bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.070136; this version posted April 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Intact nucleosomal context enables chromodomain reader MRG15 to distinguish H3K36me3 from -me2 Sarah Faulkner1,2, Antony M. Couturier2, Brian Josephson1, Tom Watts1, Benjamin G. Davis1,3# and Fumiko Esashi2# 1 Department of Chemistry, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, United Kingdom 2 Sir William Dunn School of Pathology, University of Oxford, S Parks Rd, Oxford OX1 3RE, United Kingdom 3 The Rosalind Franklin Institute, Oxfordshire, OX11 0FA, United Kingdom #To whom correspondence should be addressed:
[email protected] and
[email protected] Keywords: chromodomain, H3K36 methylation, MRG15, nucleosome, SETD2 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.070136; this version posted April 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract A wealth of in vivo evidence demonstrates the physiological importance of histone H3 trimethylation at lysine 36 (H3K36me3), to which chromodomain-containing proteins, such as MRG15, bind preferentially compared to their dimethyl (H3K36me2) counterparts. However, in vitro studies using isolated H3 peptides have failed to recapitulate a causal interaction. Here, we show that MRG15 can clearly discriminate between synthetic, fully intact model nucleosomes containing H3K36me2 and H3K36me3. MRG15 docking studies, along with experimental observations and nucleosome structure analysis suggest a model where the H3K36 side chain is sequestered in intact nucleosomes via a hydrogen bonding interaction with the DNA backbone, which is abrogated when the third methyl group is added to form H3K36me3.