLGARIS et al.: "Endometriose de la paroi abdominale" 00 00 CLINICAL OBSTETRICS AND GYNECOLOGY, 00 vol. 23, no. 3, Sept. 1980, pages 895-900 J.C. WEED: "Prostaglandins as related to en- CM dometriosis" CM CM Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome
    International Journal of Molecular Sciences Review Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome Stefano Turolo 1,* , Alberto Edefonti 1 , Alessandra Mazzocchi 2, Marie Louise Syren 2, William Morello 1, Carlo Agostoni 2,3 and Giovanni Montini 1,2 1 Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; [email protected] (A.E.); [email protected] (W.M.); [email protected] (G.M.) 2 Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; [email protected] (A.M.); [email protected] (M.L.S.); [email protected] (C.A.) 3 Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pediatric Intermediate Care Unit, 20122 Milan, Italy * Correspondence: [email protected] Abstract: Studies concerning the role of arachidonic acid (AA) and its metabolites in kidney disease are scarce, and this applies in particular to idiopathic nephrotic syndrome (INS). INS is one of the most frequent glomerular diseases in childhood; it is characterized by T-lymphocyte dysfunction, alterations of pro- and anti-coagulant factor levels, and increased platelet count and aggregation, leading to thrombophilia. AA and its metabolites are involved in several biological processes. Herein, Citation: Turolo, S.; Edefonti, A.; we describe the main fields where they may play a significant role, particularly as it pertains to their Mazzocchi, A.; Syren, M.L.; effects on the kidney and the mechanisms underlying INS. AA and its metabolites influence cell Morello, W.; Agostoni, C.; Montini, G.
    [Show full text]
  • Redalyc.Chemical and Physiological Aspects of Isomers of Conjugated
    Ciência e Tecnologia de Alimentos ISSN: 0101-2061 [email protected] Sociedade Brasileira de Ciência e Tecnologia de Alimentos Brasil Teixeira de CARVALHO, Eliane Bonifácio; Louise Pereira de MELO, Illana; MANCINI- FILHO, Jorge Chemical and physiological aspects of isomers of conjugated fatty acids Ciência e Tecnologia de Alimentos, vol. 30, núm. 2, abril-junio, 2010, pp. 295-307 Sociedade Brasileira de Ciência e Tecnologia de Alimentos Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=395940100002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciência e Tecnologia de Alimentos ISSN 0101-2061 Chemical and physiological aspects of isomers of conjugated fatty acids Aspectos químicos e fisiológicos de isômeros conjugados de ácidos graxos Revisão Eliane Bonifácio Teixeira de CARVALHO1, Illana Louise Pereira de MELO1, Jorge MANCINI-FILHO1* Abstract Conjugated fatty acid (CFA) is the general term to describe the positional and geometric isomers of polyunsaturated fatty acids with conjugated double bonds. The CFAs of linoleic acid (CLAs) are found naturally in foods derived from ruminant animals, meat, or dairy products. The CFAs of α-linolenic acid (CLNAs) are found exclusively in various types of seed oils of plants. There are many investigations to assess the effects to health from CFAs consumption, which have been associated with physiological processes that are involved with non transmissible chronic diseases such as cancer, atherosclerosis, inflammation, and obesity. Conclusive studies about the CFAs effects in the body are still scarce and further research about their participation in physiological processes are necessary.
    [Show full text]
  • A Review of Fatty Acid Profiles and Antioxidant Content in Grass-Fed And
    Daley et al. Nutrition Journal 2010, 9:10 http://www.nutritionj.com/content/9/1/10 REVIEW Open Access A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef Cynthia A Daley1*, Amber Abbott1, Patrick S Doyle1, Glenn A Nader2, Stephanie Larson2 Abstract Growing consumer interest in grass-fed beef products has raised a number of questions with regard to the per- ceived differences in nutritional quality between grass-fed and grain-fed cattle. Research spanning three decades suggests that grass-based diets can significantly improve the fatty acid (FA) composition and antioxidant content of beef, albeit with variable impacts on overall palatability. Grass-based diets have been shown to enhance total conjugated linoleic acid (CLA) (C18:2) isomers, trans vaccenic acid (TVA) (C18:1 t11), a precursor to CLA, and omega-3 (n-3) FAs on a g/g fat basis. While the overall concentration of total SFAs is not different between feed- ing regimens, grass-finished beef tends toward a higher proportion of cholesterol neutral stearic FA (C18:0), and less cholesterol-elevating SFAs such as myristic (C14:0) and palmitic (C16:0) FAs. Several studies suggest that grass- based diets elevate precursors for Vitamin A and E, as well as cancer fighting antioxidants such as glutathione (GT) and superoxide dismutase (SOD) activity as compared to grain-fed contemporaries. Fat conscious consumers will also prefer the overall lower fat content of a grass-fed beef product. However, consumers should be aware that the differences in FA content will also give grass-fed beef a distinct grass flavor and unique cooking qualities that should be considered when making the transition from grain-fed beef.
    [Show full text]
  • Influence of Dietary Fat Sources and Conjugated Fatty Acid on Egg Quality, Yolk Cholesterol, and Yolk Fatty Acid Composition of Laying Hens
    Revista Brasileira de Zootecnia Full-length research article Brazilian Journal of Animal Science © 2018 Sociedade Brasileira de Zootecnia ISSN 1806-9290 R. Bras. Zootec., 47:e20170303, 2018 www.sbz.org.br https://doi.org/10.1590/rbz4720170303 Non-ruminants Influence of dietary fat sources and conjugated fatty acid on egg quality, yolk cholesterol, and yolk fatty acid composition of laying hens Moung-Cheul Keum1, Byoung-Ki An1, Kyoung-Hoon Shin1, Kyung-Woo Lee1* 1 Konkuk University, Department of Animal Science and Technology, Laboratory of Poultry Science, Seoul, Republic of Korea. ABSTRACT - This study was conducted to investigate the effects of dietary fats (tallow [TO] or linseed oil [LO]) or conjugated linoleic acid (CLA), singly or in combination, on laying performance, yolk lipids, and fatty acid composition of egg yolks. Three hundred 50-week-old laying hens were given one of five diets containing 2% TO; 1% TO + 1% CLA (TO/CLA); 2% LO; 1% LO + 1% CLA (LO/CLA); and 2% CLA (CLA). Laying performance, egg lipids, and serum parameters were not altered by dietary treatments. Alpha-linolenic acid or long-chain ω-3 fatty acids including eicosapentaenoic and docosahexaenoic acids were elevated in eggs of laying hens fed diets containing LO (i.e., LO or LO/CLA groups) compared with those of hens fed TO-added diets. Dietary CLA, alone or when mixed with different fat sources (i.e., TO or LO), increased the amounts of CLA in egg yolks, being the highest in the CLA-treated group. The supplementation of an equal portion of CLA and LO into the diet of laying hens (i.e., LO/CLA group) increase both CLA and ω-3 fatty acid contents in the chicken eggs.
    [Show full text]
  • On Fatty Acid Composition and Shelf Life of Broiler Chicken Meat Hilal Ürüşan1* • Canan Bölükbaşı2
    Alinteri J. of Agr. Sci. (2020) 35(1): 29-35 http://dergipark.gov.tr/alinterizbd e-ISSN: 2587-2249 http://www.alinteridergisi.com/ [email protected] DOI: 10.28955/alinterizbd.737995 RESEARCH ARTICLE The Influence of Turmeric Powder (Curcuma longa) on Fatty Acid Composition and Shelf Life of Broiler Chicken Meat Hilal Ürüşan1* • Canan Bölükbaşı2 1Atatürk University, Erzurum Vocational High School, Department of Plant and Animal Production, Erzurum/Turkey 2Atatürk University, Faculty of Agriculture, Department of Animal Science, Erzurum/Turkey ARTICLE INFO ABSTRACT Article History: The objective of this study was to determine the appropriate concentration of dietary Received: 21.03.2019 supplementation of turmeric powder, and its effect on thiobarbituric acid reactive substance (TBARS) Accepted: 03.02.2020 and fatty acid composition in thigh and breast meat of broiler chickens. Three hundred fifty (175 Available Online: 15.05.2020 male and 175 female), one day old Ross-308 broiler chicks were used in this study. A corn-soybean Keywords: meal based diet containing different levels of turmeric powder (0, 2, 4, 6, 8, 10 g/kg) and a single dose of chlortetracycline (10 mg/kg) was used. The result revealed that dietary supplementation of Broiler 2, 4, 6, 8 and 10 g/kg of turmeric powder decreased TBARS in thigh meat at 5th day when compared Turmeric with control. The addition of 4 g/kg turmeric powder to the basal diet increased DHA, SFA and omega- TBARS 3 in breast meat. DHA and SFA were increased by dietary 2 g/kg turmeric powder in thigh meats. Fatty acid composition Under the conditions of this experiment, it was concluded that turmeric powder may positive effects Antioxidant on tissue fatty acid compositions and shelf life of meat (TBARS).
    [Show full text]
  • The Role of Conjugated Linoleic Acid in Breast Cancer Growth and Development
    30 The Open Nutraceuticals Journal, 2010, 3, 30-46 Open Access The Role of Conjugated Linoleic Acid in Breast Cancer Growth and Development Danielle L. Amarù, Patricia D. Biondo and Catherine J. Field* Alberta Institute for Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2P5 Abstract: Conjugated linoleic acid (CLA) consists of a group of naturally occurring and synthetic positional and geomet- ric (cis-trans) stereoisomers of the polyunsaturated fatty acid linoleic acid. The cis-9,trans-11 (c9,t11) CLA isomer (the most prevalent form found in ruminant-derived foods) and the trans-10,cis-12 (t10,c12) CLA isomer (present in commer- cial preparations) are the two most widely studied CLA isomers in breast cancer. Studies using both animal and cell cul- ture models indicate that these CLA isomers, when added to the diet or included in the cell culture medium, inhibit mam- mary tumour initiation, promotion and progression in rodents, and alter tumour cell viability in vitro. The mechanism of CLA’s anticancer effect is not well understood, but may involve interference with the cell cycle, induction of apoptosis, modulation of gene expression via the activation of peroxisome proliferator-activated receptors, lipid peroxidation, modu- lation of the tumour microenvironment, changes to the structure and/or function of the cell membrane, and interference with growth factor receptor signaling. A greater understanding of the mechanism of action of CLA will support the devel- opment of clinical trials to evaluate the potential effectiveness of CLA in the treatment of breast cancer. Keywords: Breast cancer, conjugated linoleic acid, mammary, mechanisms, tumour.
    [Show full text]
  • Derived Omega-5 Nanoemulsion Improves Hepatic Steatosis
    www.nature.com/scientificreports OPEN Punica granatum L.‑derived omega‑5 nanoemulsion improves hepatic steatosis in mice fed a high fat diet by increasing fatty acid utilization in hepatocytes K. Zamora‑López1,4, L. G. Noriega2,4, A. Estanes‑Hernández1, I. Escalona‑Nández1, S. Tobón‑Cornejo2, A. R. Tovar2, V. Barbero‑Becerra3 & C. Pérez‑Monter1* Pomegranate seed oil (PSO) is mainly composed of punicic acid (PA), a polyunsaturated fatty acid also known as omega‑5 (ω‑5), a potent antioxidant associated with a variety of metabolic and cellular benefcial efects. However, the potential benefts of a nanoemulsifed version of ω‑5 (PSOn) have not been evaluated in a pathological liver condition. Here, we examined whether PSOn had benefcial efects on C57BL/6N mice fed a high‑fat diet (HFD), specifcally on hepatic steatosis. We observed that PSOn supplementation decreased body weight and body fat mass in control mice, whereas glucose intolerance, insulin resistance, energy expenditure, and hepatic steatosis were improved in both control mice and in mice fed a HFD. Interestingly, PSOn increased fatty acid oxidation in primary hepatocytes and antioxidant gene expression. Altogether, our data indicate that PSOn efectively reduces some of the HFD‑derived metabolic syndrome indicators by means of an increase in fatty acid oxidation within hepatocytes. Pomegranate fruit (Punica granatum L.) is originally from the Middle East and is grown in countries such as Argentina, Israel, and the USA, among others1. Pomegranates can be transformed into edible products such as juice, nectars, jellies, and seed oil, all of which might have therapeutic efects, such as anti-proliferative properties against skin, prostate or breast cancer cells 2–5, and the improvement in insulin resistance 6.
    [Show full text]
  • Curcumin Boosts DHA in the Brain: Implications for the Prevention of Anxiety Disorders
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1852 (2015) 951–961 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders Aiguo Wu a, Emily E. Noble a,EthikaTyagia,ZheYinga, Yumei Zhuang a, Fernando Gomez-Pinilla a,b,⁎ a Department of Integrative Biology and Physiology, University of California at Los Angeles, 621 Charles E. Young Drive Los Angeles, CA 90095, USA b Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of medicine at UCLA, Los Angeles, CA 90095, USA article info abstract Article history: Dietary deficiency of docosahexaenoic acid (C22:6 n-3; DHA) is linked to the neuropathology of several cognitive Received 3 September 2014 disorders, including anxiety. DHA, which is essential for brain development and protection, is primarily obtained Received in revised form 17 November 2014 through the diet or synthesized from dietary precursors, however the conversion efficiency is low. Curcumin Accepted 2 December 2014 (diferuloylmethane), which is a principal component of the spice turmeric, complements the action of DHA in Available online 27 December 2014 the brain, and this study was performed to determine molecular mechanisms involved. We report that curcumin α Keywords: enhances the synthesis of DHA from its precursor, -linolenic acid (C18:3 n-3; ALA) and elevates levels of DHA synthesis enzymes involved in the synthesis of DHA such as FADS2 and elongase 2 in both liver and brain tissues.
    [Show full text]
  • Uncommon Fatty Acids and Cardiometabolic Health
    Review Uncommon Fatty Acids and Cardiometabolic Health Kelei Li 1, Andrew J. Sinclair 2,3, Feng Zhao 1 and Duo Li 1,3,* 1 Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China; [email protected] (K.L.); [email protected] (F.Z.) 2 Faculty of Health, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia; [email protected] 3 Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3168, Australia * Correspondence: [email protected]; Tel.: +86-532-8299-1018 Received: 7 September 2018; Accepted: 18 October 2018; Published: 20 October 2018 Abstract: Cardiovascular disease (CVD) is a major cause of mortality. The effects of several unsaturated fatty acids on cardiometabolic health, such as eicosapentaenoic acid (EPA) docosahexaenoic acid (DHA), α linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) have received much attention in past years. In addition, results from recent studies revealed that several other uncommon fatty acids (fatty acids present at a low content or else not contained in usual foods), such as furan fatty acids, n-3 docosapentaenoic acid (DPA), and conjugated fatty acids, also have favorable effects on cardiometabolic health. In the present report, we searched the literature in PubMed, Embase, and the Cochrane Library to review the research progress on anti-CVD effect of these uncommon fatty acids. DPA has a favorable effect on cardiometabolic health in a different way to other long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), such as EPA and DHA. Furan fatty acids and conjugated linolenic acid (CLNA) may be potential bioactive fatty acids beneficial for cardiometabolic health, but evidence from intervention studies in humans is still limited, and well-designed clinical trials are required.
    [Show full text]
  • Leveraging CAM to Treat Depression and Anxiety
    Amanda E. Olagunju, DO; Leveraging CAM to treat Heidi Gaddey, MD Department of Family Medicine, Langley Hospital, depression and anxiety Langley Air Force Base, VA (Dr. Olagunju); Department of Family Medicine, David Grant Conventional medications and psychotherapy are still Medical Center, Travis Air Force Base, CA (Dr. Gaddey) first-line treatments, but certain complementary and amanda.olagunju@gmail. alternative strategies have value as adjunctive measures. com The authors reported no potential conflict of interest relevant to this article. The views expressed in this article lmost 8% of Americans ages ≥ 12 years have depression are those of the authors and do not PRACTICE necessarily reflect the official policy and 19.1% of Americans ages ≥ 18 years have experienced or position of the US government or any other agency, organization, RECOMMENDATIONS 1,2 an anxiety disorder in the past year. Furthermore, sui- employer, or company. ❯ Consider standardized A cide, which can result from depression and anxiety, is the 10th preparations of St. John’s leading cause of death in the United States, claiming about 40,000 wort for the treatment of 3 mild to moderate depression to 49,000 lives per year since 2012, with increasing yearly rates. in certain patients. A While multiple conventional medication and therapy treatments are available, patients remain interested in complementary and ❯ Encourage patients with alternative medicine (CAM) options. According to the National depression or anxiety to engage in exercise and Center for Complementary and Integrative Health, more than 30% 4 meditation to help with of American adults use CAM treatments. symptom management. A This article provides an overview of the evidence for com- monly used CAM treatments for unipolar depression and anxiety ❯ Consider methylfolate in adults.
    [Show full text]