TIME-RESOLVED SPECTROSCOPIC STUDIES

OF , , AND LUMICHROME AND

DERIVATIVES

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy

in the Graduate School of The Ohio State University

By

Hannan Fersi, M.S.

*****

The Ohio State University 2006

Dissertation Committee: Approved by Professor Matthew S. Platz, Advisor

Professor Terry L. Gustafson ______Professor Anne B. McCoy Advisor Graduate Program in Chemistry Professor Stephen A. Sebo

ABSTRACT

Psoralens, coumarins and flavins are biologically active photosensitizers, which have been used in pathogen inactivation of blood products, cancer treatment and skin diseases. Laser flash photolysis (LFP) with UV-visible and infrared detection and Density

Functional Theory (DFT) calculations were used to directly observe and identify the triplet states of psoralens, coumarins and lumichromes, and their intermediate derivatives, and to understand their chemical reactivity. The triplet-excited states of the parent as well as 8-methoxypsoralen, 5-methoxypsoralen and trimethylpsoralen were directly observed in acetonitrile using UV-visible or time-resolved infrared (TRIR) spectroscopy. TRIR spectra of trimethylpsoralen radical ions were also obtained. These experimental observations were supported by computational studies.

The vibrational spectra of triplet visnagin and khellin, and their radical cations and anions were obtained upon 266 nm LFP in acetonitrile. Visnagin and khellin triplet excited states react with chloranil to form their radical cations and the chloranil radical anion. The radical cation of khellin and visnagin both present a vibrational band at 1136 cm-1. The excited states of khellin, visnagin and chloranil are all involved in the light

induced electron transfer reaction. Khellin and visnagin triplets both react with anionic

electron donors (NaI or KSCN) to form the related radical anions. Triplet visnagin reacts

ii -1 with hydroquinone to form semiquinone radicals. The vibrational band at 1225 cm of the visnagin derived radical was assigned to a C-H rocking mode on the basis of DFT calculations.

In the exploratory photochemistry of lumichrome and its oxides, both nanosecond and ultrafast laser flash photolysis with UV-visible and TRIR spectroscopy were used to observe the transient species generated photochemically from lumichrome (LC), lumichome-N-oxide (LCO) and lumichome-di-N-oxide (LCO2) and the data were

interpreted with the aid of DFT calculations. The transient absorption spectra and the

lifetimes of the triplet states of lumichrome, lumichrome N-oxide and lumichrome di-N-

oxide were measured by LFP methods with UV-vis detection and TRIR spectroscopy

upon 266 nm LFP in acetonitrile. The transient UV-vis spectra of 3LC*, 3LCO* and

3 * LCO2 were obtained upon 266 nm LFP in argon saturated acetonitrile and their

lifetimes were determined to be about 1 µs in deoxygenated acetonitrile. The transient

vibrational spectra of LC, LCO and LCO2 triplet excited states were obtained upon 266 nm and present similar features with strong IR bands assigned to the carbonyl C=O and

C=N stretching vibrations as predicted by the DFT calculations. The singlet states of lumichrome, lumichome-N-oxide, lumichome-di-N-oxide, isoquinoline N-oxide and pyridine N-oxide were identified by picosecond time-resolved absorption spectroscopy.

Time-correlated single photon counting (TCSPC) and fluorescence spectroscopy were used to determine the lifetimes of the singlet states and fluorescence quantum yields of these aromatic N-oxides as well as isoquinoline N-oxide (IQNO), pyridine N-oxide

(PNO), riboflavin tetraacetate and riboflavin tetrabenzoate.

iii

To my mother and my sister Najira,

iv

ACKNOWLEDGMENTS

The completion of my Ph.D. has been a long journey and I would like to take this opportunity to thank all the people who have helped make it a most memorable one.

First, I wish to express my heartfelt gratitude to my adviser, Dr. Matthew Platz, for his guidance, patience and support. I really enjoyed working under his supervision.

I thank Dr. Terry Gustafson, Dr. Anne McCoy and Dr. Stephen Sebo for serving as my dissertation committee. I wish to sincerely thank Dr. Larry Anderson and Dr.

Sherwin Singer who helped guide, advise and encourage me through my academic experience at OSU. I thank Jin Wang, Drs. Gotard Burdzinski and Xiaofeng Shi for their

valuable insights, assistance, and friendship. The Center for Chemical and Biophysical

Dynamics provided ultrafast laser spectroscopic instruments for this work. I would like

to thank Professor Terry Gustafson and Dr. Gotard Burdzinski of the CCBD for their help

in the ultrafast spectroscopic measurements. I also thank the Ohio Supercomputer Center

for providing the resources of my computational work.

I would like to thank all my friends, who made the last six years more enjoyable,

particularly, Dr. Mariano Avila-Escobedo and Dr. Rajni Tyagi for their unending support,

v and ensuring that there was never a dull moment in my life in Columbus, OH. I also

thank Nathalie Dardare and Abraham Levy Solomon whose mails and phone calls helped

me keep my mental health.

I thank my best friend, Hota Okio, for her tremendous enthusiasm, support and

friendship through the last twenty years. I feel very privileged to have such a great

friend.

Finally, I wish to express my heartfelt gratitude to my family for their unconditional support and love and for providing within me the guidance and character to

accomplish all that I have; Jeffrey Clogston, for being an excellent friend. I deeply

appreciate your patience, understanding, love and support at all times; I thank my sisters,

Nora, Fayelle, Yasmine-Syrine, my brother Lassad for providing great joy in my life

through your extraordinary cheerfulness and vitality. I love you all very much.

And my final thanks go to my parents and my sister Najira for their unconditional

support, endless love and for providing an example as tremendous human beings; your

dedication and inspiration is the force aiding me the most.

vi

VITA

1997...... DEUG Sciences de la Matiere, Universite Claude Bernard, Lyon I, France

1999 ...... Maitrise de Chimie Chysique, Universite Claude Bernard, Lyon I, France

2002 ...... M. S. in Physical Chemistry The Ohio State University, Columbus, Ohio

2000 - present ...... Graduate Teaching and Research Associate, The Ohio State University, Columbus, Ohio

PUBLICATIONS

Fersi, H.; Platz, M.S., Nanoseconds Time-Resolved Infra-Red Studies of Visnagin and Khellin, J. Phys. Chem. A, 2005, 109:41, 9206 - 9212

Cherezov, V.; Fersi, H.; Caffrey, D., Crystallization Screens. Compatibility with the Lipidic Cubic Phase for In Meso Crytallization of Membrane Proteins, Biophys. J., 2001, 81:225-242.

FIELDS OF STUDY

Major Field: Chemistry - Physical Chemistry

vii

TABLE OF CONTENTS

Page

Abstract…...……………………………………………………………………………... ii

Dedication……………………………………………………………………………...…iv

Acknowledgements………………………………………………………………………..v

Vita………………………………………………………………………………….…...vii

List of Tables……………..……………………………………………………………..xiii

List of Figures.…………………………………………………………………………...xv

List of Schemes………………………………………………………………………....xxiv

Chapters:

1. Introduction ...... 1

2. Experimental...... 15 2.1 Nanosecond laser flash system (LFP) with UV-Vis detection...... 15 2.2 Time-resolved infrared spectroscopy (TRIR) ...... 16 2.3 Ultrafast transient UV-Vis spectroscopy ...... 17 2.4 UV-Vis and fluorescence measurements ...... 18 2.5 Density functional calculations...... 20 2.6 References...... 21

3. Nanosecond laser flash photolysis of psoralen and its derivatives triplet excited states ...... 22 3.1 Introduction ...... 22 3.2 Experimental ...... 29 3.2.1 Materials...... 29 3.2.2 Time-resolved infrared spectroscopy...... 29 3.3 Results and discussion ...... 30 viii 3.3.1 Time-resolved with UV-Vis detection...... 31 3.3.2 Time-resolved infrared spectroscopy studies...... 42 3.4 Conclusions ...... 56 3.5 References ...... 57

4. Nanosecond laser flash photolysis studies of lumichrome and its oxides triplet excited states...... 60 4.1 Introduction...... 60 4.2 Experimental ...... 63 4.3 Results and discussion...... 66 4.3.1 Khellin and visnagin triplet state...... 66 4.3.2 Generation of their radical anions...... 74 4.3.3 TRIR study of chloranil upon 266 nm LFP ...... 79 4.3.4 Generation of their radical cations ...... 83 4.3.5 Neutral radicals derived from khellin and visnagin ...... 87 4.4 Conclusions...... 93 4.5 References...... 94

5. Nanosecond laser flash photolysis studies of lumichrome and its oxides triplet excited states...... 97 5.1 Introduction...... 97 5.2 Experimental ...... 105 5.3 Results and discussion...... 107 5.3.1 Laser flash photolysis ...... 107 5.3.2 Time-resolved infrared spectroscopy...... 118 5.4 Conclusions...... 130 5.5 References...... 131

6. Fluorescence, time correlated single photon counting and ultrafast spectroscopy studies of lumichrome and its oxides, and other aromatic N-oxides...... 135 6.1 Introduction...... 135 6.2 Experimental ...... 141 6.2.1 Materials...... 141 6.2.2 Synthesis of lumichrome N-oxide and di-N-oxide...... 142 6.2.3 Fluorescence and ultrafast transient UV-Vis spectroscopy ...... 143 6.3 Results and discussion...... 144 6.3.1 Quantum yield and lifetime fluorescence ...... 144 6.3.2 Picosecond time-resolved LFP studies...... 158 6.4 Conclusions...... 171 6.5 References...... 172

Bibliography ...... 175

ix Appendixes:

A. Supporting Information for chapter 3...... 184 B. Supporting Information for chapter 4…………………………………………...241 C. Supporting Information for chapter 5...... 293 D. Supporting Information for chapter 6...... 319

x

LIST OF TABLES

Tables Page

3.1 Experimental and calculated λmax values for psoralen radical cations a) in acetonitrile b) in gas phase...... 41

3.2 Experimental and calculated frequencies for psoralen ground state and triplet excited states, 1 and 31*...... 48

4.1 Experimental and calculated frequencies for khellin and visnagin ground states 1, 2 and triplet states 31* and 32*..…………..……………………………………...72

4.2 Experimental and calculated frequencies for khellin and visnagin triplet states 31*, _ _ 32* and radical anions 1● and 2● ...... 75

4.3 Experimental and calculated frequencies for chloranil ground state, triplet state and radical anion…………………………………………………………………83

4.4 Experimental and calculated frequencies for khellin and visnagin triplet states 31*, 32* and radical cations 1●+and 2●+...... 84

4.5 Experimental and calculated frequencies for khellin and visnagin ground state 1, 2, and their neutral radical 1H●, 2H● and hydroquinone radical 3H●...... 93

5.1 Experimental and calculated frequencies for lumichrome, lumichrome-N-oxide and lumichrome di-N-oxide ground states and triplet states ...... 123

6.1 Solvent effects on the absorption and emission spectra of lumichrome, lumichrome-N-oxide and lumichrome di-N-oxide...... 148

6.2 Spectroscopic and photophysical data for the singlet states of the flavins lumichromes and other aromatic N-oxides studied...... 149

xi

LIST OF FIGURES

Figures Page

1.1 Structure of 8-methoxypsoralen...... 3

1.2 Structure of khellin and visnagin ...... 4

1.3 Structures of lumiflavin and lumichrome ...... 5

3.1 Structure of psoralen...... 22

3.2 Structures of 8-methoxypsoralen, 5-methoxypsoralen and trimethylpsoralen ..... 28

3.3 The transient UV-Vis absorption spectrum produced upon 355 nm LFP of 0.4 mM of 1, in argon purged acetonitrile, recorded immediately after laser pulse... 32

3.4 The calculated UV-Vis absorption spectrum of triplet excited state, radical anion and radical cation of psoralen (gas phase) ...... 32

3.5 Decay of the transient absorption signal at 460 nm after 355 nm LFP of 0.4 mM 3 . of 1* under argon purged and in aerated CH3CN...... 33

3.6 Decay of the transient absorption signal at 460 nm after 355 nm LFP of A) 0.4 mM of 31*, B) 0.4 mM of 31* plus 10 mM DABCO and C) 0.4 mM of 31* plus 20 mM DABCO in argon purge CH3CN ...... 33

3.7 The transient UV-Vis absorption spectrum produced upon LFP (355 nm) of 3 mM of 2 under argon purge CH3CN, immediately after laser pulse ...... 34

3.8 The calculated UV-Vis absorption spectrum of triplet excited state, radical anion and radical cation of 2 (gas phase)...... 35

3.9 Decay of the transient absorption signal at 456 nm after 355 nm LFP of 3mM of 3 _____ 2* under ----- argon purged and in aerated CH3CN...... 35

xii 3.10 Decay of the transient absorption signal at 456 nm after 355 nm LFP of 3mM of 32* plus 20 mM DABCO under ____ argon purged and _____ in aerated CH3CN……..…………………………………………………………………….36

3.11 The transient UV-Vis absorption spectrum produced upon LFP (355 nm) of A) 1 mM of 3, B) 1 mM of 3 and 10 mM DABCO in argon purge acetonitrile, immediately after laser pulse ...... 37

3.12 The calculated UV-Vis absorption spectrum of the triplet excited state, radical anion and radical cation of 3 (gas phase)...... 37

3.13 Decay of the transient absorption signal at 370 nm after 355 nm LFP of 33* under _____ -----argon purged and in aerated CH3CN ...... 38

3.14 The transient UV-Vis absorption spectrum produced upon LFP (355 nm) of 4 under argon purge acetonitrile ...... 39

3.15 The calculated UV-Vis absorption spectrum of the triplet excited state, radical anion and radical cation of 4 (gas phase)...... 39

3.16 Decay of the transient absorption signal at 452 nm after 355 nm LFP of 34* under _____ argon purged and ----- in aerated CH3CN ...... 40

3.17 Decay of the transient absorption signal at 452 nm after 355 nm LFP of ----- 0.3 mM of 34*, ____ 0.3 mM of 34* plus 1 mM DABCO and ____ 0.3 mM of 34* plus 10 mM DABCO, under argon purged CH3CN ...... 40

3.18 The transient IR spectra produced upon LFP (266 nm) of 7 mM 4 in argon- saturated acetonitrile (1100-1300 cm-1 and 1600-1800 cm-1) and in deuterated acetonitrile (1300-1600 cm-1)...... 43

3 3.19 The calculated IR spectra of 4 (down) and 4* (up) in acetonitrile...... 43

3.20 The decay of the A) 1225 cm-1 absorbing transient and B) Ground state depletion at 1596 cm-1 of the 7 mM 4 produced upon LFP (266 nm) under argon purged ___ and ---- in aerated acetonitrile-d3. Single exponential decay τ = 10 µs...... 45

3.21 The transient IR spectra produced upon LFP (266 nm) of A) 7 mM 4 and 10 mM NaI, B) 7 mM 4 and 1, 10 and 50 mM NaI in argon saturated acetonitrile (1100- 1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1).... 51

-- 3 3.22 The calculated IR spectra of 4 (down), 4● (up) and 4* (…) in acetonitrile ... 52

xiii 3.23 The transient IR spectra produced upon LFP (266 nm) of 7 mM 4 and 10 mM hydroquinone in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm- 1) and deuterated acetonitrile (1300-1600 cm-1) ...... 53

3 3.24 The calculated IR spectra of 4 (down), 4H● (up) and 4* (…) in acetonitrile ..... 53

3.25 The transient IR spectra produced upon LFP (266 nm) of 7 mM 4 and 10 mM chloranil and 1 mM NaI in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1)...... 55

+ 3 3.26 The calculated IR spectra of 4 (down), 4● (up) and 4* (…) in acetonitrile..... 55

3.27 The transient IR spectra produced upon LFP (266 nm) of ____ 7 mM 4 and 10 mM chloranil and 1 mM NaI, ____ 7 mM 4 and 10 mM chloranil, ____ 10 mM chloranil and 1 mM NaI in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm- 1) and deuterated acetonitrile (1300-1600 cm-1)...... 56

4.1 Structures of khellin and visnagin...... 61

4.2 The transient IR spectra produced upon LFP (266 nm) of 6 mM 1 in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and in deuterated acetonitrile (1300-1600 cm-1) ...... 67

3 4.3 The calculated IR spectra of 1 (down) and 1* (up) in acetonitrile...... 67

4.4 The transient IR spectra produced upon LFP (266 nm) of 10 mM 2 in argon- saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and in deuterated acetonitrile (1300-1600 cm-1)...... 68

3 4.5 The calculated IR spectra of 2 (down) and 2* (up) in acetonitrile...... 68

4.6 The decay of the A) 1405 cm-1 absorbing transient and B) Ground state depletion at 1658 cm-1 of the 6 mM 1 produced upon LFP (266 nm) under argon purged ___ and ---- in aerated acetonitrile-d3. Single exponential decay τ = 10 µs...... 70

4.7 The decay of the A) 1404 cm-1 absorbing transient and B) Ground state depletion at 1341 cm-1 of the 10 mM 2 produced upon LFP (266 nm) under argon purged ___ and ---- in aerated acetonitrile-d3. Single exponential decay τ = 1 µs...... 71

4.8 The transient IR spectra produced upon LFP (266 nm) of 10 mM 2 and 1 mM NaI in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1)...... 76

-- 3 4.9 The calculated IR spectra of 2 (down), 2● (up) and 2* (…) in acetonitrile .... 77

xiv 4.10 The transient IR spectra produced upon LFP (266 nm) of ____ 6 mM 1 and 10 mM KSCN in argon saturated acetonitrile (1100-1300 cm-1) and deuterated acetonitrile (1300-1600 cm-1) ...... 78

4.11 The transient IR spectra produced upon LFP (266 nm) of ____ 6 mM 1 and 40 mM NaI in argon deuterated acetonitrile (1300-1600 cm-1)...... 78

-- 3 4.12 The calculated IR spectra of 1 (down), 1● (up) and 1* (…) in acetonitrile .... 79

4.13 The transient IR spectra produced upon LFP (266 nm) of A) 10 mM chloranil in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1). B) ____ 10 mM chloranil and 1 mM NaI and …… 10 mM chloranil in argon saturated acetonitrile (1100-1300 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1). Window: ____ 0-1 µs...... 81

4.14 The calculated IR spectra of chloranil (down), chloranil ●- (up) and 3chloranil* (…) in acetonitrile...... 82

4.15 The transient IR spectra produced upon LFP (266 nm) of 6 mM 1 and 10 mM chloranil ― and 6 mM 1 …… in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1). Window: ____ 0-1 µs...... 85

+ 3 4.16 The calculated IR spectra of 1 (down), 1● (up) and 1* (…) in acetonitrile ..... 86

4.17 The transient IR spectra produced upon LFP (266 nm) of 10 mM 2 and 10 mM chloranil in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1)...... 86

+ 3 4.18 The calculated IR spectra of 2 (down), 2● (up) and 2* (…) in acetonitrile..... 87

4.19 The transient IR spectra produced upon LFP (355 nm) of 1 mM hydroquinone and 20 mM chloranil in argon saturated acetonitrile (1100-1300 cm-1) and in deuterated acetonitrile (1300-1600 cm-1)...... 89

4.20 The calculated IR spectra of hydroquinone (down) and its neutral semiquinone radical 3 (up) in gas phase ...... 89

4.21 The transient IR spectra produced upon 266 nm LFP of 6 mM 1 and 1 mM -1 -1 hydroquinone in argon saturated CH3CN (1100-1300 cm and 1600-1750 cm ) -1 and deuterated CH3CN (1300-1600 cm )...... 90

3 4.22 The calculated IR spectra of 1 (down), 1H● (up) and 1* (…) in acetonitrile ..... 91

xv 4.23 The transient IR spectra produced upon 266 nm LFP of 10 mM 2 and 10 mM -1 -1 hydroquinone in argon saturated CH3CN (1100-1300 cm and 1600-1750 cm ) -1 and deuterated CH3CN (1300-1600 cm )...... 92

3 4.24 The calculated IR spectra of 2 (down), 2H● (up) and 2* (…) in acetonitrile ..... 92

5.1 Structure of riboflavin...... 98

5.2 Structures of lumiflavin and lumichrome...... 99

5.3 Structure of tirapazamine ...... 101

5.4 Stuctures of lumichrome N-oxide and lumichrome di N-oxide ...... 104

5.5 The steady state and transient UV-Vis absorption spectra produced upon LFP (266 nm) of LC under ___ argon purge and ___ in aerated acetonitrile...... 188

5.6 The calculated UV-Vis absorption spectrum of 3LC* in the gas phase...... 109

5.7 The transient UV-Vis absorption spectrum produced upon LFP (355 nm) of LC in CH3CN ...... 109

5.8 Decay of the transient absorption signal at A) 350 nm B) 550 nm after 266 nm _____ LFP of LC under argon purge and ----- in aerated CH3CN...... 111

5.9 The steady-state and transient UV-Vis absorption spectrum produced upon LFP (266 nm) of LCO under ___ argon purge and ___ in aerated acetonitrile...... 112

5.10 The calculated UV-Vis absorption spectrum of 3LCO* in gas phase...... 113

5.11 The steady state and transient UV-Vis absorption spectrum produced upon LFP (266 nm) of LCO under ___ argon purge and ___ in aerated water...... 113

5.12 The steady state and transient UV-Vis absorption spectrum produced upon 266 ______nm LFP (top) and 355 nm LFP (buttom) of LCO2 under argon purge and in aerated acetonitrile...... 114

3 5.13 The calculated UV-Vis absorption spectrum of LCO2* in gas phase ...... 115

5.14 Decay of the transient absorption signal at 360 nm after 266 nm LFP of LCO _____ under argon purge and ----- in aerated CH3CN...... 116

5.15 Decay of the transient absorption signal at 370 nm after 266 nm LFP of LCO2 _____ under argon purge and ----- in aerated CH3CN...... 116

xvi 5.16 The transient IR spectra produced upon LFP (266 nm) of lumichrome in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1800 cm-1) and in deuterated acetonitrile (1300-1600 cm-1)...... 119

3 5.17 The calculated IR spectra of LC (down) and LC* (up) in acetonitrile using the B3LYP/6-31G* method after scaling by 0.96 in acetonitrile ...... 120

5.18 The transient IR spectra produced upon LFP (266 nm) of lumichrome N-oxide in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and in deuterated acetonitrile (1300-1600 cm-1)...... 120

3 5.19 The calculated IR spectra of LCO (down) and LCO* (up) in acetonitrile using the B3LYP/6-31G* method after scaling by 0.96 in acetonitrile ...... 121

5.20 The transient IR spectra produced upon LFP (266 nm) of lumichrome-di-N-oxide in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and in deuterated acetonitrile (1300-1600 cm-1)...... 121

3 5.21 The calculated IR spectra of LCO2 (down) and LCO2* (up) in acetonitrile using the B3LYP/6-31G* method after scaling by 0.96 in acetonitrile ...... 122

5.22 The decay of the 1512 cm-1 absorbing transient (top) and ground state depletion at 1568 cm-1 (bottom) of LC produced upon LFP (266 nm) under argon purge and in aerated acetonitrile-d3. Single exponential decay τ = 1 µs ...... 125

5.23 The decay of the 1692 cm-1 absorbing transient (top) and ground state depletion at 1336 cm-1 (bottom) of LCO produced upon LFP (266 nm) under argon purge in aerated acetonitrile-d3. Single exponential decay τ = 1 µs ...... 126

5.24 The decay of the 1688 cm-1 absorbing transient (top) and ground state depletion at -1 1744 cm (bottom) of LCO2 produced upon LFP (266 nm) under argon purge in aerated acetonitrile. Single exponential decay τ = 1 µs...... 127

6.1 Structures of riboflavin, and its photoproducts, lumiflavin and lumichrome ..... 137

6.2 A Jablonski diagram...... 138

6.3 Structures of lumichrome N-oxide and lumichrome di-N-oxide...... 140

6.4 Absorption (A) and fluorescence (B) spectra of lumichrome in acetonitrile at room temperature with excitation wavelength at 355nm...... 145

6.5 Absorption spectra of LCO and LCO2 in acetonitrile...... 145

xvii 6.6 Fluorescence spectra of LCO (λex=355 nm) in acetonitrile (a), methanol (b), water (c) and 1,2 dichloroethane (d) at room temperature...... 146

6.7 Fluorescence spectra of LCO2 (λex=355 nm) in acetonitrile (a), methanol (b), water (c) and 1,2 dichloroethane (d) at room temperature...... 146

6.8 Absorbance spectra of RBTA, RBTB, pyridine N-oxide and isoquinoline N-oxide in acetonitrile…………………………………………………………………...151

6.9 Fluorescence spectra of RBTA (A= 0.067), RBTB (A= 0.065), pyridine N-oxide (A= 0.39) and isoquinoline N-oxide (A= 0.45) with excitation at 308 nm in acetonitrile………………………………………………………………………151

6.10 Fluorescence decay of LC obtained upon 308 nm excitation in a) acetonitrile, b) methanol, c) PBS buffer and monitored with TCSPC at 440 nm...... 152

6.11 Fluorescence decay of LCO obtained upon 308 nm excitation in a) acetonitrile, b) PBS buffer and monitored with TCSPC at 440 nm...... 153

6.12 Fluorescence decay of LCO2 obtained upon 308 nm excitation in a) acetonitrile, b) PBS buffer and monitored with TCSPC at 520 nm...... 154

6.13 Fluorescence decay of PNO obtained upon 308 nm excitation in acetonitrile and monitored with TCSPC at 400 nm...... 155

6.14 Fluorescence decay of IQNO obtained upon 308 nm excitation in acetonitrile and monitored with TCSPC at 400 nm ...... 155

6.15 Fluorescence decay of RBTA obtained upon 308 nm excitation in a) acetonitrile, b) methanol, c) PBS buffer and monitored with TCSPC at 520 nm...... 156

6.16 Fluorescence decay of RBTB obtained upon 308 nm excitation in a) acetonitrile, b) methanol, c) PBS buffer and monitored with TCSPC at 520 nm...... 157

6.17 Transient spectra produced upon ultrafast LFP of LC (O.D. = 0.26 at 355 nm) in acetonitrile...... 159

6.18 Transient spectra produced upon ultrafast LFP of LCO (O.D. = 0.45 at 273 nm) in acetonitrile...... 159

6.19 Transient spectra produced upon ultrafast LFP of LCO2 (O.D. = 0.55 at 273 nm) in acetonitrile ...... 160

6.20 Transient absorption kinetic traces after photoexcitation of LCO2 in acetonitrile at 273 nm and probing at 380 nm and 520nm ...... 161 xviii

6.21 Transient spectra produced upon ultrafast LFP of RBTA (O.D. = 0.25 at 355 nm) in acetonitrile...... 162

6.22 Transient spectra produced upon ultrafast LFP of RBTB (O.D. = 0.3 at 355 nm) in acetonitrile ...... 163

6.23 Transient absorption kinetic traces after photoexcitation in acetonitrile at 355 nm of RBTA (top) probing at 680 nm, and RBTB (bottom) probing at 440 and 680 nm ...... 164

6.24 Transient spectra produced upon ultrafast LFP of IQNO and recorded from 0.8 ps to 1000 ps after photoexcitation of PNO in acetonitrile………………………..166

6.25 Transient absorption kinetic traces after photoexcitation of IQNO in acetonitrile at 370 nm (a), 410 (b), 480 nm (c) and 570 (d) in shorter (top) and extended (bottom) time ranges...... 167

6.26 The transient UV-vis spectrum of triplet isoquinoline N-oxide upon 355 nm LFP in methanol……………………………………………………………………...168

6.27 Transient spectra produced upon ultrafast LFP of PNO and recorded from 0.8 ps to 1000 ps after photoexcitation of PNO in acetonitrile...... 169

6.28 Transient absorption kinetic traces after photoexcitation of PNO in acetonitrile at 380 nm, 410 and and 620 in shorter (top) and extended (bottom) time ranges…...………………………………………………………………………170

xix

LIST OF SCHEMES

Schemes Page

1.1 Mechanism of action of a hypoxia selective drug ...... 7

1.2 Jablonski diagram of the general mechanism of photosensitization...... 9

1.3 Mechanism of action of Porfimer and 8-MOP ...... 10

3.1 Possible reactions of psoralen compounds upon absorption of UV-A/Visible radiation ...... 25

3.2 Proposed mechanism of reaction of TMP triplet state with A) NaI to form its corresponding radical anion, B) hydroquinone, C) chloranil to form the analogous radical cation...... 49

4.1 Proposed mechanism of reaction of khellin and visnagin triplet state with NaI to form their corresponding radical anion...... 74

4.2 Proposed mechanism of khellin and visnagin triplet states with chloranil to form the analogous radical cation...... 79

4.3 Proposed mechanism of the triplet states of visnagin and khellin with hydroquinone ...... 88

5.1 Generation of hydroxyl radical, a mechanism of tirapazamine (TPZ) proposed by Daniels and Gates ...... 102

6.1 Possible heterocyclization reactions of pyridine N-oxide upon photolysis: oxaziridine (1), zwitterions (2) and 1, 2-oxazepine (3)...... 102

xx

CHAPTER 1

INTRODUCTION

“Science has always strived to see smaller and smaller things and faster and faster

events. Since the time of Arrhenius a number of methods have been developed to

measure increasingly faster reaction rates, many of them rewarded with Nobel Prizes”

said Professor Bengt Nordén while presenting Professor Ahmed H. Zewail with the

Nobel Prize in Chemistry (1999) for his studies of the transitions states of chemical

reactions using femtosecond spectroscopy. 1

The chemistry of reactive intermediates and excited states is a focal point of

mechanistic organic chemistry. Their reactions often proceed in several steps and these

highly reactive species may exist for only a millionth or a billionth of a second and for

that reason they are difficult to observe directly. Laser Flash Photolysis (LFP) is a powerful tool that can allow the direct detection of these short-lived species and help elucidate their structure and reactivity. For over 20 years, nano-second resolved laser flash photolysis (LFP) coupled with UV-Vis detection has been a popular tool. Recently revolutionary laser spectroscopic techniques have pushed the time resolution of chemical/physical processes down to femtoseconds, where even molecular vibrations can be monitored.

1 Laser flash photolysis is a useful technique for the disruption of photolabile

chemical bonds. In this technique an extremely high-intensity laser turns on and off again

so rapidly that the pulse, or photolysis flash, lasts only a tiny fraction of a second. The

pulse time of lasers used in this work is approximately 150 picoseconds (10-12 s) to 20

-9 16 17 nanoseconds (10 s). During that time interval the lasers are able to emit 10 ~ 10

photons. Thus a very large number of excited molecules are produced within a very short

period of time. After the excitation pulse is over, a second, conventional light source

(called the spectroscopic source or probe beam of broadband UV-visible or infrared light) is used to determine an absorption spectrum or several successive spectra of the just- excited system. By following the spectral changes, qualitatively and quantitatively, one is able to learn much about the nature of the very short-lived intermediates and their rates of

decay and reactions. However, most LFP experiments result in the production of as yet

uncharacterized intermediates. Thus it is equally important to have modern computational

evidence to support the LFP spectral assignments.

The past two decades have witnessed revolutionary advances in both

spectroscopic techniques and in computational hardware and software. In this dissertation, the methods are used to attempt to understand the reactivities of excited

states species generated from biologically active photosensitizers, which have been used

in pathogen inactivation of blood products, cancer treatment and skin diseases.

2 Psoralens

Psoralens (furocoumarins) are a class of photo-mutagenic and photo- chemotherapeutic molecules that covalently modify nucleic acids upon irradiation.

Psoralens have been used in conjunction with Ultraviolet A irradiation as a clinical treatment, known as PUVA therapy, for dermatological disorders for more than 20 years.2, 3

Upon absorption of UVA radiation, psoralens react with thymidine and uracil bases to form adducts in a two plus two cyclo-addition reaction. 2, 3 Single stranded DNA

can thus be modified and double stranded DNA can be crosslinked. 8-Methoxypsoralen

(8-MOP, Figure 1.1) was the first psoralen to be used in the treatment of dermatological

diseases. 4 This sensitizer was also used for the treatment of and other

5 dermatological disorders. There is considerable interest in the development of new

psoralen derivatives for a variety of therapeutic applications. However, questions

regarding the long-term safety of PUVA therapy have also been raised as several studies

showed that this therapy increases the risk of skin cancer after long-term use.6

O O O

OCH3

Figure 1.1. Structure of 8-methoxypsoralen

3 Khellin and visnagin

Khellin and visnagin (Figure 1.2) are extracted from the seeds

of (Arabic khella), a plant common in the Eastern Mediterranean region. 7,

8 In 1982 Abdel-Fattah et al. reported encouraging results from the application of a new

method for treatment of combining orally administered khellin and solar irradiation.9

Khellin, when combined with artificial ultraviolet (UV) A or solar irradiation

(KUVA), is reported to repigment vitiligo skin as effectively as PUVA

photochemotherapy. Khellin may be used topically to avoid systemic side effects. More

detailed studies of khellin's properties confirm that it has several advantages compared

with the psoralens.3-14 Khellin and visnagin, whose chemical structure closely resembles

that of psoralen, exert similar photo-biological, photochemical and photo-therapeutic

properties but are less photo-toxic and carcinogenic because it predominantly forms

mono-adducts.9

Khellin 1 R = OCH 3 Visnagin 2 R = H

Figure 1.2. Structures of khellin and visnagin

4 Riboflavin

Flavin systems are known to be photochemically active, and photochemical intermediates of these flavins are known to react with a host of biological molecules, often with clinical implications. Riboflavin is a vitamin (B2) essential to the human diet.

It is also the precursor for flavin mononucleotide (FMN) and flavin adenine dinucleotide

(FAD), which are major coenzymes that participate in a number of one-electron processes in the human body.15 Riboflavin is a photosensitizer that has recently received enormous industrial attention as a sensitizer of pathogen inactivation for the sterilization of blood products. 16-18

Exposure of naturally occurring riboflavin in food and in the human body to visible light promotes chemical reactions of riboflavin to produce metabolic break down products such as lumichrome.19-21 It is converted to lumichrome (Figure 1.3) upon photolysis in neutral aqueous solutions, and into lumiflavin (Figure 1.3) in alkaline media.22, 23

CH3 H

H C N N O 3 H3C N N O

N N H C N H 3 H3C N H

O O Lumiflavin Lumichrome (LF) (LC)

Figure 1.3. Structures of lumiflavin and lumichrome

5 Photosensitizers

A photosensitizer is a drug used in photodynamic therapy. When absorbed by

cancer cells and exposed to light, the drug becomes active and kills the cancer cells;

however their application is not only limited to medical or biological purposes.

A successful photochemical technology that will eradicate pathogens present in

blood products requires that the perfect sensitizer has the following properties:

1. The ideal sensitizer must bind to pathogenic particles but must not bind to

plasma proteins, platelets or red blood cells.

2. The ideal sensitizer should be non-toxic, non-mutagenic and must not break

down to compounds that are toxic and mutagenic.

3. The ideal sensitizer must be readily available, water soluble, and inexpensive.

4. The ideal sensitizer must absorb UVA or visible radiation. Absorption of

radiation must produce a short-lived, highly reactive toxin, which creates lesions in its

immediate vicinity (e.g., only to the pathogenic particle to which it is bound). 24

In cancer treatment, in order to have high selectivity toward tumor tissues and low

toxicity to healthy tissues, the in situ generation of reactive species from the drug (or

prodrug) is a very important strategy. The activation usually makes use of some special

physiological conditions or endogenous enzymes, as shown in Scheme 1.1. Certain anti-

tumor agents may selectively assist damage to DNA under hypoxic conditions.25 In principle; a non-toxic agent may be selectively activated under hypoxic conditions and subsequently may selectively damage DNA. One advantage of this kind of drug is that in the presence of a large concentration, the activated drug would be neutralized and thus will not damage the normal cells. 6

Scheme 1.1. Mechanism of action of a hypoxia selective drug. 25

A photosensitizer, however, by definition, is activated by light. There are at least

three kinds of damage that can be induced by excitation of the photosensitizer. An

oxidative species generated by the photosensitizer can directly kill tumor cells by

damaging membranes, nucleic acids, mitochondria, and other organelles, through

necrosis or apoptosis.26, 27 They can also indirectly kill cells by damaging the vasculature

system which will cut the supply of oxygen and nutrient supply to the tumor cells.

Finally the inflammatory and immune responses trigged by photosensitizer can also

contribute to the anti-tumor action. 28

Sensitizer photophysics and photochemistry can be usefully summarized with the

aid of a Jablonski diagram as shown in Scheme 1.2. Upon absorption of light, preferably

in the visible region, the sensitizer is excited to a higher electronic state (Sn or higher) or

a higher vibrational state of S1. In solution phase, the originally populated excited state

relaxes to the lowest vibrational level of first excited state (S1) in picoseconds.

7 Chemistry generally proceeds from this S1 state of the sensitizer. In many cases,

however, the S1 state can undergo nonradiative inter-system crossing (ISC) to the T1 state. Triplet state lifetimes are much longer than those of the S1 state. The T1 state reacts rapidly with oxygen, which has a triplet ground state, and this bimolecular reaction produces singlet oxygen, a very powerful oxidant. The T1 state is able to take part in

chemical reactions based on electron or atom transfer reactions with the

generation of radical intermediates. This type of photodynamic reaction involves the

direct chemical reaction of the excited state, or subsequent species, with the target, and is

called a Type I process. Energy transfer from the triplet state of the photosensitizer to a

suitable acceptor, most frequently oxygen, results in generation of highly reactive singlet

oxygen involved which is subsequently in photodynamic processes known as Type II

reactions.29

8 Bio- molecules Free Chemical reactions S1 radicals Type I

T1

1Σ g

1∆ g

Chemical reactions Type II S 0 3Σ g Photosensitizer oxygen

Scheme 1.2. Jablonski diagram of general mechanisms of photosensitizer.29

Scheme 1.3 presents the two mechanisms of action for porfimer 30,31 and 8- methoxypsoralen (8-MOP) 32, which are representative of the two most common reactions, Type I and Type II observed in photodynamic therapies.

9 A

R Me hν Porfimer 1Porfimer* Me 1 3 Me O Porfimer* Porfimer* 3 * 1 * Me Porfimer + O2 Porfimer* + O2 1 * O O2 + Substrates Oxizided substrates

Me n=2-6 NaO2C Porfimer

B

H O OON HN DNA hν H N DNA O H H O O O O N O O H OMe DNA H OMe H O O O OMe 8-MOP

DNA intercalation

Scheme 1.3. Mechanism of action of Porfimer 30,31 and 8-MOP 32

Porfimer (also known as Photofrin) has been used for the treatment of esophageal

and endobronchial cancers.30, 31 This mixture of oligomeric porphyrins is activated by 630

nm laser light, generating singlet-state porfimer, followed by nonradiative intersystem

crossing to convert to the more stable triplet state. The triplet state is sufficiently long-

lived to undergo intermolecular reactions, most importantly with oxygen (see Scheme

1.3A). The singlet oxygen generated in this reaction is believed to be the active agent,

oxidizing intracellular targets non-specifically and generating superoxide ion and 10 hydroxyl radicals, which can also damage cells. Although porfimer is injected

intravenously and is distributed throughout the body, selective generation of singlet

oxygen in a tumor is achieved by irradiation with a fiber optic diffuser inserted through

an endoscope.33-37 (Scheme 1.3)

8-Methoxypsoralen (8-MOP) utilizes a different strategy to treat cutaneous T cell

lymphoma, a disease in which cancerous T cells proliferate in the blood. Instead of

bringing light to the tumor via fiber optics, use of this agent brings the tumor cells to the

light. 8-MOP is administered orally, and the blood is withdrawn from the patient.

Leukocytes (including T cells) are then irradiated with UVA light outside the body. The

treated leukocytes are then recombined with plasma and red blood cells and reinjected

into patients. The chemically reactive species in 8-MOP treatment is itself, a DNA

intercalator. 8-MOP forms [2+2] cycloadducts with adjacent bases upon irradiation (see

Scheme 1.3B). Reaction occurs most commonly with thymine C5-C6 double bonds, forming products similar to the thymine cyclobutane dimer. T cells containing cross- linked DNA do not survive treatment.38-40

In the following sections, LFP and computational studies of psoralens, coumarins,

flavins and the photochemical intermediates they generate will be discussed. In chapter 2,

the experimental techniques and computational methods used throughout this dissertation

are described. In chapter 3, laser flash photolysis with UV-visible and TRIR detection are

used to directly observe and identify the triplet excited states of psoralens and its

derivatives, and trimethylpsoralen radical ions. Chapter 4 focuses on the generation of the

triplet states of khellin and visnagin and their electron-transfer chemistry. Chapter 5 11 investigates the transient species generated photochemically from lumichrome and its oxides using nanosecond laser flash photolysis with UV-visible and infrared. Chapter 6 presents the time-correlated single photon counting (TCSPC), fluorescence and ultrafast with UV-visible detection studies of riboflavin tetraacetate, lumichrome, lumichrome-N- oxides and other aromatic N- oxides.

References

1. http://nobelprize.org/chemistry/laureates/1999/zewail-lecture.html

2. Wood P. D.; Linda J. Johnston, J. Phys. Chem. A 1998, 102, 5585-5591

3. Gasparro, F. P., Psoralen DNA Photobiology; Ed.; CRC Press:Boca Raton, FL, 1988; Vols. 1 and 2

4. Brown, J. M. Br. J. Cancer 1993, 67, 1163-1170

5. Goodrich, R. P. Vox Sang. 2000, 78 Suppl 2, 211-215

6. Dalle C. M.; Pathak, M. A. J. Photochem. Photobiol. B. 1992, 14, 105-124

7. Valkova, S.; Trashlieva, M.; Christova, P. Clin. Exp. Dermatol.2004, 29, 180.

8. Morliere, P.; Hönigsmann, H.; Averbeck, D.; Dardalhon, M.; Hüppe, G.; Ortel, B.; Santus, R.; Dubertret, L. J. InVest. Dermatol. 1988, 90, 720

9. Abdel-Fattah, A.; Aboul Enein, M. N.; Wassel, G. M.; El Menshawi, B. S. Dermatologica 1982, 165, 136-140

10. Carlie, G.; Ntusi, N. B.; Hulley, P. A.; Kidson, S. H. Br. J. Dermatol. 2003, 149, 707

11. Shi, Y. B.; Lipson, S. E.; Chi, D. Y.; Spielman, P.; Monforte, J. A.; Hearst. In Biorganic Photochemistry; Morrison, H., Ed.; Wiley: New York, 1990; pp 341- 378

12. Pathak, M. A.; Fitzpatrick, T. B. J. Photochem. Photobiol., B: Biol. 1992, 14, 3

12 13. (a) Goodrich, R. P.; Platz, M. S. J. Phys. Chem. A 1998, 102(28), 5591 (b) Goodrich, R. P.; Platz, M. S. Drugs Future 1997, 22, 159

14. Fisher, G. J.; Johns, H. E. Photochemistry and Photobiology of Nucleic Acids; Wang, S. Y., Ed; Academic Press: New York, 1976; Vol. 17. 1, p 226

15. Heelis, P. F. Chem. Soc. Rev. 1982, 11, 15-39

16. Goodrich, R. P. In Cambridge Healthtech Institute's Sixth Annual Blood Product Safety Conference, 2000

17. Cadet, J. C.; Decarroz, S.; Wang, Y.; Midden, W. R. Isr. J. Chem. 1983, 23, 420- 429

18. Ennever, J. F.; Carr, H. S.; Speck, W. T. Pediat. Res. 1983, 17, 192-194

19. McCormick, D. B. Nutr. Rev. 1972, 30, 75-79

20. Rivlin, R. S. N. Engl. J. Med. 1970, 283, 463-472

21. Zempleni, J.; Galloway, J. R.; McCormick, D. B. Am. J. Clin. Nutr. 1996, 63, 54- 66

22. Smith, E. C.; Metzler, D. E. J. Am. Chem. Soc. 1963, 85, 3285

23. Ahmad, I.; Rapson, D. C.; Heelis, P. F.; Phillips, G. D. J. Org. Chem. 1980, 45, 731

24. (a) BIRBA "Toxicity Profile: Riboflavin and its derivatives," 1990 (b) http://grants.nih.gov/grants/guide/rfa-files/RFA-HL-00-010.html

25. Roos, B. O. Int. J. Quant. Chem. Symp. 1987, 15, 175

26. Ochsner, M. J. Photochem. Photobiol. B. 1997, 39, 1-18

27. Oleinick, N. L.; Evans, H. H. Radiat. Res. 1998, 150, S146-56

28. Korbelik, M. J. Clin. Laser Med. Surg. 1996, 14, 329

29. Szacilowski, K.; Macyk, W.; Drzewiecka-Matuszek, A.; Brindell, M.; Stochel, G. Chem. Rev. 2005, 105, 2647-2694

30. Ali, H.; van Lier, J. E. Chem. Rev. 1999, 99, 2379

31. Jori, G. J. Photochem. Photobiol. B. 1996, 36, 87-93

13 32. Edelson, R. L. Yale J. Biol. Med. 1989, 62, 565-577

33. Wolkenberg, S. E.; Boger, D. L. Chem. Rev. 2002, 102, 2477-2495

34. Sharman, W. M.; Allen, C. M.; van Lier, J. E. Methods Enzymol. 2000, 319, 376- 400

35. Kochevar, I. E.; Redmond, R. W. Methods Enzymol. 2000, 319, 20-28

36. Ahmad, N.; Mukhtar, H. Methods Enzymol. 2000, 319, 342-358

37. Rosenthal, I.; Ben-Hur, E. Int. J. Radiat. Biol. 1995, 67, 85-91

38. Edelson, R. L. Yale J. Biol. Med. 1989, 62, 565-577

39. Kanne, D.; Straub, K.; Rapoport, H.; Hearst, J. E. Biochemistry 1982, 21, 861-871

40. Peckler, S.; Graves, B.; Kanne, D.; Rapoport, H.; Hearst, J. E.; Kim, S. H. J. Mol.

Biol. 1982, 162, 157-172

14

CHAPTER 2

EXPERIMENTAL

2.1 Nanosecond laser flash system (LFP) system with UV-Vis detection

The nanosecond LFP instrument with UV-Vis detection prior to Autumn 2004 used an excimer laser (Lambda Physik LPX105EMC, 308 nm, 15 ns) or Nd:YAG laser

(Spectra Physics LAB-150-10, ~5 ns, 355 or 266 nm) as the excitation light source. The measurement beam was supplied by a PTI 150 W xenon arc lamp with a LPS 210 power supply, LPS 221 stand alone igniter, A-500 compact arc lamp housing, and MCP-2010 pulser, which allowed for controlled pulsing of the arc lamp with pulsed 0.5-2.0 ms in duration and up to 160 amps in amplitude.

The pulse light from a Xeon Lamp was focused onto a single ARC SP-308 monochromator/spectrograph, with a 1-015-300 grating. This model features dual ports, one with a slit and a photomultiplier for kinetic measurements and the other with a flat field and a Roper ICCD-Max 512T digital ICCD camera for spectroscopic measurements with up to 2 ns temporal resolution. The single monochromator/spectrograph negates the need for separate optimization of kinetic or spectral measurement system alignment, thus facilitating the usage of both types of measurements. The ICCD controller is directly

15 interfaced to the computer using the Roper WinView software and ST-133A controller.

Kinetic data acquisition uses a Tektronix TDS 680C 5Gs/s 1GHz oscilloscope directly

interfaced via a National PCI-GPIB to a computer running a custom LabView control and acquisition program. Laser, arc lamp, shutter and other timing and control signals are routed through a National Instruments PCI-6602 DAQ interface. The measurement beam is supplied by a PTI 150 W xenon arc lamp with a LPS 210 power supply, LPS 221 stand alone igniter, A-500 compact arc lamp housing, and MCP-2010 pulser, which allows for

controlled pulsing of the arc lamp with pulsed 0.5-2.0 ms in duration and up to 160 amps

in amplitude.1

For experiments carried out after Autumn 2004, the arc lamp and pulsing system

was slightly modified. A 150 W xenon arc lamp (Applied Photophysics) was used in the

pulsed mode 0.5 ms in duration with a 1 Hz repetition rate.

2.2 Time resolved infrared spectroscopy (TRIR)

TRIR experiments were conducted with a JASCO TRIR-1000 dispersive-type IR

spectrometer with 16 cm-1. The sample was excited by 355 or 266 nm laser pulses of a

Nd:YAG laser (355 nm LFP: 50 Hz repetition rate, 0.6-0.8 mJ/pulse power; 266 nm LFP

97 Hz repetition rate, 0.5-0.7 mJ/pulse power), which is crossed with the broadband

output of a MoSi2 IR source (JASCO). The intensity change of the IR light induced by

photoexcitation is monitored as a function of time by an MCT photovoltaic IR detector

(Kolmar Technologies, KMPV11-1-J1), with a 50 ns rise time amplified with a low noise

NF Electronic Instruments 5307 differential amplifier, and digitized with a Tektronix

16 TDS784D oscilloscope. The TRIR spectrum is analyzed by the IGOR PRO program

(Wavemetrics Inc.) in the form of a difference spectrum (∆At):

∆At = − log (1 + ∆It / I)

where ∆It is the intensity change induced by photoreaction at time t, and I is the IR

intensity for the sample without photoexcitation. Thus, depletion of reactant and formation of transient intermediates or products lead to negative and positive signals, respectively. 1

2.3 Ultrafast transient UV-Vis spectroscopy

Picosecond time-resolved measurements were performed at the Center for

Chemical and Biophysical Dynamics (CCBD) of The Ohio State University. The instrumentation setup used for the ultrafast transient absorption spectrometric experiments consists of a short pulse oscillator (Coherent/Positive Light, Mira) generating ~30 fs pulses at ~800 nm that seeds two high energy regenerative amplifiers

(Coherent/Positive Light, Legend HE USP). Each regenerative amplifier produces ~ 2.5 mJ, ~ 40 fs pulses at 1 kHz. Each regenerative amplifier pumps two optical parametric amplifiers (Coherent/Positive Light, OperA), with ~1 mJ used for each optical parametric amplifiers (OPA). The remaining fundamental is used for harmonic and white light generation. The OPAs have one of three modules to provide tunable radiation from the signal and idler. The DFG module provides tunable radiation in the infrared (~ 2.5 to 12 micron); the SFG module provides tunable UV/Vis radiation (240 to 300 nm and 480 to

600 nm), and the UV/Vis module is tunable from 300 to 400 nm and 600 to 800 nm). 17 The detection systems include single wavelength and broadband transient absorption,

ultrafast fluorescence up-conversion, broadband transient diffuse reflectance, a dual array

MCT detector for ultrafast time-resolved infrared measurements, and a

spectrograph/CCD for stimulated Raman detection. The pump beam is chopped with a frequency of 333 Hz. The probe beam is derived from the small portion (<10%) of the

fundamental output (800 nm). It is passed through an optical delay line consisting of

retroreflector mounted on a computer-controlled motorized translation stage. The probe

beam is then used to generate white light continuum in a 1 mm sapphire plate and is followed by interference filtering. Transmission signals were detected by Si photodiodes and measured with a digital lock-in amplifier (SRS 830). The samples were circulated in

a flow cell, the optical path length was 1 mm. To avoid polarization effects, the angle

between polarizations of the pump beam and the probe beam was set to the magic angle

by a λ/2 plate. 2

2.4 UV-Vis and fluorescence measurements

Fluorescence lifetimes were measured using time correlated single photon counting (TCSPC) method. The pulse train of a synchronously pumped cavity-dumped

dye laser (Coherent 700 Series; Rhodamine 6-G or DCM) was directed to a beam splitter.

A portion of the pulse train was routed to a fast photodiode that registered a "start" signal

on a Time-to-Amplitude Converter (TAC; Tennelec TC-864) after passing through a

Constant Fraction Discriminator (CFD; Tennelec TC-455). This established the time

position of each pulse with great precision. The "start" pulses initiated the charging of a

18 capacitor in the TAC. The remainder of the pulse train was frequency doubled in an appropriate nonlinear crystal (Inrad, RDA) to generate UV excitation within the diazirine absorbance band. Fluorescence was detected at 90° after having passed through a polarization analyzer (oriented at 54.7° relative to the polarization of the laser excitation), a depolarizer, and a subtractive double monochromator (American Holographic DB-10S).

The detector was a Microchannel Plate Photomultiplier Tube (MCP-PMT; Hammamatsu

R-2809U-07). The signals arising from single photons were amplified (Minicircuit ZHL-

42) and passed through a second CFD. The CFD output pulses then served as the "stop" signals for the capacitor in the TAC. The TAC capacitance was transferred to a Multi-

Channel Analyzer (MCA; Tennelec PCA-II), where the data were binned and presented as a histogram. This histogram served as a representation of the fluorescence decay.3

Fluorescence quantum yield (ΦF) and fluorescence quenching experiments were carried out using a Spex Fluorolog 1680 double spectrometer (JY Horiba Inc., Edison NJ,

USA). Measurements of the fluorescence quantum yield were performed as described in the JobinYvon Ltd. Website.4 A series of fluorescence intensities were plotted versus the corresponding absorptions at the excitation wavelengths to obtain the slopes (S) of the samples and standards. The quantum yields of samples were calculated by:

2 ΦX=ΦST (SX/SST)(ηX/ηST) , where η is the refractive index of the solution.

UV-vis absorption spectra were obtained on a HP 8452 diode array spectrophotometer. Steady state fluorescence spectra measurements are carried using a

SPEX Fluorolog 1680 double spectrometer (JY Horiba Inc., Edison, NJ).

19 2.5 Density functional calculations

All calculations were performed using Gaussian 98 5 on the Linux Cluster at the

Ohio Supercomputer Center. All geometries were optimized at the B3LYP/6-31G* level

of theory (unrestricted B3LYP was used for the open-shell systems), and single-point

energies were also obtained at the B3LYP/6-31+G** level with the optimized B3LYP/6-

31G* geometry.5, 6 Stationary points were verified to be energy minima via vibrational

frequency analyses (B3LYP/6-31G*) in which all the calculated vibrational frequencies

were nonimaginary. Zero-point vibrational energy (ZPE) corrections were also obtained by vibrational frequency calculations. For the vibrational spectra, vibrational frequencies were scaled by 0.9613.15. Spin contamination for the optimized structures were low: 0.75

< 〈S2〉 < 0.79 for the doublet states and 2.0 < 〈S2〉 < 2.1 for the triplet states. Simulated

(vertical) UV spectra were calculated using time-dependent density functional theory

(TDDFT) with the B3LYP/6-31+G** level at the minimized B3LYP/6-31G* geometry for each structure. 6, 7 The electronic spectra were computed using the time-dependent

DFT theory of Gaussian 98 at the B3LYP/6-31G* level, and 10 transitions were included.

The self consistent reaction field with polarizable continuum model (PCM) 8 was applied to the calculation of solution structure and energies.

20 2.6 References

1. (a) Martin, C. B; Tsao, M. -L; Hadad, C. M.; Platz, M. S. J. Am. Chem. Soc. 2002, 124, 7226 (b) Martin, C. B.; Shi, X.; Tsao, M. -L.; Karweik, D.; Brooke, J.; Hadad, C. M.; Platz, M. S. J. Phys. Chem. B 2002, 106, 10263

2. Shi. X.; Poole J.S.; Emenike J.; Burdzinski G.; Platz M. S. J. Phys. Chem. A 2005, 109, 1491

3. Buterbaugh, J. S.; Toscano, J. P.; Weaver, W. L.; Gord, J. R.; Hadad, C. M.; Gustafson, T. L.; Platz, M. S. J. Am. Chem. Soc. 1997, 119, 3580

4. http://www.jobinyvon.com/usadivisions/Fluorescence/applications/quantumyields trad.pdf

5. Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic:Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996

6. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, J. V.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

7. Gross, E. K. U.; Kohn, W. Adv. Quantum Chem. 1990, 21, 255-291

8. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027

21

CHAPTER 3

NANOSECOND LASER FLASH PHOTOLYSIS STUDIES OF PSORALEN AND

ITS DERIVATIVES TRIPLET EXCITED STATES AND

TRIMETHYLPSORALEN RADICAL IONS

3.1 Introduction

Psoralens (Figure 3.1) are naturally-occuring photosensitive chemical

compounds of the group furocoumarins. They occur in plants such as limes, lemons,

figs and celery.

O O O

Figure 3.1. Structure of psoralen 1

They are common photoagents to the treatment of psoriases and vitiligo, as well

as mycosis fungoides, atopic eczema and other skin diseases.1 The ancient Egyptians

22 were the first to use psoralens for the treatment of skin diseases thousands of years

ago. 1 They are a class of photo-mutagenic and photo-chemotherapeutic molecules

that covalently modify nucleic acids, which is generally believed to exert its

phototherapeutic activity via inhibition of DNA replication as described in Scheme

1.3.2 This is accomplished by intercalation of the psoralen between adjacent base

pairs in the DNA duplex followed by two successive photocycloaddition reactions

that generate a psoralen diadduct that cross-links the two DNA strands. The primary

targets of psoralens are thymidine residues, and the reaction takes place between the

3,4 (pyrone) or 4', 5’ () double bonds of the psoralen and the 5,6 double bond in

pyrimidines. 2, 3

Psoralens (P) have been used in conjunction with long wave ultraviolet radiation

(UVA) to treat a variety of dermatological diseases and for ex vivo blood purification.

P (Psoralens) UVA is a widely employed photochemotherapy treatment used in

dermatology since 1976.1, 3-8 The treatment involves taking psoralen by mouth (orally)

or applying it to the skin (topically). This is followed by carefully timed exposure to

ultraviolet A (UVA) light from a special lamp or to sunlight. PUVA is highly

effective in treating severe psoriasis, a common chronic disorder of the skin

characterized by reddish, scaly patches of inflammation. However, PUVA therapy

has its hazards, most of them are temporary (headache and dizziness, nausea, redness

of the skin, itching etc…) but PUVA can also cause the skin to look older (photo

aging) and can cause white and brown spots to appear on the skin. Most importantly,

it increases the risk for cancer of the skin, a risk that includes melanoma, a highly

malignant and sometimes fatal form of skin cancer. Therefore questions regarding the

23 long-term safety of PUVA therapy have been raised.3-8 Several studies performed in

the US and Europe demonstrate that there is evidence linking long-term PUVA

therapy with an increased risk of non-melanoma skin cancer which is clearly of

critical importance for a dermatological therapy.8- 14

Although PUVA therapy has been in use for over 20 years, 1, 2 the molecular

mechanism by which it clears skin disorders have not been adequately elucidated. A

number of coumarin photosensitizers have also attracted attention since they do not form

diadducts and can serve as models for the initial furan monoadduct that is the precursor to

DNA cross-links.15, 16 Therefore a detailed understanding of the molecular basis for both

the therapeutic and harmful effects of PUVA therapy is obviously required to aid in the

further development of potential new therapeutic agents. Photochemical mechanisms of

both beneficial and harmful effects have not been established in detail and are still the

matter of discussions. Four types of psoralen photochemical reactions proceed in skin

(Scheme 3.2): generation of free radicals, (Type I), generation of singlet oxygen (Type

II), photoaddition to DNA (Type III) and photooxidation of psoralen (Type IV). These

reactions are the basis of therapeutic and side effects. It is assumed that therapeutic

effects of PUVA and photopheresis are connected with their immunomodulative activitiy,

17-18 and side effects of PUVA may be caused by photooxidative psoralen reactions with cell membrane components.19

24

Scheme 3.1. Possible reactions of psoralen compounds upon absorption of UV-A/Vis

radiation (Ps, Photosensitizer and D, donor). 17-19

More recently, the importance of binding to proteins, 20 cyclocycloaddition

reactions with unsaturated fatty acids, 21,22 and electron transfer reactions23-25 in psoralen

photochemistry has been examined. Considerable research efforts have been directed toward identifying the excited-state intermediates involved in the photocycloaddition

chemistry of psoralens that are used in PUVA therapy.6-14 Although most of the

25 photochemistry of psoralens and nucleic acids bases proceeds from singlet excited states,

there is evidence in the literature that indicates that the triplet excited states of nucleic

acids and psoralens play important and relevant roles in the observed photochemistry.10, 21

It has been reported that psoralen triplet excited states are effectively quenched by nucleic acid bases21 and the formation of psoralen-pyrimidine base adducts was found to be quenched by oxygen and paramagnetic ions, which are very efficient triplet state quenchers.22

Wood et al.26-28 demonstrated the relevance of electron transfer chemistry to the

use of psoralens and related compounds as photoactivated drugs. They examined the

reactions of several psoralen and coumarin radical cations with biological substrates such

as nucleotides, amino acids and alkenes that serve as models for unsaturated fatty acids.

The radical cations were generated by laser photoionization of the parent psoralen or

coumarin in aqueous buffer in most cases. In each case, reaction occurs via electron transfer, as demonstrated by the observation of quencher-derived radical cations or radicals by transient absorption spectroscopy. Wood et al. also carried out product studies using both lamp and laser irradiation in the presence of deoxyguanosine as a radical cation trap that lead to the formation of characteristic base-derived Type-I (electron transfer) products. 26-28

The photoionization of psoralens and coumarins has also been studied in

heterogeneous media (micelles, DNA, vesicles) that provide a better model for cellular

photochemistry. 28 In anionic micelles (i.e., dodecyl sulfate) the photoionization

yield is significantly increased since electrostatic repulsion between the ejected electron

and the negatively charged micellar interface favors efficient charge separation of the

26 initial geminate radical cation/electron pair. Preliminary data indicate that electron

transfer reactions play a key role in the photochemistry of psoralens complexed to

proteins. For example, irradiation of complexes of several psoralens and coumarins with

human serum albumin (a protein responsible for transport of small molecules) provides evidence for generation of a tryptophan-derived radical. This is consistent with initial

electron transfer quenching of the excited substrate by an adjacent tryptophan in the drug- binding site.26-28 As part of a general interest in elucidating the role of electron transfer in

psoralen photochemistry, transient absorption spectroscopy was used to investigate the

ease of photoionization 26-38 and generate the radical cations of a number of psoralens and related coumarins. These compounds are the most widely used in PUVA39-40, and their

structures are shown in Figure 3.2. In this study the reactivity of the transient

intermediates involved in the photochemistry of the parent psoralen 1 (Figure 3.1), 8-

methoxypsoralen 2, 5-methoxypsoralen 3 and 4, 5’ 8-trimethylpsoralen 4 was

investigated using LFP techniques.

27 OCH3

O O O O O O

OCH3 2 3

CH3

CH3 O O O

CH3 4

Figure 3.2. Structures of 8-methoxypsoralen 2, 5-methoxypsoralen 3 and 4, 5’ 8- trimethylpsoralen 4.

In this chapter, laser flash photolysis with UV-visible and TRIR spectroscopy are used to directly observe and identify the triplet excited states of the parent psoralen 1 and its derivatives, 5-MOP, 8-MOP and 4, 5’ 8-trimethylpsoralen. The radical ions of 4 were also investigated. DFT calculations were also performed to support experimental data and spectral assignments.

28 3.2 Experimental

3.2.1 Materials

Psoralen 1 (269.25 g/mol, lot # GA16976), 8-Methoxypsoralen 2 (8-MOP, 216.2 g/mol, lot # 083K1124), 5-Methoxypsoralen 3 (5-MOP, 216.2 g/mol, lot # 03613MU), 4,

5’, 8-Trimethylpsoralen 4 (Trioxsalen, TMP 228.2 g/mol, lot # 043K3505), 4’-

Methoxyacetophenone (p-MAP, 150.18 g/mol, lot # 07320LU), tetrachloro-1, 4- benzoquinone (chloranil, 245.88 g/mol, lot # 17727BB), p-toluenesulfonic acid monohydrate (190.22 g/mol, lot #04702AC), iron (III) bromide (295.57 g/mol, lot #

11723HC), potassium thiocyanate (81.07 g/mol, lot # 16104D4), benzene, acetonitrile and deuterated acetonitrile were purchased from Sigma-Aldrich (St. Louis, MO) with

>99% purity (HPLC). Hydroquinone (110.11 g/mol) was purchased from Eastman

Organic Chemicals (Rochester, NY). Sodium iodide (149.89 g/mol, lot # B26333) was purchased from Baker (Philipsburg, NJ) with a purity of 99% (HPLC). All the chemicals were used as received.

3.2.2 Time Resolved Infrared spectroscopy

TRIR experiments were conducted with a JASCO TRIR-1000 dispersive-type IR spectrometer with 16-cm-1 resolution following the method described in the literature.41

Each sample solution was prepared with an optical density of 0.6-1.0 with a 0.5 mm path length. A total volume of 10-20 mL of the deoxygenated sample solution was continuously circulated between two fluoride salt plates. The sample was excited by 266-nm laser pulses of a Nd:YAG laser (50 Hz repetition rate, 0.6~0.8 mJ/pulse power) or by 355-nm laser pulses of a Nd:YAG laser (97 Hz repetition rate, 0.5-0.7

29 mJ/pulse power), which is crossed with the broadband output of a MoSi2 IR source

(JASCO). The intensity change of the IR light induced by photoexcitation is monitored as

a function of time by an MCT photovoltaic IR detector (Kolmar Technologies, KMPV11-

1-J1) with a 50-ns rise time, amplified with a low noise NF Electronic Instruments 5307 differential amplifier and digitized with a Tektronix TDS784D oscilloscope. The TRIR

spectrum is analyzed by the IGOR PRO program (Wavemetrics Inc.) in the form of a

difference spectrum (∆(At)):

∆(At) - log (1 + ∆It/I)

Where ∆It is the intensity change induced by photoreaction at time t and I is the

IR intensity for the sample without photoexcitation. Thus, the depletion of reactant and

the formation of transient intermediates or products lead to negative and positive signals,

respectively.

LFP with UV-Vis detection technique and the DFT calculations details are

described in Section 2.2

3.3 Results and discussion

Transient absorption two most frequently studied spectra are transient UV-vis,

which is quite sensitive, and infrared, which provides more structural information. The

triplet excited states of psoralen and its derivatives were studied here using Time

resolved with UV-Vis and IR detection spectroscopy. DFT calculations were compared

to the experimental LFP-UV detection as well as TRIR photochemical data and allowed

assignment of the transient UV-Vis and IR spectra of reactive intermediates that might be

30 involved in the PUVA therapy. The UV-Vis spectra were simulated in the gas phase by

Time-dependent DFT (TD-DFT) methods and the IR spectra were simulated in the gas

phase as well as in acetonitrile and aqueous solution using Polarizable Continuum Model

method for solvation.

3.3.1 Time-resolved with UV-vis detection studies

Psoralen 1, 8-methoxypsoralen 2, 5-methoxypsoralen 3 and trimethylpsoralen 4 triplet excited states were generated upon 355 nm LFP. The triplet lifetime of the psoralens is typically longer than 1 s and their quantum yields is the range 0.01 – 0.98.

The photochemistry of the compounds in presence of a strong electron donor, diazabicyclooctane (DABCO) was explored; where the photoexcitation of the psoralen to its triplet state is followed by the capture of an electron to form a radical anion.

LFP of 0.4 mM of 1 (335 nm) in acetonitrile produces the transient spectrum of

Figure 3.3. The lifetime of the carrier of the transient spectrum is about 1 µs in deoxygenated acetonitrile at ambient temperature (Figure 3.5). The transient spectrum is attributed to 31* because the carrier of the spectrum reacts rapidly with oxygen. The

transient electronic spectrum of 31* presents a maximum at 460 nm which is in good

agreement with calculated UV-Vis spectra (Figure 3.4). DABCO is an efficient electron

donor that was used to form psoralen radical anion, the latter calculated electronic spectra

predicts UV-Vis bands in the range between 300-400 nm and a strong band above 600

nm (Figure 3.4). No new band was observed in the presence of DABCO, however, 31*

(λmax = 460 nm), was quenched efficiently by DABCO as shown in Figure 3.6.

31 440

-3 60

40

20 355 nm LFP of 0.4 mM of 1 in CH3CN

Transient absorption x 10 Transient absorption 0

300 350 400 450 500 Wavelength, nm

Figure 3.3. The transient UV-Vis absorption spectrum produced upon 355 nm LFP of

0.4 mM of 1 in argon purge acetonitrile, immediately after laser pulse, 20 ns window.

Calculated (b3lyp.6-31g*) UV spectra in gas phase of Psoralen 0.16 Triplet state Radical anion 0.14 Radical cation

0.12

0.10

0.08

0.06 Relative Intensity Relative 0.04

0.02

0.00

300 400 500 600 700 Wavelength, nm

Figure 3.4. The calculated UV-Vis absorption spectrum of triplet excited state, radical anion and radical cation of psoralen (gas phase).

32

40 6 -1 Psoralen triplet at 460 nm k=7.6 x 10 s Triplet quenched by O2 20 -3

-3 0 Ax10 x10

∆ -20

-40

0.0 0.5 1.0 1.5 2.0 µs

Figure 3.5. Decay of the transient absorption signal at 460 nm after 355 nm LFP of 0.4

3 ….... _____ mM of 1* under argon purged and in aerated CH3CN.

40 20

0 -3

-3 -20 6 Psoralen triplet at 460 nm k=7.6 x 10 x10 ….…… Ax10 -40 TripletA + 10 mM DABCO ∆ ______Psoralen B + 20 mM DABCO -60 ______C -80

0.0 0.5 1.0 1.5 2.0 µs

Figure 3.6. Decay of the transient absorption signal at 460 nm after 355 nm LFP of A)

0.4 mM of 31*, B) 0.4 mM of 31* plus 10 mM DABCO and C) 0.4 mM of 31* plus 20

mM DABCO in argon purged CH3CN.

33 LFP of 3 mM of 2 (335 nm) in acetonitrile (Figure 3.7) leads efficiently to its

triplet state (λmax = 395, 456 nm), which is consistent with the predictions of TD-DFT calculations (Figure 3.8), although no UV-Vis bands were observed in the 300-400 nm

ranges. The transient electronic spectrum is in excellent agreement with the literature.29

The LFP UV-vis kinetics studies showed that the rate constant of the triplet

6 -1 -1 disappearance is in the order of k ~ 1x10 M s (Figure 3.9). As shown in Figure 3.10,

3 2* is quenched by O2 and DABCO but no proof of electron transfer was shown. The

predicted UV-Vis band at 490 nm for the radical anion of 3 (Figure 3.8) was not

observed. 8-MOP radical anion was reported to present a maximum absorption at 360 nm

with a weaker broad maximum at 580 nm.

456 355 nm LFP of 3 mM of 2 355 nm LFP of 3 mM of 2 in CH3CN 0.20 in CH3CN

0.15 395 0.10 400

0.05 0.00

Transient absorption -0 .05

300 350 400 450 500 wavelength, nm

Figure 3.7. The transient UV-Vis absorption spectrum produced upon LFP (355 nm) of 3

mM of 2 under argon purge CH3CN, immediately after laser pulse, 20 ns window.

34 0.16 Calculated (b3lyp.6-31g*) UV spectra in gas phase of 8-MOP 0.14 Triplet state Radical anion 0.12 Radical cation

0.10

0.08

0.06 Relative intensity Relative 0.04 0.02

300 400 500 600 700 Wavelength, nm

Figure 3.8. The calculated UV-Vis absorption spectrum of triplet excited state, radical anion and radical cation of 2 (gas phase).

5-MOP Triplet quenched by O2 at 500 nm 0.05 7 k = 1.1 x 10 0.00

A -0.05 ∆ 32* quenched by O at 456 nm -0.10 2 k = 1.1 x 106 s-1

-0.15

0.0 0.5 µs 1.0 1.5 2.0

Figure 3.9. Decay of the transient absorption signal at 456 nm after 355 nm LFP of 3mM

3 _____ of 2* under ----- argon purged and in aerated CH3CN.

35

0.0

-0.2 32* + 20 mM DABCO at 456 nm 5-MOP Triplet + 20 mM DABCO at 500 nm

A ∆ -0.4

-0.6

0.0 0.5 1.0 1.5 2.0 µs

Figure 3.10. Decay of the transient absorption signal at 456 nm after 355 nm LFP of

3 ______3mM of 2* plus 20 mM DABCO under argon purged and in aerated CH3CN.

Figure 3.11 presents the transient spectrum produced upon 355 nm LFP of 1 mM

of 3 and of 1 mM of 3 containing 10 mM DABCO in acetonitrile. TD-DFT calculations

predicted bands at 390 and 580 nm for the radical anion of 2 (Figure 3.1) and DABCO radical cation, which is known to absorb at 460 nm.42 In the presence of DABCO, no new

band is observed. 33* has maximum absorption band at 370 nm and its lifetime was determined to be of 4-5 µs in deoxygenated acetonitrile and reacts rapidly with oxygen,

as expected, but reacts slowly with DABCO (Figure 3.13). DABCO quenches 32* but no evidence of electron transfer could be shown.

36

370

A 0.10

B 0.05

0.00

355 nm LFP in CH3CN of

Transient absorption 1 mM of 3 -0 .05 1 mM of 3 + 10 mM of DABCO

300 350 400 450 500 Wavelength, nm

Figure 3.11. The transient UV-Vis absorption spectrum produced upon LFP (355 nm) of

A) 1 mM of 3, B) 1 mM of 3 and 10 mM DABCO in argon purge acetonitrile,

immediately after laser pulse, 20 ns window.

0.20 Calculated (b3lyp.6-31g*) UV spectra in gas phase of 5-MOP Triplet Radical anion Radical cation 0.15

0.10

Relative intensity Relative 0.05

300 350 400 450 500 550 600 650 Wavelength, nm Figure 3.12. The calculated UV-Vis absorption spectrum of triplet excited state, radical

anion and radical cation of 3 (gas phase).

37

0.14 3 3* quenched by O2 at 370 nm 6 -1 0.12 Triplet Khellin quenchedk = 1.8 x 10by O s at 370 nm 2 0.10 6 0.08 k=1.8 x 10 A ∆ 0.06

0.04 0.02 0.00

-0.02 µs 0.0 0.5 1.0 1.5 2.0

Figure 3.13. Decay of the transient absorption signal at 370 nm after 355 nm LFP of 33*

_____ under -----argon purged and in aerated CH3CN.

LFP of 0.3 mM of 4 (335 nm) in acetonitrile (Figure 3.14) leads efficiently to its triplet state (λmax = 380, 452 nm). The kinetics studies showed that the triplet is

3 6 -1 quenched by O2 and the decay rate constant of 4* was determined to be ~ 1 x10 s

(Figure 3.16). . The calculated electronic spectra of 34* and radical anion of 4 present

UV-Vis bands at 350, 370 and 440 nm, and 320 and 490 nm, respectively (Figure 3.15).

As reported for the other psoralen compounds, the radical anion of trimethylpsoralen was

not observed, but the kinetic studies showed that DABCO quenches the triplet state

efficiently (Figure 3.17).

38

100 452

380 50

0

355 nm LFP of 4 in CH CN -50 3 Transient Absorbance immediately after the laser pulse 20 ns window

-3 -100x10 300 350 400 450 500 Wavelength (nm)

Figure 3.14. The transient UV-Vis absorption spectrum produced upon LFP (355 nm) of

4 under argon purged acetonitrile.

Calculated (b3lyp.6-31g*) UV spectra in gas phase of TMP Triplet state Radical anion Radical cation 0.15

0.10

Relative Intensity Relative 0.05

0.00 300 400 500 600 700 wavelength, nm

Figure 3.15. The calculated UV-Vis absorption spectrum of triplet excited state, radical

anion and radical cation of 4 (gas phase).

39

k = 9.5 x 106 s-1 6at 452 nm 0.1 k=9.5x10 at 452 nm

0.0

-0 .1

Transient absorption -0 .2

0.0 0.5 1.0 1.5 2.0 Time, µs

Figure 3.16. Decay of the transient absorption signal at 452 nm after 355 nm LFP of 34*

_____ under argon purge and ----- in aerated CH3CN.

0.10

0.05

0.00

-0 .05 Kinetic traces at 452 nm -0 .10 0.3 mM TMP

Transient absorption 0.3 mM TMP + 1 mM DABCO -0 .15 0.3 mM TMP + 10 mM DABCO

0.0 0.5 1.0 1.5 2.0 Time, µs

Figure 3.17. Decay of the transient absorption signal at 452 nm after 355 nm LFP of -----

0.3 mM of 34*, ____ 0.3 mM of 34* plus 1 mM DABCO and ____ 0.3 mM of 34* plus 10 mM DABCO, under argon purge CH3CN.

40 Early attention focused on characterization of the triplet states of 8-MOP and other psoralens by transient absorption spectroscopy 14 and the measurement of singlet oxygen yields.15-20 Wood et al. find that radical cation formation is of general importance in psoralen photochemistry and generated the radical cations of a number of psoralens and related coumarins. 26-28 Wood et al. 26, 27 successfully generated the radical cations of the psoralens studied here via photosensitized electron transfer, in the presence of an efficient photosensitizer, triplet chloranil. The calculated electronic spectra of the radical cations in gas phase are consistent with the Wood et al.26 experimental data obtained in acetonitrile (Table 3.1).

R●+, λmax /nm Compound a) b)

Psoralen 600 580

8-MOP 355, 655 690

5-MOP 550 590

TMP 640 670

a) Reference 26, b) B3LYP calculations with the 6-31G* basis set

Table 3.1. Experimental and calculated λmax values for psoralen respective radical cations a) in acetonitile b) in gas phase.

The DFT calculations predicts UV-Vis bands of radical anion in the 300-500 nm range, however the radical anions of psoralens were not generated in the presence of

41 DABCO. The triplet excited states of the psoralen compounds were efficiently quenched

by DABCO.

3.3.2 Time Resolved Infrared spectroscopy studies

Time-resolved Infrared Spectroscopy was used to investigate the reactivity of the transient intermediates involved in the photochemistry of trimethylpsoralen 4.

TMP triplet excited state

Laser flash photolysis (266 nm, 0.5-0.7 mJ/pulse, 50 Hz repetition) of 4 in argon

saturated acetonitrile or acetonitrile-d3 produced the transient spectra of its triplet excited

states, 34* (Figure 3.18). The negative peaks are due to depletion of the ground state of

TMP and the positive peaks are due to the presence of a transient intermediate. The TRIR

spectra presented in the Figure 3.18 is a composite of spectra recorded in acetonitrile and acetonitrile-d3. The signal/noise ratio spectra recorded in acetonitrile and acetonitrile-d3

differ and as a result vary within a Figure.

42 200 1365 1749

-6 1220 100 1196 1288 1539 1554

x10 1317 1120 1489

0

-1 00 1389 µ 0-1 s 1357 µ 1594

Transient absorption 2-3 s -2 00 10-14 µs 1705 1722

1200 1300 1400 -11500 1600 1700 Wavenumber cm

Figure 3.18. The transient IR spectra produced upon LFP (266 nm) of 7 mM 4 in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and in deuterated acetonitrile

(1300-1600 cm-1).

1404

50 1160 1380 1187 1422 1270 1360 1580 1525 3 4* 0 4 Intensity 1208 1605 1336 1570 -50 Relative

-1 00 1730

1100 1200 1300 1400 1500 1600 1700 1800 -1 Wavenumber cm

3 Figure 3.19. The calculated IR spectra of 4 (down) and 4* (up) in acetonitrile.

43 Kinetic studies were performed at the most prominent IR bands of the ground state

of TMP and of the IR active transient species produced upon 266 nm LFP. The carrier of

transient absorption has a lifetime of 1 ± 0.4 µs (Figure 3.20) in the absence of oxygen and under these conditions the psoralen ground state vibrational bands recover with the

same time constant. Oxygen quenches the psoralen triplet excited state to produce singlet

oxygen or superoxide radical anion, in some cases in high yields.43 Thus the sensitivity of

the transient (produced by LFP of 4) to oxygen (Figure 3.20) encourages us to assign the

carrier of the transient spectra to 34*.

44

6 -1 A k = 2.87x10 at 1225 cm 100

-6 50 x10

0

-50

0 2 4 6 8 Time, µs

100 6 -1 B k = 3.24x10 at 1596 cm

50

-6 0 x10

-50

-1 00

0 2 4 6 8 Time, µs

Figure 3.20. The decay of the A) 1225 cm-1 absorbing transient and B) Ground state

depletion at 1596 cm-1 of the 7 mM 4 produced upon LFP (266 nm) under argon purge ___ and ---- in aerated acetonitrile-d3. Single exponential decay τ = 10 µs 45 TMP triplet excited state was detected by TRIR spectroscopy in acetonitrile. The

vibrational bands of the ground and triplet state were assigned with the aid of DFT

calculations, as shown in Table 3.1. The calculations predict that two of the most intense

IR bands of the psoralen ground state are observed in the 1800-1600 cm-1 and 1200-1100

cm-1 ranges (Figure 3.19). The vibrational bands in the 1800-1700 cm-1 and 1200-1100

cm-1 regions were assigned by the DFT calculations to the psoralen carbonyl C=O and C-

H. The calculations do not consider Fermi resonance; therefore the intensities of the

predicted bands can differ from the experimental spectra.

The triplet-excited state of TMP has major IR bands at 1749, 1554, 1539, 1365

and 1220 cm-1. We believe the IR bands at 1554 and 1365 cm-1 in Figure 3.18 should be

assigned to the pyrone C=C and furan C=C stretching band of 34*, respectively; the DFT calculations predicted the IR bands of the pyrone C=C stretching at 1525 and the furan

C=C stretching band at 1422 and 1404 cm-1. The carbonyl C=O band of TMP was

observed at 1749 cm-1, however it was predicted at 1580 cm-1 by DFT calculations. The

phenyl C=C stretching IR band was observed at 1317 and 1288 cm-1 for 34* and

predicted at 1360 and 1270 cm-1. TMP ground state carbonyl C=O and pyrone C=C

present strong IR bands at 1705 and 1594 cm-1, respectively; the DFT calculations

predicted the carbonyl C=O IR band of 4 at 1730 cm-1 and the pyrone C=C IR band at

1570 cm-1. The furan C=C stretching of TMP ground state upon 266 nm LFP of 4 was

obtained at 1357 cm-1 and predicted at 1336 cm-1. The spectroscopic assignments are in reasonable agreement with DFT calculations.

46 Upon photoexcitation from ground state to excited state, IR stretching bands are, of course, expected to shift. The IR Band of pyrone C=C band for 4 at 1594 cm-1 shift to

1554, 1539 and 1489 cm-1 in its triplet state 34*(Figures 3.18 and 3.19). This is a relatively minor shift indicating that there is little electron reorganization within this bond upon excitation and this observation is consistent with the known lack of photoreactivity at this site of the molecule.43, 44 However neither the carbonyl C=O nor the furan and phenyl double bond C=C stretching vibrational frequency are shifted as shown in Figure

3.18. The furan double bond is predicted to have a strong IR intensity in 34* (Table 3.2), which is consistent with previous study which reported that the furan double bond is reported to be the main site of photoreactivity of the furochromones.43

47 Observed Predicted DFT Predicted 1 1 Species - a - bands (cm ) bands (cm )b rel. Mode Intensities 4 1722 1730 115.6 C=O stretch 1594 1570 17.4 pyrone C=C stretch 1357 1336 15.5 furan C=C stretch 34* 1749 1580 22.2 C=O stretch 1554, 1539, 1489 1525 13.4 pyrone C=C stretch 1365 1404, 1380 87.6, 42.1 furan C=C stretch 1317, 1288 1360, 1270 23.9, 19.4 phenyl C=C stretch 1220, 1196 1187, 1160 31.2, 41.3 C-H bending 4●_ 1620 1670 185.6 C=O stretch 4●+ 1497 1487 86.8 C=O stretch 1357 1365 29.3 pyrone C=C stretch 1325 1316 34.1 furan C=C stretch 1132 1108 23.3 C-H bending 1693 1701 58.7 C=C sym stretch chloranil 1569 1551 28.9 C=C assym stretch 1232 1196 13.6 C-C-C deformation 3chloranil* 1550 1586 25.4 C=O assym stretch 1525 1502 40.5 C=O symmetric stretch 1206 1204 84.6 C=C assym stretch 1156 1154 32.7 C-C symmetric stretch _ chloranil● 1630, 1602, 1525 1586 51.4 C=O stretch 1144 1147 39.6 C-C symmetric stretch 4H● 1629, 1610 1632 10.5 O-H bending 1280, 1224 1286 27.1 C-H bending 3H● 1597 1579 22.5 C=O stretching 1537 1485 13.4 O-H bending 1376 1322 10.4 C-O stretching 1280 1285 15.7 C-H rocking 1144 1152 21.6 C-H bending a) TRIR b) B3LYP calculations with the 6-31G* basis set after scaling by a factor of 0.9613 c) the largest calculated peak in the spectrum is defined as 100%.

Table 3.2. Experimental and calculated frequencies for TMP and ground state, triplet state, radical anion, radical cation and neutral radical: 4, 34*, 4●_, 4●+, 4H● and chloranil ground state, triplet state and radical anion.

48 Trimethylpsoralen radical ions

The vibrational spectra of the triplet-excited states of 4 were obtained using TRIR spectroscopy, in additon to its triplet excited state (34*), the related neutral radical (4H●), radical cation (4●+) and radical anion (4●─) were also investigated. The vibrational bands of the transient intermediates involved in the photochemistry were assigned with the aid of computational methods.

Scheme 3.2: Proposed mechanism of reaction of TMP triplet state with A) NaI to form its corresponding radical anion, B) hydroquinone, C) chloranil to form the analogous radical cation. 49 Radical anions of TMP

We examined the transient species formed when 4 is photoexcited in the presence

of a strong electron donor, NaI, to convert 34* to its corresponding radical anion via

electron transfer, as shown in scheme 3.2. Laser flash photolysis (LFP, 266 mm) of 7

mM 4 containing 10 mM of NaI in deoxygenated acetonitrile produces the TRIR

spectrum of Figure 3.21A. The transient spectrum produced upon 266 nm LFP of 4 and

10 mM NaI presents intense IR peaks at 1560 and 1625 cm-1 (Figure 3.21). These assignments are consistent with DFT calculations (Figure 3.22), which predict that 4●─

will have prominent vibrations at 1555 and 1670 cm-1 after scaling by a factor of 0.9613.

Transient bands of 4●─ observed at 1560 and 1625 cm-1 with lifetime greater that 10µs

and this leads us to assign the phototransients absorbing at 1560 and 1625 cm-1 to the

radical anion of 4. DFT predictions of Figure 3.22 show other 4●─ bands, however they

can not be assigned due to strong overlapping absorption bands of 34*.

50 1620 A 1392 200 1596

1560 -6 1152 1248 100 x10 0

-1 00

-2 00 0-1 µs 2-3 µs Transient absorption-3 00 10-14 µs

-4 00 1100 1200 1300 1400 1500 1600 1700 -1 Wavenumber, cm

1625 200 B

-6 100 x10

0

-1 00

-2 00 0 mM NaI 1 mM NaI 10 mM NaI Transient absorption-3 00 50 mM NaI

1600 1620 1640 1660 1680 1700 1720 1740 -1 wavenumber, cm

Figure 3.21. The transient IR spectra produced upon LFP (266 nm) of A) 7 mM 4 and 10 mM NaI, B) 7 mM 4 and 1, 10 and 50 mM NaI in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1 ) and deuterated acetonitrile (1300-1600 cm-1).

51 1670 150

100

50 Intensity 1148 1246 1555 0 Relative -50

-1 00

1100 1200 1300 1400 1500 1600 1700 -1 Wavenumber cm

-- 3 Figure 3.22. The calculated IR spectra of 4 (down), 4● (up) and 4* (…) in

acetonitrile.

Neutral radicals derived from TMP.

LFP of 7 mM 4 and 10 mM hydroquinone in deoxygenated acetonitrile produces

the transient spectrum of Figure 3.23. Scheme 3.2 describes an electron transfer followed

by a hydrogen atom transfer reaction of hydroquinone with 34*. The triplets and neutral

radical derived from 4 have prominent bands at similar wavelengths, however the

lifetime of the carrier of the transient spectrum is longer in the presence of hydroquinone.

The experimental spectrum in the presence of hydroquinone does contain intense new peaks at 1280, 1610 and 1629 cm-1 (Figure 3.23). Those peaks are consistent with the

calculated spectrum of 4H● (Figure 3.24) that predicts IR bands at 1286 and 1632 cm-1

for 4H●. The lifetime of 4H● is greater than 3 µs (Figure 3.23).

52

1610 1629 100 1280

1152 1224 -6

x10 0

-1 00

-2 00 0-1µs µ

Transient absorption 2-3 s 10-14 µs

1100 1200 1300 1400 1500 1600 1700 -1 W avenumber, cm

Figure 3.23. The transient IR spectra produced upon LFP (266 nm) of 7 mM 4 and 10

mM hydroquinone in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1).

50 1286 1632 0

-50 Relative Intensity Relative

-1 00

1100 1200 1300 1400 1500 1600 1700 -1 Wavenumber cm

3 Figure 3.24. The calculated IR spectra of 4 (down), 4H● (up) and 4* (…) in acetonitrile.

53 Radical cation of TMP.

Wood and Johnston have shown that chloranil is an efficient photosensitizer that

can serve as electron acceptor in photochemical electron transfer reactions to produce

psoralen radical cations as shown in Scheme 3.2.26 The calculated spectra of 4●+ (Figure

3.26) show major IR peaks at 1610, 1487, 1365, 1316 and 1108 cm-1. The TRIR spectra

of of 7 mM of 4 and 10 mM chloranil upon 266 nm LFP in deoxygenated acetonitrile present intense IR vibrational bands at 1525, 1497, 1405, 1357, 1325 and 1132 cm-1

(Figure 3.27), however, the only IR peaks assigned to radical cation 4●+ is at 1357 and

1132 cm-1. The experimental conditions are similar to the one detailed in Section 4.3.3

and the absorbances of khellin, visnagin and chloranil are similar. Thus much of the light

is absorbed by chloranil. Control experiments are detailed in Section 4.3.3 and showed

that the peaks at 1150 cm-1, 1425 and 1525 cm-1 are due to the chloranil triplet excited

state. The TRIR spectra produced upon 266 nm LFP of 0.1 mM NaI and 10 mM chloranil

presents large bands at 1600 and 1650 cm-1 and the 1425 cm-1 peak has diminished. When

0.1 mM NaI was added to a solution of 7 mM of 4 and 10 mM chloranil, only the large

band between 1600 cm-1 and 1700 cm-1 disappeared, which can be assigned to chloranil

radical anion considering Scheme 3.2 and Figures 3.25 and 3.27.

This leads to assign the phototransients absorbing at 1357 and 1132 cm-1 to the radical cation of 4. These assignments are consistent with DFT calculations (Figure 3.26), which predict that 4●+ has prominent vibration at 1365 and 1108 cm-1 after scaling by a factor

of 0.9613. The electron transfer occurs from triplet excited state of TMP and its radical

cation is formed as well as chloranil radical anion, this chemical process was also

observed for coumarins, khellin and visnagin, in chapter 4.

54

1357 1.5 0 -1 µs

2- 3 µs -3 1525 1.0 4- 6 µs x10 10 -14 µs 1132 1405 1497 0.5 1325

0.0

-0 .5 Transient absorption

-1 .0

1100 1200 1300 1400 1500 1600 1700 -1 Wavenumber, cm

Figure 3.25. The transient IR spectra produced upon LFP (266 nm) of 7 mM 4 and 10 mM chloranil and 1 mM NaI in argon saturated acetonitrile (1100-1300 cm-1 and 1600-

1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1).

1487

50 1108 1316 1365 1610

0

-50 Relati ve Intensi ty

-1 00

1100 1200 1300 1400 1500 1600 1700 -1 Wavenumber cm

+ 3 Figure 3.26. The calculated IR spectra of 4 (down), 4● (up) and 4* (…) in acetonitrile.

55 1525 400 1630 1602

-6 200

x10 1425

0

-2 00

7 mM TMP + 10 mM Chloranil + 0.1 mM NaI

Transient absorption -4 00 10 mM Chloranil 10 mM Chloranil + 0.1 mM NaI

1100 1200 1300 1400 1500 1600 1700 -1 Wavenumber, cm

Figure 3.27. The transient IR spectra produced upon LFP (266 nm) of ____ 7 mM 4 and 10

mM chloranil and 1 mM NaI, ____ 7 mM 4 and 10 mM chloranil, ____ 10 mM chloranil and

1 mM NaI in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1). Window 0-1 µs

3.4 Conclusions

Psoralen 1, 8-methoxypsoralen 2, 5-methoxypsoralen 3 and trimethylpsoralen 4

triplet excited states were generated upon 355 nm LFP. The lifetime of the carrier of the

transient spectrum is about 1 µs in deoxygenated acetonitrile at ambient temperature.

The photoexcitation of the psoralens in presence of a strong electron donor,

diazabicyclooctane (DABCO) was explored; DABCO quenches the triplet state of

psoralens efficiently however no electron transfer was observed. Trimethylpsoralen 4

vibrational spectra of its triplet state, radical cation, radical anion and related neutral 56 radical were obtained upon 266 nm LFP in acetonitrile and in deuterated acetonitrile

Time-resolved Infrared Spectroscopy. Its radical anion, radical cation and neutral radical were observed in the presence of chloranil, NaI and hydroquinone, respectively. The

TRIR spectra are in good agreement with the calculated vibrational spectra.

3.5 References

1. Gasparro, F. P. Psoralen DNA Photobiology, ed.; CRC Press:Boca Raton, FL, 1988; Vols. 1 and 2.

2. Edelson, R. L. Yale J. Biol. Med. 1989, 62, 565-577.

3. Gasparro, F. P. Psoralen-DNA interactions: thermodynamics and photochemistry, Psoralen DNA Photobiology, vols. 1 and 2, CRC Press, Boca Raton, 1988, pp. 5– 36.

4. Gonzalez, E. Dermatol. Clinics 1995, 13, 851.

5. Pathak, M. A.; Fitzpatrick, T. B. J. Photochem. Photobiol. B: Biol.1992, 14, 3.

6. a) Goodrich, R. P.; Yerram, N. R.; Tay-Goodrich, B. H.; Forster, P.;Platz, M. S.; Kasturi, C.; Park, S. C.; Aebischer, J. N.; Rai, S.; Kulaga, L.Proc. Natl. Acad. Sci. U.S.A 1994, 91, 5552. b) Goodrich, R. P.; Platz, M. S. Drugs Future 1997, 22, 159.

7. Young, A. R. J. Photochem. Photobiol. B: Biol. 1990, 6, 237.

8. Stern, R. S.; Nichols, K. T.; Vakeva, L. H. N. Engl. J. Med. 1997, 336, 1041.

9. Burger, P.M.; Simons, J.W.I.M. Mutat Res 1979, 63, 371-380.

10. Papodopoulu, D.; Averbeck, D. Mut Res 1985, 151, 281-291.

11. Studinberg, H.M.; Weller, P. J Am Acad Dermatol 1993, 29, 1013-1022.

12. a) Lindelof, B.; Sigurgeirsson, B.; Tegner, E. Lancet 1991, 338, 91-93. b) Lindelof, B.; Sigurgeirsson, B.; Tegner, E.Arch Dermatol 1992, 128, 1341- 1344.

57 13. a) Stern, R.S. Lancet 1994, 344, 1644-5. b) Stern, R.S. and Lange, R. J Invest Dermatol 1988, 91, 120-124.

14. Bensasson, R. V.; Land, E. J.; Truscott, T. G. Excited States and Free Radicals in Biology and Medicine; Oxford University Press: Oxford, 1993.

15. Poppe, W.; Grossweiner, L. I. Photochem. Photobiol. 1975, 22, 217.

16. De Mol, N. J.; Beijersbergen van Henegouwen, G. M. J. Photochem.Photobiol. 1979, 30, 331.

17. Harriman, A. RC Handbook of Photochemistry and Photobiology, CRC Press, Boca Raton, 1995.

18. Gilbert, A.; Bagott, J. Essentials of Molecular Photochemistry, Blackwell Scientific Publications, Oxford, 1991.

19. Grossweiner, L.I. Singlet Oxygen: Generation and Properties, Web Document at http://www.photobiology.com/educational/len2/singox.html.

20. Schmitt, I. M.; Chimenti, S.; Gasparro, F. P. J. Photochem.Photobiol. B: Biol. 1995, 27, 101.

21. Dall’Acqua, F.; Martelli, P. J. Photochem. Photobiol. B: Biol. 1991,8, 235.

22. Caffieri, S.; Daga, A.; Vedaldi, D.; Dall’Acqua, F. J. Photochem.Photobiol. B: Biol. 1988, 2, 515.

23. Chen, T.; Platz, M. S.; Robert, M.; Saveant, J.-M.; Marcinek, A.;Rogowski, J.; Gebicki, J.; Zhu, Z.; Bally, T. J. Phys. Chem. A 1997, 101, 2124.

24. Rai, S.; Kasturi, C.; Grayzar, J.; Platz, M. S.; Goodrich, R. P.; Yerram, N. R.; Wong, V.; Tay-Goodrich, B. H. Photochem. Photobiol. 1993, 58, 59.

25. Shaquiri, Z.; Keskinova, E.; Spassky, A.; Angelov, D. Photochem.Photobiol. 1997, 65, 517.

26. Wood P. D.; Johnston, L. J., Photochem. Photobiol., 1997, 66, 642–648.

27. Wood P. D.; Johnston, L. J., J. Phys. Chem. A 1998, 102, 5585-5591.

28. Wood, P. D.; Mnyusiwalla, A.; Chen, L.; Johnston, L. J., Photochem. Photobiol., 2000, 72, 155-162.

29. Gurzadyan, G. G. Photochem. Photobiol. Sci., 2002, 1, 757–762.

58

30. a) Bensasson, R. V.; Land E. J.; Salet, C. Photochem. Photobiol., 1978, 27,273– 280. b) Bensasson, R. V.; Chalvet, O.; Land, E. J.; Ronfard-Haret, J. C. Photochem. Photobiol. 1984, 39, 287–291.

31. Sa E Melo, M. T.; Averbeck, D.; Bensasson, R. V.; Land E. L.; Salet, C. Photochem. Photobiol., 1979, 30, 645–651.

32. Lai, T.I.; Lim B. T.; Lim,E. C. J. Am. Chem. Soc., 1982, 104, 7631–7635.

33. Kovalskaya, N. I.; Sokolova, I. V. High Energy Chem., 2002, 36, 237–240.

34. Sloper, R. W.; Truscott T. G. Land, E. J. Photochem. Photobiol., 1979, 29, 1025– 1029.

35. Becker, R. S.; Chakravorti, S.; Gartner, C. A. Miguel,M. de G., J. Chem. Soc., Faraday Trans., 1993, 89, 1007–1019.

36. Redpath, J. L.; Ihara J.; Patterson, L. K., Int. J. Radiat. Biol., 1978, 33, 309–315.

37. Solar S.; Quint R., Radiat. Phys.Chem., 1992, 39, 171–175.

38. Shaquiri, Z.; Keskinova, E. Spassky A.; Angelov, D.,Photochem. Photobiol., 1997, 65, 517–521.

39. Coven, T. R.; Murphy, F. P.; Gilleaudeau, P.; Cardinale, I.; Krueger, J. G. Arch Dermatol. 1998, 134, 1263-1268.

40. Snellman E., Klimenko T., Rantanen T. Acta Derm Venereol. 2004,84(2), 132-7.

41. a) Martin, C. B; Tsao, M. -L; Hadad, C. M.; Platz, M. S. J. Am. Chem. Soc. 2002, 124, 7226 b) Martin, C. B.; Shi, X.; Tsao, M. -L.; Karweik, D.; Brooke, J.; Hadad, C. M.; Platz, M. S. J. Phys. Chem. B 2002, 106, 10263.

42. Shida, T. Electronic Absorption Spectra of Radical Ions, Elsevier, Amsterdam, 1988.

43. Abeysekera, B. F.; Abramowski, Z.; Towers, G. N. H. Photochem.Photobiol. 1983, 38, 311-315.

44. a) Mantulin, W. W.; Song, P. S. J. Am. Chem. Soc. 1973, 95, 5122-5129. b) Song, P. S. Photochem. Photobiol. 1979, 29, 1177-1197.

59

CHAPTER 4

NANOSECOND TIME-RESOLVED INFRA-RED STUDIES OF KHELLIN AND

VISNAGIN TRIPLETS AND RADICAL IONS

4.1 Introduction

Khellin is a crystalline compound obtained from the fruit of a Middle Eastern

plant (Ammi visnaga) of the family Umbelliferae. It is a vasodilator that also has

bronchodilatory action. It is being used for the treatment of pectoris and asthma.

It has also been used in conjunction with ultraviolet light A in the treatment of vitiligo.1,

2 Khellin, when combined with artificial ultraviolet (UV) A or solar irradiation, known

as KUVA therapy, is reported to repigment vitiligo skin as effectively as PUVA

(psoralen + ultraviolet (UV) A) photochemotherapy. 1-7

Khellin 1 and visnagin 2 (Figure 4.1), whose chemical structure closely

resembles that of psoralen, sensitize similar photo-biological, photochemical and photo-

therapeutic effects but are less photo-toxic and carcinogenic presumably because they

predominantly form mono-adducts upon photolysis rather than cross-links.5-7

Photobiological activity on yeast is found to be much lower than that of bifunctional psoralens such as 5-methoxypsoralen. In vitro experiments reveal that khellin is a poor photosensitizer. It behaves as a monofunctional agent with respect to DNA

60 photoaddition. It does not photoinduce cross-links in DNA in vitro or in Chinese hamster cells in vivo. This behavior may explain the low photogenotoxicity in yeast and the lack

of phototoxic erythermal response when treating vitiligo with khellin. 6, 7

Khellin 1 R = OCH3 Visnagin 2 R = H

Figure 4.1. Structures of khellin and visnagin

As presented in Chapter 3, both local and systemic PUVA therapies are the best

methods for achieving cosmetically acceptable re-pigmentation of affected skin. They

may, however, cause serious side effects, which was an argument for conducting research

into new, equally effective photo-chemotherapeutic agents. One of these agents is khellin.

In 1982 Abdel-Fattah et al. reported encouraging results from the application of a

new method for the treatment of skin diseases, such as vitiligo, combining orally

administered khellin and solar irradiation.1 More detailed studies of khellin's properties

confirm that it has several advantages compared with psoralens used classically for this

purpose. 3-6

In a most recent clinical study, Valkova et al. reported a comparison in the

treatment of vitiligo using local khellin and UVA versus systemic PUVA. 2 No side effects were observed in cases of local KUVA treatment. Erythema, itching and gastro- intestinal disturbances occurred with some patients treated with PUVA. The results demonstrate that local KUVA may effectively induce re-pigmentation of vitiligo-affected 61 skin areas to a degree comparable to that achieved when using systemic PUVA, provided

that the treatment duration is long enough.2 This observation is consistent with previous

work. 8

Valkova et al.2 showed re-pigmentation for all patients treated. Their results were

better than those of Orecchia and Perfetti, 5 who used the sun as their source of UVA (1 h

sun exposure = 4-5 J/cm2 UVA). The different vehicle in which khellin was included

(solution of 80% acetone and 10% propylene-glycol) and the longer therapeutic course

(an average of 7 months in this study and 4 in that of Orecchia and Perfetti 5) could also account for the different clinical results. The time necessary for development of initial re-

pigmentation in the Valkova et al. study (minimum 10, maximum 16, mean 12.8

sessions) is very close to that reported by Ortel et al. of 12-24 procedures.3 According to

Valkova et al.2 results, local KUVA causes two kinds of re-pigmentation: peri-follicular

and as dark spots spreading from the periphery to the center. These dark sports have also

been observed by Morliere et al. 6 and are due to migration of active melanocytes from

the surrounding healthy skin. Peri-follicular re-pigmentation develops by activation of

follicular melanocytes. The best therapeutic results were achieved in the white spots on

the face, neck or trunk and the most resistant to therapy were the distal parts of the feet

and hands. These results were also confirmed by Orecchia and Perfetti. 5 As early as

1968, El Mofty 9 presumed that the effect of systemic PUVA improved with the

reduction of the patient's age; the clinical effect appears earlier and the degree of re-

pigmentation is higher. Valkova et al.2 showed the existence of such a link was established in local KUVA and confirmed once more that this kind of treatment is very appropriate for application in children. This study confirms that the use of khellin

62 enriches the armory of photo-therapeutic methods adding one more possibility for dermatologists in the long and difficult struggle with vitiligo.

Khellin may be used topically to avoid systemic side effects and khellin activated by UVA is reported to stimulate melanocyte proliferation and melanogenesis.10 Carlie et al. 10 pointed to the possibility that current treatment regimens might be improved if reduced khellin doses are applied and suggested that improved delivery vehicles must be tested. Considerable research studies have been reported, however the exact mechanism of KUVA-induced repigmentation is unknown. Major efforts have been done, directed toward identifying the excited-state intermediates involved in the photocycloaddition chemistry of psoralens that are used in PUVA therapy. 11-18

The objective of this study was to investigate the triplet excited state vibrational spectra of khellin and visnagin in order to elucidate the electron transfer chemistry of the triplet excited states of these skin photosensitizers. The main tool used was time-resolved infrared (TRIR) spectroscopy, 19 which can provide direct experimental information about structural properties of a transient intermediate.

4.2 Experimental

• Materials

Khellin 1 (269.25 g/mol, lot # GA16976), visnagin 2 (230.22 g/mol, lot #

01412CT), tetrachloro-1, 4-benzoquinone (chloranil, 245.88 g/mol, lot # 17727BB), p- toluenesulfonic acid monohydrate (190.22 g/mol, lot #04702AC), iron (III) bromide

(295.57 g/mol, lot # 11723HC), potassium thiocyanate (81.07 g/mol, lot # 16104D4),

63 acetonitrile (purity >99%, HPLC) and deuterated acetonitrile (purity >99%, HPLC) were

purchased from Sigma-Aldrich (St. Louis, MO). Hydroquinone (110.11 g/mol) was purchased from Eastman Organic Chemicals (Rochester, NY). Sodium iodide (149.89 g/mol, lot # B26333) was purchased from Baker (Philipsburg, NJ) with a purity of 99%

(HPLC). All the chemicals were used as received.

• Time-resolved infrared (TRIR) spectroscopy

TRIR experiments were conducted with a JASCO TRIR-1000 dispersive-type IR spectrometer with 16-cm-1 resolution following the method described elsewhere.19 Each sample solution was prepared with an optical density of 0.6-1.0 with a 0.5 mm path length. A total volume of 10-20 mL of the deoxygenated sample solution was continuously circulated between two calcium fluoride salt plates. The sample was excited by 266-nm laser pulses using a Nd:YAG laser (50 Hz repetition rate, 0.6~0.8 mJ/pulse power), which is crossed with the broadband output of a MoSi2 IR source (JASCO). The

intensity change of the IR light induced by photoexcitation is monitored as a function of

time by an MCT photovoltaic IR detector (Kolmar Technologies, KMPV11-1-J1) with a

50-ns rise time, amplified with a low noise NF Electronic Instruments 5307 differential

amplifier and digitized with a Tektronix TDS784D oscilloscope. The TRIR spectrum is analyzed by the IGOR PRO program (Wavemetrics Inc.) in the form of a difference

spectrum:

∆(At) - log (1 + ∆It/I)

Where ∆It is the intensity change induced by photoreaction at time t and I is the

IR intensity for the sample without photoexcitation. Thus, the depletion of reactant and 64 the formation of transient intermediates or products lead to negative and positive signals,

respectively.

• DFT calculations

All calculations were performed using Gaussian 98 20 on the Linux Cluster at the

Ohio Supercomputer Center. All geometries were optimized at the B3LYP/6-31G* level

of theory (unrestricted B3LYP was used for the open-shell systems), and single-point

energies were also obtained at the B3LYP/6-31+G** level with the optimized B3LYP/6-

31G* geometry.20, 21 Stationary points were verified to be energy minima via vibrational

frequency analyses (B3LYP/6-31G*) in which all the calculated vibrational frequencies

were nonimaginary. Zero-point vibrational energy (ZPE) corrections were also obtained by vibrational frequency calculations. For the vibrational spectra, vibrational frequencies were scaled by 0.9613.15 Spin contamination for the optimized structures were low: 0.75

< 〈S2〉 < 0.79 for the doublet states and 2.0 < 〈S2〉 < 2.1 for the triplet states. Simulated

(vertical) UV spectra were calculated using time-dependent density functional theory

(TDDFT) with the B3LYP/6-31+G** level at the minimized B3LYP/6-31G* geometry for each structure. 21, 22 The electronic spectra were computed using the time-dependent

DFT theory of Gaussian 98 at the B3LYP/6-31G* level, and 10 transitions were included.

The self-consistent reaction field with polarizable continuum model (PCM) 23 was

applied to the calculation of solution structure and energies.

65 4.3 Results and discussion

The vibrational spectra of the triplet-excited states of the khellin and visnagin

were obtained using TRIR spectroscopy, in additon to their triplet excited states, their

related neutral radicals, radical cations and radical anions were also investigated. The

vibrational bands of the transient intermediates involved in the photochemistry were

assigned with the aid of computational methods.

4.3.1 Khellin and visnagin triplet states

Laser flash photolysis (266 nm, 0.5-0.7 mJ/pulse, 50 Hz repetition) of khellin (1)

and visnagin (2) in argon saturated acetonitrile or acetonitrile-d3 produced the transient

spectra of 31* and 32* (Figures 4.2 and 4.4). The negative peaks are due to depletion of

the ground states of 1 and 2 and the positive peaks are due to the presence of a transient intermediate. TRIR spectra were most often recorded in acetonitrile. Acetonitrile obscures the IR region between 1300 – 1600 cm-1 thus this spectral region was studied in

acetonitrile-d3. The transient spectra presented in the Figures 4.2 and 4.3 are a composite

of spectra recorded in acetonitrile and acetonitrile-d3. The signal/noise ratio spectra

recorded in acetonitrile and acetonitrile-d3 differ and as a result vary within a Figure.

66 1405 1372 1596 0.5 1457 1525 1245

1140

-3 0.0

x10 1208 -0 .5 1350 1480

-1 .0 µ -1 .5 0- 1 s 1- 2 µs 3- 4 µs -2 .0 1625 6- 8 µs Transient absorptiion -2 .5 10-14 µs 1658

1100 1200 1300 1400 1500 1600 1700 1/cm

Figure 4.2. The transient IR spectra produced upon LFP (266 nm) of 6 mM 1 in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and in deuterated acetonitrile

(1300-1600 cm-1).

1413 1609

50 1334 1120 1470 1225 1310 0

Intensity 1117 1189 1599 1333 1460 -5 0 1347

1645

1100 1200 1300 1400 1500 1600 1700 1/cm

3 Figure 4.3. The calculated IR spectra of 1 (down) and 1* (up) in acetonitrile

67

1586 0-1 µs 1404 1-2 µs

µ -6 1372 1449 10-14 s 200 1269 1236 1521 x10 1160

0 1473 1176 1341 -2 00 1617 Transient absorption -4 00 1661

1100 1200 1300 1400 1500 1600 1700 1/cm

Figure 4.4. The transient IR spectra produced upon LFP (266 nm) of 10 mM 2 in argon- saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and in deuterated acetonitrile

(1300-1600 cm-1).

1219 10 1251 1381 1350 1427 15611574 0

-1 0 1154 1325 1455 1601 -2 0 Intensity 1349 -3 0

-4 0 1668

1100 1200 1300 1400 1500 1600 1700 1/cm

3 Figure 4.5. The calculated IR spectra of 2 (down) and 2* (up) in acetonitrile.

68 Kinetic studies were performed at the most prominent IR bands of the ground

states of 1 and 2 and of the IR active transient species produced by LFP. The carriers of

transient absorption have a lifetime of 1 ± 0.2 µs (Figures 4.6 and 4.7) in the absence of oxygen and under these conditions the ground state vibrational bands of 1 and 2 recover

with the same time constant. Oxygen quenches psoralen triplet excited states to produce

singlet oxygen or superoxide radical anion, in some cases in high yields.23 Thus the

sensitivity of the transients (produced by LFP of 1 and 2) to oxygen (Figures 4.6 and 4.7)

persuades us to assign the carriers of the transient spectra to 31* and 32*.

69

A

150

-6 100 x1 0 50

0

-50

0 2 4 6 8 Time,µs

B 50

0

-6 x10 -50

-1 00

-1 50

0 2 4 6 8 Time, µs

Figure 4.6. The decay of the 1405 cm-1 absorbing transient (top) and ground state depletion at 1658 cm-1 (bottom) produced upon LFP (266 nm) of the 6 mM 1 under argon

___ purge and ---- in aerated acetonitrile-d3. Single exponential decay τ = 10 µs.

70

200 A

100 -6

x10 0

-1 00

0 2 4 6 8 Time, µs

100 B

0

-6

x10 -1 00

-2 00

-3 00

0 2 4 6 8 Time, µs

Figure 4.7. The decay of the 1404 cm-1 absorbing transient (top) and ground state depletion at 1341 cm-1 (bottom) produced upon LFP (266 nm) of the 10 mM 2 under

___ argon purge and ---- in aerated acetonitrile-d3. Single exponential decay τ = 10 µs.

71 The triplet excited states of khellin and visnagin spectra present similar features with moderately intense bands observed between 1400 and 1600 cm-1. The depletion of the ground state carbonyl bands is observed between 1600 cm-1 and 1700 cm-1. DFT calculations allow us to assign the IR bands as shown in Table 4.1.

Observed Predicted DFT Predicted 1 a 1 b Species bands (cm- ) DFT bands (cm- ) rel. intensities Mode c 1 1658 1645 87.3 C=O stretch 1625 1599 14.0 pyrone C=C stretch 1480 1460 17.3 furan C=C stretch 1350 1347 38.1 C-O stretch, C-H Bend 31* 1596 1609 81.7 pyrone C=C stretch 1525 1470 17.5 C=O stretch 1457 1413 88.2 furan C=C stretch 1405 1334 24.6 phenyl C=C stretch 1372 1310 8.6 C-O stretch 1245 1225 11.6 C-H bend 2 1661 1668 45.0 C=O stretch 1617 1601 13.0 pyrone C=C stretch 1473 1455 10.3 furan C=C stretch 1341 1349 22.0 C-H bend, C-O stretch 32* 1586 1574 3.3 pyrone C=C stretch 1521 1561 3.0 C=O stretch 1449 1427 3.5 furan C=C stretch 1404 1381 7.0 phenyl C=C stretch 1372 1350 4.7 C-O stretch 1269 1251 8.8 C-H bend

a) TRIR b) B3LYP calculations with the 6-31G* basis set after scaling by a factor of 0.9613 c) the largest calculated peak in the spectrum is defined as 100%.

Table 4.1. Experimental and calculated frequencies for khellin and visnagin

ground states 1, 2 and triplet states 31*, 32*.

72 Our calculations predict that two of the most intense IR bands of 1 will be found at 1645 cm-1 and 1599 cm-1 (Figure 4.3) and of sensitizer 2 at 1668 cm-1 and 1601 cm-1

(Figure 4.5) are due to their carbonyl C=O and pyrone double bond C=C stretches, respectively. We observed prominent bands of the ground state of 1 in the IR spectra at

1658 cm-1 and 1625 cm-1 (Figure 4.2) and of the ground state of 2 at 1661 cm-1 and 1617

cm-1 (Figure 4.4), presumably due to the carbonyl and pyrone C=C stretching vibrations

predicted by the DFT calculations. The furan double bond is predicted to have very low

IR intensity in ground state 1 and 2, however the furan double bond in the visnagin and

khellin triplet excited states are reported to be the main site of photoreactivity of the

furochromones.24

Upon photoexcitation from ground state to excited state, IR stretching bands are, of course, expected to shift. The triplet-excited state of khellin has bands near 1596 cm-1 and 1525 cm-1 and the triplet-excited state of visnagin have similar IR spectra profiles

with bands at 1586 cm-1 and 1521 cm-1. We believe the IR bands at 1525 cm-1 and 1521

cm-1 in Figures 4.2 and 4.4 should be assigned to the carbonyl C=O bands of 31* and 32* respectively.

A previous study compared the IR spectra of triplet excited state unlabeled, doubly (carbonyl and pyrone) 18O-labeled and pyrone 18O-labeled visnagin24. It was demonstrated that the 1586 cm-1 band was the only band in the spectrum of the triplet that shifted upon pyrone 18O-labeled substitution, thus the 1586 cm-1 band was believed to be the pyrone C=C bond of the triplet state.

DFT calculations do not predict a shift of this vibrational frequency, however

Figures 1 and 3 show the 1625 and 1617 cm-1 pyrone C=C band for 1 and 2, respectively,

73 shift to 1596 cm-1 and 1586 cm-1 in their respective triplet states. This is a relatively

minor shift indicating that there is little electron reorganization within this bond upon excitation and this observation is consistent with the known lack of photoreactivity at this site of the molecule.23, 24 The band of 31* observed at 1405 and 1457 cm-1 is attributed to

the predicted bands at 1334 and 1413 cm-1 of the furan and phenyl double bond C=C

stretching bands of 31* (Figure 4.3). The 1404 and 1449 cm-1 bands of 32* are associated

with predicted bands at 1381 and 1427 cm-1, respectively (Figure 4.5). The calculations

do not consider Fermi resonance; therefore the intensities of the predicted bands can differ from the experimental spectra. The spectroscopic assignments are in reasonable

agreement with DFT calculations.

4.3.2 Generation of their radical anions

Scheme 4.1 describes when 1 and 2 are photoexcited in the presence of strong

electron donors, NaI and KSCN, in an attempt to convert triplets 1 and 2 to their corresponding radical anions via electron transfer.

Scheme 4.1. Proposed mechanism of reaction of khellin and visnagin triplet state with

NaI to form their corresponding radical anion.

The predicted spectra of 1●─ and 2●─ (Figures 4.11 and 4.9) are similar to those

predicted for 31* and 32* (Figures 4.3 and 4.5). The experimental spectra (Figures 4.10

74 and 4.8) recorded in the presence of donor are similar to those of 31* and 32* but the

lifetimes of the carriers of the transient spectra are much longer in the presence of the electron donor. This indicates that the triplet states and radical anions derived from 1 and

2 do indeed have prominent IR bands at similar wavelengths, as expected, but that the radical anions are the longer-lived species. This same tendency was noted previously in a study of flavin triplets and radical anions19. Table 4.2 summarizes the major IR bands

obtained by TRIR experiments and DFT calculations.

Observed Predicted DFT predicted 1 a 1 b c Species bands (cm- ) DFT bands (cm- ) rel. intensities Mode 31* 1596 1609 81.7 pyrone C=C stretch 1525 1470 17.5 C=O stretch 1457 1413 88.2 furan C=C stretch 1405 1334 24.6 phenyl C=C stretch 1372 1310 8.6 C-O stretch 1245 1225 11.6 C-H bend _ 1● 1561 1566 80.4 C=O stretch 32* 1586 1574 3.3 pyrone C=C stretch 1521 1561 3.0 C=O stretch 1449 1427 3.5 furan C=C stretch 1404 1381 7.0 phenyl C=C stretch 1372 1350 4.7 C-O stretch 1269 1251 8.8 C-H bend 2●_ 1594 1607 37.4 C=O stretch

a) TRIR b) B3LYP calculations with the 6-31G* basis set after scaling by a factor of 0.9613 c) the largest calculated peak in the spectrum is defined as 100%.

Table 4.2. Experimental and calculated frequencies for khellin and visnagin triplet states

_ _ 31*, 32* and radical anions 1● , 2● .

75 The transient spectrum produced upon 266 nm LFP of 2 and 1 mM NaI presents

an intense peak at 1594 cm-1 (Figure 4.8) which corresponds to the pyrone C=O stretching IR band, and is in good agreement with the calculated spectrum for 2●─, which

predicts a peak at 1607 cm-1 for 2●─ (Figure 4.9). The transient absorption observed in

the presence of 2 and 1 mM sodium iodide has a lifetime of greater than 10 µs. Figure

4.8 demonstrates that other 2●─ bands can not be assigned due to their strong overlap with the IR bands of 32*.

10 1594

0 -1 µs -3 8 10 -14 µs x10 1574 6 1533 4 1409

2 1300 Transient absorption 0

1100 1200 1300 1400 1500 1600 1700 1/cm

Figure 4.8. The transient IR spectra produced upon LFP (266 nm) of 10 mM 2 and 1 mM

NaI in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1).

76 1607 40 1261 1498 20 1134 1175 1528

0

-2 0 Intensity

-4 0

-6 0

-8 0

1100 1200 1300 1400 1500 1600 1700 1/cm

-- 3 Figure 4.9. The calculated IR spectra of 2 (down), 2● (up) and 2* (…) in the gas

phase.

Similar observations were made on the radical anion of khellin 1●─, which DFT

calculations predict will have an intense band at 1566 cm-1. This band corresponds to the

pyrone C=O stretching IR band (Figure 4.12). Figure 4.10 and 4.11 shows that the

transient spectrum produced upon 266 nm LFP of 1 in the absence and presence of

respectively 10 mM KSCN and 40 mM NaI, present a broad IR band from 1500 cm-1 to

1600 cm-1 where the 31* and 1●─ IR bands overlap, therefore additional assignments of

TRIR bands of 1●─ can not be achieved.

77 300 0-1 µs 1597 1-2 µs

-6 µ 1561 200 6-8 s 1413 µ 1465

x10 10-14 s 1312 100 1110 1253 1160

0 Transient absorption -1 00 1353 1481

1100 1200 1300 1400 1500 1600 1/cm

Figure 4.10. The transient IR spectra produced upon LFP (266 nm) of ____ 6 mM 1 and

10 mM KSCN in argon saturated acetonitrile (1100-1300 cm-1) and deuterated acetonitrile (1300-1600 cm-1).

1410 1566 1458 1586 200

-6 1374 100 x10

0

-1 00 1478 1350 0-1 µs µ -2 00 10-14 s

Transient absorption -3 00

1300 1350 1400 1450 1500 1550 1600 1/cm

Figure 4.11. The transient IR spectra produced upon LFP (266 nm) of ____ 6 mM 1 and

40 mM NaI in argon deuterated acetonitrile (1300-1600 cm-1).

78 1566

50 1449 1258 1428 1151 1316

0 Intensity

-5 0

1100 1200 1300 1400 1500 1600 1700 1/cm

-- 3 Figure 4.12. The calculated IR spectra of 1 (down), 1● (up) and 1* (…) in acetonitrile.

4.3.3 TRIR study of chloranil upon 266 nm LFP

Wood and Johnston have shown that chloranil can serve as an electron acceptor in

photochemical electron transfer reactions to produce psoralen radical cations as shown in

Scheme 4.2.13

Scheme 4.2. Proposed mechanism of khellin and visnagin triplet states with chloranil to

form the analogous radical cation. 79 Figure 4.13A shows the transients formed upon LFP of chloranil in the absence of electron transfer agents. Upon 266 nm LFP of chloranil (Figure 4.13A) ground state bleaching is observed at 1108, 1569, 1625 and 1693 cm-1 and new bands are observed at

1156, 1206, 1525 and 1550 cm-1 (Figure 4.13A). The TRIR spectrum recorded in the presence of chloranil and sodium iodide (an electron transfer agent) is shown in Figure

4.13B.

80

400 1156 A 1525 0-1 µs µ -6 300 3-4 s 10-14 µs x10 200 1425 1550 1206 100 1280 0

-1 00 1232 1625

Trasient absorption 1569 -2 00 1108 1693 -3 00 1100 1200 1300 1400 1500 1600 1700 1/cm 1525 400 B 1653 1144 1606

-6 200 x10

0 1230 1569 -2 00 1633

Transient absorption -4 00 1693

1100 1200 1300 1400 1500 1600 1700 1/cm

Figure 4.13. The transient IR spectra produced upon LFP (266 nm) of (top) 10 mM

chloranil in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1), (bottom) ____ 10 mM chloranil and 1 mM NaI

and …… 10 mM chloranil in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750

cm-1) and deuterated acetonitrile (1300-1600 cm-1). Window: ____ 0-1 µs.

81 The new IR bands at 1156, 1206, 1525 and 1550 cm-1, are assigned to triplet chloranil because they are quenched in the presence of oxygen and are consistent with the predictions of DFT (Figure 4.14, Table 4.3) calculations.

1204 80

60 1586 1147 1502 40 1164

20

Intensity 0

-2 0 1196 -4 0 1551

-6 0 1701

1100 1200 1300 1400 1500 1600 1700 1800 1/cm

Figure 4.14. The calculated IR spectra of chloranil (down), chloranil ●- (up) and

3chloranil* (…) in acetonitrile.

82 Observed Predicted DFT DFT Predicted 1 a 1 b c Species Bands (cm- ) bands (cm- ) rel. intensities Mode 1693 1701 58.7 C=C sym stretch Chloranil 1569 1551 28.9 C=C assym stretch 1232 1196 13.6 C-C-C deformation 3Chloranil* 1550 1586 25.4 C=O asym stretch 1525 1502 40.5 C=O sym stretch 1206 1204 84.6 C=C asym stretch 1156 1154 32.7 C-C sym stretch _ 1653, 1606, 1525 1586 Chloranil● 51.4 C=O stretch 1144 1147 39.6 C-C sym stretch a) TRIR b) B3LYP calculations with the 6-31G* basis set after scaling by a factor of 0.9613 c) the largest calculated peak in the spectrum is defined as 100%.

Table 4.3. Experimental and calculated frequencies for chloranil ground state, triplet

state and radical anion.

One expects triplet chloranil and iodide ion to react via electron transfer to form

chloranil radical anion and iodine atom. LFP (266 nm) of a mixture of 10 mM chloranil

and 1 mM NaI produces the TRIR spectrum of Figure 4.13.B The prominent bands

observed at 1144, 1525, 1606 and 1653 cm-1 are assigned to the chloranil radical anion

(Table 4.3).

4.3.4 Generation of radical cations

The addition of chloranil in the presence of either khellin or visnagin allowed the formation of the respective radical cations of the sensitizers. The exciting laser pulse light is absorbed both by chloranil and photosensitizer, and the excited states of khellin, visnagin and chloranil are all involved in light induced electron transfer to eventually

83 form the radical cations of 1 and 2 and the chloranil radical anion (Scheme 4.2). In this

work the absorbances of khellin, visnagin and chloranil at 266 nm are similar.

The calculated spectra of 1●+ and 2●+ (Figures 4.16 and 4.18) are similar, with

major IR peaks predicted at 1677, 1574, 1463, 1402, 1342 and 1128 cm-1 for 1●+ and at

1662, 1626, 1406, 1346 and 1126 cm-1 for 2●+. The active modes are given in Table 4.4.

Species Observed Predicted DFT Predicted 1 a 1 b c bands (cm- ) DFT bands (cm- ) rel. intensities Mode 31* 1596 1609 81.7 pyrone C=C stretch 1525 1470 17.5 C=O stretch 1457 1413 88.2 furan C=C stretch 1405 1334 24.6 phenyl C=C stretch 1372 1310 8.6 C-O stretch 1245 1225 11.6 C-H bend 1●+ 1136 1128 36.5 pyrone C-O stretch 32* 1586 1574 3.3 pyrone C=C stretch 1521 1561 3.0 C=O stretch 1449 1427 3.5 furan C=C stretch 1404 1381 7.0 phenyl C=C stretch 1372 1350 4.7 C-O stretch 1269 1251 8.8 C-H bend 2●+ 1136 1126 13.5 pyrone C-O stretch a) TRIR b) B3LYP calculations with the 6-31G* basis set after scaling by a factor of 0.9613 c) the largest calculated peak in the spectrum is defined as 100%.

Table 4.4. Experimental and calculated frequencies for khellin and visnagin triplet states

31*, 32* and radical cations 1●+, 2●+.

Figures 4.15 and 4.17 show the formation of four new peaks at 1136 cm-1, 1425

(1421 in the case of 2), 1530 cm-1 (1525 in the case of 2) and 1674 (1658 in the case of 2)

cm-1 upon 266 nm photoexcitation of khellin and visnagin in the presence of 10 mM

84 chloranil. However, the only new IR peaks that can be assigned to radical cations 1●+

and 2●+ both are detected at 1136 cm-1, which corresponds to the pyrone C-O stretching

IR band of both compounds, as previous experiments demonstrated that the LFP of 10

mM chloranil in acetonitrile and acetonitrile-d3 upon 266 nm LFP (Figure 4.13.A)

produces transient peaks at 1150 cm-1, 1425 and 1525 cm-1 (Table 1) of the chloranil

triplet excited state and the peak at 1674 (1658 in the case of 2) cm-1 is due to the

chloranil radical anion (Figure 4.13.B).

1530

1 1425 -3 1377 1136 1674 x10 1461 0

-1

-2

Transient absorption

1100 1200 1300 1400 1500 1600 1700 1/cm

Figure 4.15. The transient IR spectra produced upon LFP (266 nm) of 6 mM 1 and 10 mM chloranil ― and 6 mM 1 …… in argon saturated acetonitrile (1100-1300 cm-1 and

1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1). Window: ____ 0-1 µs

85

1402

50 1128 1463 1677 1270 1342 1574

0

Intensity -5 0

1100 1200 1300 1400 1500 1600 1700 1/cm

+ 3 Figure 4.16. The calculated IR spectra of 1 (down), 1● (up) and 1* (…) in acetonitrile.

1658 0 -1 µs

-3 µ 1.0 1- 2 s µ

x10 10 - 14 s 1638

0.5 1136 1525 1276 1421

0.0

Transient absorption

1100 1200 1300 1400 1500 1600 1700 1/cm Figure 4.17. The transient IR spectra produced upon LFP (266 nm) of 10 mM 2 and 10 mM chloranil in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1).

86

1406 1662 60

40 1346 1433 1626 1477 20 1126 1187

0

Intensity -2 0

-4 0

-6 0 -8 0

1100 1200 1300 1400 1500 1600 1700 1/cm

+ 3 Figure 4.18. The calculated IR spectra of 2 (down), 2● (up) and 2* (…) in acetonitrile.

4.3.5 Neutral radicals derived from khellin and visnagin

Hydroquinone was used in attempt to generate neutral radicals by protonation of

_ _ 1● and 2● . Scheme 4.3 describes a possible electron transfer followed by a hydrogen atom transfer reaction of hydroquinone with 31* and 32*.

87

.

Scheme 4.3. Proposed mechanism of the triplet state of visnagin and khellin with

hydroquinone.

First, we obtained the authentic spectrum of semiquinone radical 3H● by LFP of

chloranil and hydroquinone (Figure 4.19). In addition to bands attributable to chloranil

radical anion (Figure 4.13.B), new bands were observed at 1144 and 1280 cm-1 assigned to CH bending and rocking modes of semiquinone radical 3H● based on DFT calculations (Table 4.5 and Figure 4.20).

88

1597

100 -6 1144 1537 1280 1421 x10 50 1376

0

-50 0 -1 µs Transient absorption 10 -14 µs -1 00

1100 1200 1300 1400 1500 1600 1/cm

Figure 4.19. The transient IR spectra produced upon LFP (355 nm) of 1 mM hydroquinone and 20 mM chloranil in argon saturated acetonitrile (1100-1300 cm-1) and in deuterated acetonitrile (1300-1600 cm-1).

1579 1152 1485 20 1285 1322 1410 0

1328 Intensity -2 0 1442 1233 1503 -4 0 1151

1100 1200 1300 1400 1500 1600 1/cm Figure 4.20. The calculated IR spectra of hydroquinone (down) and its neutral semiquinone radical 3 (up) in gas phase.

89 The transient spectra produced by LFP of khellin 1 in the presence of

hydroquinone does not present the formation of new IR distinct bands for 1H● (Figure

4.21) in the region predicted by DFT calculations (Figure 4.22).

1497 1573 1284 1365

-6 200 1417 1132 x10

0

-2 00 0 -1 µs 1 -2 µs Transien absorption µ -4 00 2 -3 s

1100 1200 1300 1400 1500 1600 1700 1/cm

Figure 4.21. The transient IR spectra produced upon LFP (266 nm) of 6 mM 1 and 1 mM

hydroquinone in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1).

90 80

60

40

20 1171 1220 1328 1408 1534 1566 0 Intensity -2 0

-4 0

-6 0 1100 1200 1300 1400 1500 1600 1700 1/cm

3 Figure 4.22. The calculated IR spectra of 1 (down), 1H● (up) and 1* (…) in

acetonitrile.

In contrast the TRIR spectra produced upon 266 nm LFP of 10 mM 2 and 10 mM hydroquinone (Figure 4.23) does contain intense new peaks at 1152, 1225 and 1280 cm-1.

The peaks at 1152 and 1280 cm-1 are readily attributed to semiquinone radical 3H● as in

the chloranil sensitized reaction. However, the band observed at 1225 cm-1 is most likely

associated with the predicted (Table 4.4, Figure 4.24) C-H rocking mode of 2H●

expected at 1207 cm-1.

91 1.5 1265 0 -1 µs 10 -14 µs

1225 -3 1.0 1152 x10 0.5 1505 1593 1369 0.0

-0.5

Transient absorption -1.0

1100 1200 1300 1400 1500 1600 1700 1/cm

Figure 4.23. The transient IR spectra produced upon LFP (266 nm) of 10 mM 2 and 10

mM hydroquinone in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and deuterated acetonitrile (1300-1600 cm-1).

1207 1254 20 1371 1589 1166 1430 0

-2 0 Intensity -4 0

-6 0

-8 0

1100 1200 1300 1400 1500 1600 1700 1/cm

3 Figure 4.24. The calculated IR spectra of 2 (down), 2H● (up) and 2* (…) in acetonitrile

92 Observed Predicted DFT Predicted DFT 1 a 1 b Specie bands (cm- ) bands (cm- ) rel. intensities Mode s 1 1658 1645 87.3 C=O stretch 1625 1599 14.0 pyrone C=C stretch 1480 1460 17.3 furan C=C stretch 1350 1347 38.1 C-O stretch, C-H bend 1H● 1425 15.0 O-H bend 1378 11.6 C=C stretch

1291 9.8 C-C-C bend 1190 7.8 C-H bend 2 1661 1668 45.0 C=O stretch 1617 1601 13.0 pyrone C=C stretch 1473 1455 10.3 furan C=C stretch 1341 1349 22.0 C-H bend, C-O stretch 2H● 1254 25.5 C-H, O-H bend 1225 1207 21.8 C-H rocking 1166 8.1 C-H bend 3H● 1597 1579 22.5 C=O stretch 1537 1485 13.4 O-H bend 1376 1322 10.4 C-O stretch 1280 1285 15.7 C-H rocking 1144 1152 21.6 C-H bend a) TRIR b) B3LYP calculations with the 6-31G* basis set after scaling by a factor of 0.9613. c) The largest calculated peak in the spectrum is defined as 100%.

Table 4.5. Experimental and calculated frequencies for khellin and visnagin ground state

1, 2, and neutral radical 1H●, 2H● and hydroquinone radical 3H●.

4.4 Conclusions

Time-resolved infra-red spectroscopy (TRIR) and Density Functional Theory

(DFT) calculations were used to directly observe and assign the vibrational spectra of

the triplet states of visnagin and khellin, and to investigate their electron-transfer

chemistry. The TRIR spectra of triplet visnagin and triplet khellin, and their radical

cations and anions were obtained upon 266 nm laser flash photolysis in acetonitrile

93 and in deuterated acetonitrile. Visnagin and khellin triplet excited states react with

chloranil to form their radical cations and the chloranil radical anion. The radical

cation of khellin and visnagin each has a vibrational band at 1136 cm-1. The excited

states of khellin, visnagin and chloranil are all involved in the light induced electron

transfer reaction. 31* and 32* both react with anionic electron donors (NaI or KSCN)

to form the related radical anions which have vibrational bands at 1561 cm-1 for 1●─

-1 ─ and 1594 cm for 2● . The TRIR spectra are in good agreement with the calculated

vibrational spectra. We did not observe the related neutral radicals by TRIR

spectroscopy upon LFP of khellin in the presence of hydroquinone, but triplet

visnagin reacts with hydroquinone to form semiquinone radicals. The vibrational band

at 1225 cm-1 of the visnagin derived radical was assigned to C-H rocking mode on the

basis of DFT calculations.

4.5 References

1. Abdel-Fattah, A.; Aboul Enein, M. N.; Wassel, G. M.; El Menshawi, B. S. Dermatologica 1982, 165, 136-140

2. Valkova, S.; Trashlieva, M.; Christova, P. Clin. Exp. Dermatol.2004, 29, 180

3. Ortel B, Tanew A, Honigsmann H. J Am Acad Dermatol. 1988, 18, 683-701

4. Honigsmann H, Ortel B. 1985, 2, 193-194

5. Orecchia G, Perfetti L. Dermatology 1992; 184, 120-123

6. Morliere, P.; Hönigsmann, H.; Averbeck, D.; Dardalhon, M.; Hüppe, G.; Ortel, B.; Santus, R.; Dubertret, L. J. InVest. Dermatol. 1988, 90, 720

7. Gasparro, F. P., Psoralen DNA Photobiology; CRC Press: Boca Raton, FL, 1988; Vols. 1 and 2 94

8. Hofer A, Kerl H, Wolf D. Eur J Dermatol, 2001, 11, 225-229

9. El Mofty A. M. J. R. Egypt Med Assos 1948, 31, 651

10. Carlie, G.; Ntusi, N. B.; Hulley, P. A.; Kidson, S. H. Br. J. Dermatol. 2003, 149, 707

11. Shi, Y. B.; Lipson, S. E.; Chi, D. Y.; Spielman, P.; Monforte, J. A.; Hearst. In Biorganic Photochemistry; Morrison, H., Ed.; Wiley: New York, 1990; pp 341- 378

12. Pathak, M. A.; Fitzpatrick, T. B. J. Photochem. Photobiol., B: Biol.1992, 14, 3

13. Wood, P. D.; Johnston, L. J. J. Phys. Chem. A 1998, 102, 5585

14. Goodrich, R. P.; Platz, M. S. J. Phys. Chem. A 1998, 102 (28), 591

15. Goodrich, R. P.; Platz, M. S. Drugs Future 1997, 22, 159

16. Fisher, G. J.; Johns, H. E. Photochemistry and Photobiology of Nucleic Acids; Wang, S. Y., Ed; Academic Press: New York, 1976; Vol. 1, p 226

17. Bensasson, R. V.; Land, E. J.; Salet, C. Photochem. Photobiol. 1978, 27, 273-280

18. Bevilacqua, R.; Bordin, F. Photochem. Photobiol. 1973, 17, 191-194

19. Martin, C. B.; Tsao, M-L.; Hadad, C. M.; Platz, M. S. J. Am. Chem.Soc. 2002, 124, 7226

20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, J. V.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

95 21. Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996

22. Gross, E. K. U.; Kohn, W. AdV. Quantum Chem. 1990, 21, 255-291

23. (a) Mantulin, W. W.; Song, P. S. J. Am. Chem. Soc. 1973, 95, 5122-5129 (b) Song, P. S. Photochem. Photobiol. 1979, 29, 1177-1197

24. Abeysekera, B. F.; Abramowski, Z.; Towers, G. N. H. Photochem.Photobiol. 1983, 38, 311-315.

96

CHAPTER 5

TRANSIENT UV-VIS AND TIME RESOLVED INFRARED STUDIES OF

LUMICHROME AND ITS OXIDES TRIPLET EXCITED STATES

5.1 Introduction

Flavoproteins are ubiquitous proteins in which the flavin cofactor plays the role of

electron-transfer intermediate in various biochemical reactions.1, 2 Flavins display a rich

redox chemistry as they can adopt three different redox states: oxidized, semi-reduced

(radical), and fully reduced. In addition, the redox changes can be accompanied by

protonation changes. The different forms of the flavin chromophore have characteristic absorption spectra in the visible and near UV. Flavin systems are known to be

photochemically active, and photochemical intermediates of these flavins are known to

react with a host of biological molecules, often with clinical implications. The photochemistry, structure, and functionality of flavins have been widely studied and the

volume of data on the ground and excited state properties of flavins is overwhelming. 3, 4

Early interest in the photophysical and photochemical properties of alloxazines

including lumichromes (7,8-dimethyl-substituted alloxazines) was mainly driven by their

closeness to flavins, mostly as their photoproduct.5 It has been important to assess the

toxicity of lumichrome, as a product formed by photochemical reactions of riboflavin. It

97 has been shown that lumichrome, like riboflavin, is in fact nonmutagenic, nongenotoxic, and nonclastogenic.6

Riboflavin

Riboflavin (RB, Figure 5.1) is a component of the B2 vitamin complex and is

present in aerobic organisms. It is also the precursor for flavin mononucleotide (FMN)

and flavin adenine dinucleotide (FAD), which are major coenzymes that participate in a

number of one-electron processes in the human body.7

CH OH 2

(CHOH)3

CH2

CH3 N NO

RB N CH3 N H O RB

Figure 5.1. Structure of riboflavin (RB).

RB has absorption maxima at 220, 265, 375, and 446 nm in water and is yellow- orange in color. When aqueous solutions containing RB are exposed to sunlight, RB is converted into lumichrome (LC, Figure 5.2) under neutral conditions, and into lumiflavin

(LF, Figure 5.2) in alkaline solutions.8, 9 LC is also a known metabolic breakdown

product of RB in the human body.10

98 CH3 H CH3 N NO CH3 N NO

N N CH3 N H CH3 N H O O LC LF

Figure 5.2. Structures of lumiflavin (LF) and lumichrome (LC).

Riboflavin is a photosensitizer, which has recently received enormous attention from industry as a pathogen inactivator for the sterilization of blood products. Navigant

Technologies (formerly Gambro BCT) has shown that riboflavin can effectively inactivate intracellular and extracellular HIV and other pathogenic viruses and bacteria in the presence of plasma proteins, platelets, and red blood cells with excellent recoveries of the properties of the transfusable blood products.11 Their data indicates that nucleic acids are a target of riboflavin inactivation.12 It has also been shown that riboflavin sensitizes nicks and crosslinks in DNA.13, 14

Riboflavin is known to form adducts with proteins, most likely between the flavin and tryptophan residues.15, 16 RB-protein adducts are also formed in food when exposed to sunlight. These adducts have unknown structures, but it is likely that the formation of bonds between the flavin and tryptophan residues is involved. Such linkages between these groups have been observed for human serum albumin (HSA). 16, 17 It is believed that this photochemistry occurs between the flavin and electron-rich residues (tryptophan

(Trp) for example) because they have been identified as the sites involved in the formation of these adducts. This kind of flavin-tryptophan adduct is also believed to form 99 in the lens of bovine and human eyes, and is associated with the aging of the eye and the formation of cataracts. 15, 18 These processes most likely proceed via the triplet state of the flavin as they are quenched by the presence of ascorbate ion (vitamin C), a known triplet quencher.19

Riboflavin is known to form adducts with proteins, however, in photosensitized pathogen eradication, the nucleic acid should be the primary target because all potential pathogens present in the blood supply (viruses, bacteria, and parasites) contain either genomic RNA or DNA, single or double stranded and either enveloped or nonenveloped.

The most important components in blood products, plasma proteins, platelets, and red cells do not contain nucleic acids. Therefore, a dominant nucleic acid-based chemistry of the sensitizer will have a natural selectivity toward pathogens while keeping the integrity of useful blood components. However, it is also well known that long-lived oxidants such as hydrogen peroxide and superoxide ion and short lived singlet oxygen are produced when riboflavin in water or growth medium are exposed to visible light.20 Thus, whether riboflavin acts as a Type II photosensitizer, which is based on the generation of

ROS such as singlet oxygen or hydrogen peroxide, or as a Type I sensitizer, in which the excited riboflavin or its following photoproduct attacks the nucleic acid, or a combination of both, remains unknown. For Type I mechanisms, whether the excited state of riboflavin abstracts hydrogen atoms from a ribose, thereby damaging the sugar moiety, or undergoes redox reaction with the nucleic bases, is also unclear.

100 Tirapazamine

Tirapazamine (TPZ, Figure 5.3) is an aromatic di-N-oxide used in the treatment of hypoxic tumors. Hypoxia, defined as a low concentration of oxygen in tissues, is a very common occurrence in solid tumor tissues. The origin of hypoxia is an imperfect blood vessel network around a tumor. Hypoxic cells are resistant to most anti-tumor drugs and radiotherapy for a variety of reasons.21 Most notably among them is the lack of oxygen in the tumor cells which does not allow for the generation of reactive oxygen species induced by radiation. However, hypoxia also provides a physiological and chemical distinction between healthy and tumor cells which tumor-selective drugs can exploit.

TPZ was a significant advancement over the previously known drugs (quinoline- containing aklylating agents and nitroaromatic compounds) because its differential toxicity towards hypoxic cells was larger (100 to 200-fold for hypoxic cells in culture). 22

TPZ has been demonstrated to effectively enhance the activity of the chemotherapeutic drug cisplatin and to be complementary to radiotherapy. TPZ has undergone extensive study and is now in Phase III clinical trials with cisplatin for avalanche non-small-cells lung cancer and in Phase II trial with cisplatin based chemoradiotherapy of advanced head and neck cancer.23

Figure 5.3. Structure of tirapazamine (TPZ)

101 In 1985, Brown and Lee discovered the hypoxic cytotoxicity of tirapazamine.24

Since that time the medicinal properties of tirapazamine have been well established, although the mechanism of action of tirapazamine still remains unclear.

It is generally accepted that this drug is enzymatically activated to form a radical anion which is protonated to form a neutral radical.24, 25 Daniels and Gates proposed a dual role of tirapazamine in DNA cleavage processes.26, 27 The drug is proposed to not only produce hydroxyl radical, but, since tirapazamine has an N-oxide functional group, it may oxygenate DNA radicals, and the resulting radicals could induce DNA strand breaks (Scheme 5.1).

O - e (enzyme) O O N O N N H+ N N N N N + OH N NH2 N NH2 N NH2 O N NH2 O OH O O2

Scheme 5.1. Generation of hydroxyl radical, a mechanism of action of tirapazamine

(TPZ) proposed by Daniels and Gates. 26

The mechanism of action of tirapazamine has been under active investigation for several years and the clarification of the mechanism of the action of TPZ and the development of new antitumor agents of this family requires a thorough identification and understanding of the active species, which kill the tumor cells. Because of the likely involvement of hydroxyl radical in this bioreductively-activated drug, it is of interest to

102 transplant this unique chemistry of aromatic N-oxides to the much-studied photochemical generation of ROS of photosensitizers. The marriage of these two types of anti-tumor therapeutic strategies, PDT and hypoxia-selective drug, may help create a new route toward cancer treatment.

Therefore the special property of TPZ encourages reviewing the chemistry of other members of the family of aromatic N-oxides that generally have relatively high redox potentials and hence are oxidative compounds.28 The understanding of the mechanism of action of TPZ may lead to the design of a better drug.

When the flavin chromophore is in the oxidized form, it can act as a strong electron acceptor in the photoexcited state. Therefore, if the aromatic amino acid residues tryptophan (Trp‚ NH) and/or tyrosine (Tyr‚ OH) are placed close to the flavin chromophore in protein nanospace (PNS, protein environment of a few nanometer scale surrounding the chromophore), strong quenching of the flavin fluorescence due to the ET from the aromatic amino acid residues can take place. 29 Reported photochemical reactions of aromatic N-oxides fall into two groups: rearrangement and N- deoxygneation.30 There is now general agreement that the first process usually involves the first excited singlet state and the latter one probably the triplet state. Although there are a large number of reports of photochemical reactions of this family of compounds, there has been a lack of the basic understanding of the photophysics of aromatic N- oxides, and the mechanism of these photoreactions is largely based on hypothesis.

Lumichrome N-oxide (LCO, Figure 5.4) and lumichrome di-N-oxide (LCO2,

Figure 5.4) are the oxidized form of lumichrome. It is also of great interest to investigate whether LCO and LCO2 undergoes hydroxyl radical chemistry upon photoinducible

103 electron transfer, as riboflavin is known to be able to accept one electron from indole and guanine when excited by light. If LCO and LCO2 also undergo tirapazamine-like photoactivated hydroxyl radical chemistry, they can be potential anti-tumor agent, since they appear to have some advantages over tirapazamine. After hydroxyl radical is released, the drug forms lumichrome, which like riboflavin, is in fact nonmutagenic, nongenotoxic, and nonclastogenic.6

O

H C H H C H 3 N N O 3 N N O

NH NH H3C N H3C N

O O O O

LCO LCO2

Figure 5.4. Stuctures of lumichrome N-oxide (LCO) and lumichrome di N-oxide

(LCO2).

In this chapter, the triplet excited states of Lumichrome (LC), Lumichrome N- oxide (LCO) and lumichrome di- N-oxide (LCO2) were detected by transient UV-vis and

TRIR spectroscopy and the spectra were interpreted with the aid of Density Functional

Theory calculations.

104 5.2 Experimental

• Materials

Lumichrome (LC, MW=242.24 g/mol), methanol (purity >99%, HPLC), acetonitrile (purity >99%, HPLC) and deuterated acetonitrile (purity >99%, HPLC) were purchased from Sigma-Aldrich (St. Louis, MO) and were used as received. Lumichrome

N-oxide (LCO) and lumichrome-di-N-oxide (LCO2) were synthesized following the procedures described in Section 6.2.2.

• Nanosecond LFP system with UV-Vis detection

The LFP experiments performed with UV-vis detection utilized the instrumentation described in Chapter 2. Samples analyzed by LFP were prepared with an absorbance of ~

1 at 355 nm or 266 nm. The solutions were then degassed by bubbling argon through the solution for a minimum of 10 min. All kinetic data represent the average of triplicate measurements.

• Time-Resolved Infrared (TRIR) spectroscopy

TRIR experiments were carried out on the instrumentation described in detail in

Chapter 2. Each sample solution was prepared with an optical density of 0.6-1.0. Briefly, a reservoir of the deoxygenated sample solution (20-30 mL) is continually circulated between two calcium fluoride salt plates with a 0.5 mm path length. The sample was excited by 266 nm laser pulses of a Nd:YAG laser (50 Hz repetition rate, 0.6~0.8 mJ/pulse power).

105 • DFT calculations

All calculations were performed using Gaussian 98 31 on the Linux Cluster at the

Ohio Supercomputer Center. All geometries were optimized at the B3LYP/6-31G* level of theory (unrestricted B3LYP was used for the open-shell systems), and single-point energies were also obtained at the B3LYP/6-31+G** level with the optimized B3LYP/6-

31G* geometry.31, 32Stationary points were verified to be energy minima via vibrational frequency analyses (B3LYP/6-31G*) in which all the calculated vibrational frequencies were nonimaginary. Zero-point vibrational energy (ZPE) corrections were also obtained by vibrational frequency calculations. For the vibrational spectra, vibrational frequencies were scaled by 0.9613.15. Spin contamination for the optimized structures were low: 0.75

< 〈S2〉 < 0.79 for the doublet states and 2.0 < 〈S2〉 < 2.1 for the triplet states. Simulated

(vertical) UV spectra were calculated using time-dependent density functional theory

(TDDFT) with the B3LYP/6-31+G** level at the minimized B3LYP/6-31G* geometry for each structure. 32, 33 The electronic spectra were computed using the time-dependent

DFT theory of Gaussian 98 at the B3LYP/6-31G* level, and 10 transitions were included.

The self-consistent reaction field with polarizable continuum model (PCM) 34 was applied to the calculation of solution structure and energies.

106 5.3 Results and discussion

Laser Flash Phototylsis with UV-vis detection and TRIR spectroscopy and Density

Functional Theory (DFT) calculations were used to directly observe and assign the vibrational spectra of the triplet states of lumichrome and its oxides LCO and LCO2.

5.3.1 Laser Flash Photolysis

Upon laser excitation at 266 nm, lumichrome and its oxides LCO and LCO2 in acetonitrile produce transient species that decay on a microsecond time scale. The presence of oxygen dramatically shortens the lifetime of the transient. LFP (266 nm) of

LC in deoxygenated acetonitrile produces the transient spectra of Figure 5.5. The spectrum recorded immediately after the laser pulse presents absorption maxima at 279 nm, 360 nm, 440 nm and 550 nm.

Sikorski et al.35 reported previously the photophysical properties of alloxazine and lumichrome triplet states and demonstrated that the efficiency of singlet oxygen production from the triplet state is high. The transients as shown in Figure 5.5 were quenched by O2. Thus, the sensitivity of the transients (produced by LFP of LC) to oxygen (Figure 5.5) allows us to assign the carriers of the transient spectra to the triplet excited state of lumichrome. The OMA spectra were recorded at different delay times, but no species other than the triplet state of LC was observed. The transient absorption spectra of 3LC* (Figure 5.5) is also consistent with Sikorski et al.35 where their

107 measurements of LC transient absorption were performed upon 355 nm LFP in acetonitrile (Figure 5.7).

0.5 266 nm LFP of LC in CH3CN , 279 immediately after the laser pulse 0.4 360 20 ns window

0.3 550 440

0.2 ¦¤O.D. / a.u. 0.1

0.0 300 350 400 450 500 W avelength, nm

550

440 0.30

0.25

¦¤O.D. / a.u. ¦¤O.D. / 266 nm LFP of LC in CH CN 0.20 3 immediately after the laser pulse, 20 ns window

400 450 500 550 600 W avelength, nm

Figure 5.5. The ……. steady state and transient UV-Vis absorption spectra produced upon

LFP (266 nm) of LC under ___ argon purge and ___ in aerated acetonitrile.

108

35 403 3 LC* UV B3LYP/6-31 G* TD DFT 30

-3 25

x10 20

15 615

Rel. Intensity 10

5 660 553 0 300 400 500 600 700 Wavelength, nm

Figure 5.6. The calculated UV-Vis absorption spectrum of 3LC* in the gas phase.

360

540

450

Figure 5.7. The transient UV-Vis absorption spectra produced upon LFP (355 nm) of LC in acetonitrile.35

109 The observed rate constants of disappearance of 3LC* were measured at 279 nm,

360 nm, 440 nm and 550 nm in the absence of oxygen and under these conditions the averages based on three runs were 2.23 × 105 s-1, 3.78 × 105 s-1, 3.21 × 105 s-1 and 2.74 ×

105 s-1, respectively. The carriers of transient absorption have a lifetime of 3.47 ± 1 µs when the sample is purged in argon, in the presence of oxygen transient absorption of lumichrome triplet is quenched (Figure 5.8). The kinetic data are consistent with previous studies that indicate that the lifetime of triplet state of LC to be 11µs in acetonitrile35 and

12.0 µs in aqueous solution at pH 2.2. 36

110 A 266 nm LFP of LC in acetonitrile monitored at 360 nm 5 -1 0.2 k = 3.78 x10 s

0.1

0.0

Transient absorption -0 .1

-5 0 5 10 15 20 Time, µs

B 266 nm LFP of LC in acetonitrile monitored at 550 nm 5 -1 k = 2.74 x10 s 0.2

0.1

0.0

Transient absorption -0 .1

-5 0 5 10 15 20 µ Time, s

Figure 5.8. Decay of the transient absorption signal at A) 350 nm B) 550 nm after 266 nm LFP of LC under _____ argon purge and ----- in aerated acetonitrile.

The transient UV-vis spectra produced upon 266 nm LFP of Lumichrome N- oxide in acetonitrile present absorption maxima at 290 nm, 360 nm and 450 nm, but no transient signals were observed above 500 nm (Figure 5.9). The OMA spectra of 3LCO* upon 266 nm LFP in aqueous solution (Figure 5.11) differ from the data obtained in

111 acetonitrile; the negative peak at 400 nm (Figure 5.9) is shifted to 450 nm and a new peak is formed after 600 nm. The 600 nm peak might correspond to LCO triplet state since it is quenched by O2.

0.25 266 nm LFP of LCO in CH3CN immediately after the laser pulse, 0.20 20 ns window 290

0.15 360 450 0.10

¦¤O.D.a.u. / 0.05

0.00

300 350 400 450 500 Wavelength, nm

450 -3 80x10 266 nm LFP of LCO in CH3CN immediately after the laser pulse , 20 ns window 60

40

¦¤O.D. / a.u. 20

0

400 450 500 550 600 Wavelength, nm

Figure 5.9. The …… steady-state and transient UV-Vis absorption spectrum produced upon LFP (266 nm) of LCO under ___ argon purge and ___ in aerated acetonitrile.

112

405 3 0.10 LCO* UV B3LYP/6-31 G* TD DFT

0.08

0.06

Rel. Intensity Rel. 0.04 495 0.02 590 623 475 553 0.00

300 350 400 450 500 550 600 650 W avelength, nm

Figure 5.10. The calculated UV-Vis absorption spectrum of 3LCO* in the gas phase.

360 266 nm LFP of LCO in H O -3 2 80x10 immediately after the laser pulse , 20 ns window

60

40

20 ¦¤O.D. / a.u.

0

-20

400 450 500 550 600 Wavelength, nm

Figure 5.11. The …… steady state and transient UV-Vis absorption spectrum produced upon LFP (266 nm) of LCO under ___ argon purge and ___ in aerated water.

113 The transient spectra of lumichrome di N-oxide produced upon 266 nm and 355 nm LFP in argon saturated acetonitrile (Figure 5.12) present two major peaks at 310 nm

3 and 370 nm. The OMA spectra of LCO2* is also quenched in the presence of oxygen

(Figures 5.12). 370 266 nm LFP of LC02 in CH3CN 310 right after the laser pulse , 20 ns window 0.05

0.00 1.2 1.0

0.8

0.6 ¦¤O.D. / a.u. ¦¤O.D. / -0 .05

Absorbance 0.4

0.2

300 350 400 450 500 550 600 -0 .10 Wavelength, nm

300 350 400 450 500 Wavelength, nm 370 310

0.00

-0 .05

¦¤O.D. / a.u. -0 .10 355 nm LFP of LCO2 in CH3CN immediately after the laser pulse 20 ns window -0 .15

300 350 400 450 500 wavelength, nm

Figure 5.12. The steady state and transient UV-Vis absorption spectrum produced upon

______266 nm LFP (top) and 355 nm LFP (buttom) of LCO2 under argon purge and in aerated acetonitrile.

114 402 3 LCO2* UV B3LYP/6-31 G* TD DFT 60

511 -3 50 x10 40

30

Rel. Intensity 20 570 10 619 429

300 400 500 600 700 Wavelength, nm

3 Figure 5.13. The calculated UV-Vis absorption spectrum of LCO2* in the gas phase.

3 3 The observed rate constants of LCO* (Figure 5.14) and LCO2* (Figure 5.15) decay in the absence of oxygen were monitored at their respective absorption maxima

5 -1 wavelengths and were determined to be of the order of ~ 1x 10 s . The quenching of

3 3 LCO and LCO2 triplet states by oxygen was also observed. LCO* and LCO2* lifetimes were determined to be 4.0 ± 1 µs in deoxygenated acetonitrile.

115 266 nm LFP of LCO in acetonitrile monitored at 360 nm 5 -1

k = 2.38 x10 s 3 50 x10

0

-50 Transient absorption

-1 00 -5 0 5 10 15 20 Time, µs

Figure 5.14. Decay of the transient absorption signal at 360 nm after 266 nm LFP of

_____ LCO under argon purge and ----- in aerated CH3CN.

266 nm LFP of LCO in acetonitrile monitored at at 370 nm 0.10 2 5 -1 k = 2.34x10 s

0.05

0.00

-0.05 Transient absorption

-0.10 -5 0 5 10 15 20 Time, µs

Figure 5.15. Decay of the transient absorption signal at 370 nm after 266 nm LFP of

_____ LCO2 under argon purge and ----- in aerated CH3CN.

116

The spectral properties of alloxazine in acetonitrile were previously reported: its triplet excited state was determined to have a lifetime of 10 µs and its transient absorption spectra presents absorption maxima at 360 nm, 430 nm and 500 nm.35-38 The transient spectra of 3LC* is also in good agreement with previous reports 35, however it differs from the Time Dependent Density Functional Theoretical (TD-DFT) calculations

(Scheme 5.6).

3LC* and 3LCO* transient spectra upon 266 nm LFP present similar features but as observed for LCO2 upon 266 nm (or 355 nm) LFP, no strong absorption occur above

3 500 nm for LCO*. The transient spectra of LC, LCO and LCO2 triplet excited states produced upon 266 nm LFP in acetonitrile present a common absorption maxima at 360

3 nm (370 nm for LCO2*) despite the differences in their side chains.

The spectrum of the excited triplet states of the lumichrome compounds shows bands in the same region as the flavin ground state in the region of 250 and 450 nm but are slightly red shifted. Also new bands in the visible region are present. Because the geometry of the flavin is still planar, extensive π-overlap remains. The spectroscopic assignments for LC, LCO and LCO2 triplet states are not in good agreement with DFT calculations (Schemes 5.6, 5.10 and 5.13), although they predict the same bands for LC,

LCO and LCO2 triplet states at 403 (+/- 2) nm and 553 (+/- 7) nm.

Flavins have been previously studied by LFP methods with UV-vis detection in aqueous and organic solvents. 39 The transient UV-Vis spectrum of the triplet excited state of the tetraacetate derivative of riboflavin (RBTA) was obtained by LFP (355 nm) of

RBTA in argon saturated acetonitrile. 40 The absorption maxima of 3RBTA* were found

117 to be at 295 and 381 nm. No strong absorption was observed in the region of 500 - 700

3 3 3 3 nm. The similarity between RBTA* and LC*, LCO* and LCO2* transient UV-vis spectra indicates that the spectral features are derived from the flavin core.

LFP experiments have indicated that the RB triplet has absorption maxima around

375 and 700 nm in aqueous pH 7.41 The region between 500 – 600 nm is inaccessible in the experimental spectra, presumably due to interference from the fluorescence at 520 nm. Martin et al.40 compared the calculated UV spectrum of lumiflavin and LFP spectrum of 3RBTA*; they proposed that the extent of the possible shift between the calculated gas-phase spectra and the aqueous media experimental LFP data depends on the origin of the electronic transition within the molecule. If the electronic transition occurs within a polar region of the molecule where a change in solvent polarity would have a large effect, then a significant shift is observed, as it is in πÆπ* bathochromic carbonyl transitions. In contrast, if the region of the electronic transition is non-polar, the change in solvent would not cause a shift in the absorption spectra, as observed in πÆπ* transitions in alkenes. 42

5.3.2 Time-Resolved Infrared Spectroscopy

Laser flash photolysis (266 nm, 0.5-0.7 mJ/pulse, 50 Hz repetition) of

Lumichrome, Lumichrome N-oxide and Lumichrome di-N-oxide in argon saturated acetonitrile or acetonitrile-d3 produced the transient spectra of their triplet excited states,

3 3 3 LC*, LCO* and LCO2*, respectively (Figures 5.12, 5.14 and 5.16, respectively). TRIR spectra were recorded in acetonitrile, since it obscures the IR region between 1300 –

118 -1 1600 cm . This spectral region was studied in acetonitrile-d3. The transient spectra presented in the Figures 5.12, 5.14 and 5.16 are a composite of spectra recorded in acetonitrile and acetonitrile-d3. The transient vibrational spectra of LC, LCO and LCO2 present similar features with moderately intense bands between 1500 and 1800 cm-1. The negative peaks are due to depletion of the ground states of LC, LCO and LCO2 and

Figures 5.12, 5.14 and 5.16 show a strong negative peak around 1745 cm–1 and 1560 cm–

1. The positive peaks are due to the presence of a transient intermediate and are confirmed as the triplet excited states of LC, LCO and LCO2.

1685 0-1 µs 1644 2-3 µs 1800 400 µ -6 4-6 s 12-14 µs 1512 1776

x10

200 1608 1216 1292 1324 1392 1136 0

1196 1264 -2 00 Transient absorption 1568 1751 -4 00

1100 1200 1300 1400 1500 1600 1700 1800 -1 Wavenumber, cm

Figure 5.16. The transient IR spectra produced upon LFP (266 nm) of lumichrome in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1800 cm-1) and in deuterated acetonitrile (1300-1600 cm-1).

119 1735 1331 1695 100 1498 50 1109 1216 1373 1477 1519 0 1206 1244

Relative absorbance Relative -50 1299 1336 1556 1724 -1 00 1748

1100 1200 1300 1400 1500 1600 1700 1800 W avenumber, cm-1

______3 Figure 5.17. The calculated IR spectra of LC (down) and LC* (up) in acetonitrile using the B3LYP/6-31G* method after scaling by 0.96.

1692 800 0-1 µs

2-3 µs -6 600 8-10 µs x10 µ 400 12-14 s

200 1192 1508 1136 1316 1408 0

-2 00 1336 1576 -4 00 1260 Transient absorption -6 00 1740

1100 1200 1300 1400 1500 -1 1600 1700 1800 Wavenumber, cm

Figure 5.18. The transient IR spectra produced upon LFP (266 nm) of lumichrome N- oxide in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and in deuterated acetonitrile (1300-1600 cm-1).

120 1742

100 1687

1561 50 1370 1460 1208 1505 0

1182 1461 -50

Relative absorbance 1560 1362 1537 1711 -1 00 1747

1100 1200 1300 1400 1500 1600 1700 1800 -1 Wavenumber, cm

______3 Figure 5.19. The calculated IR spectra of LCO (down) and LCO* (up) using the

B3LYP/6-31G* method after scaling by 0.96 in acetonitrile.

1688 600 0-1µs 2-3µs µ -6 400 4-6 s 12-14 µs 1356 1508

x10 1545 1596 200 1324 0

1264 1568 -2 00

-4 00

Transient absorption 1744 -6 00 1100 1200 1300 1400 1500 1600 1700 1800 -1 W avenumber, cm

Figure 5.20. The transient IR spectra produced upon LFP (266 nm) of lumichrome-di-N- oxide in argon saturated acetonitrile (1100-1300 cm-1 and 1600-1750 cm-1) and in deuterated acetonitrile (1300-1600 cm-1).

121

1754 1530 100 1720

1320 50 1447 1186 1372 0

1385 1444 -50 1184

Relative absorbance 1328 1736 -1 00 1525 1766

1100 1200 1300 1400 1500 1600 1700 1800 Wavenumber, cm-1

______3 Figure 5.21. The calculated IR spectra of LCO2 (down) and LCO2* (up) in acetonitrile using the B3LYP/6-31G* method after scaling by 0.96 in acetonitrile.

The TRIR spectra are in good agreement with the calculated vibrational spectra in acetonitrile. The calculations do not consider Fermi resonance; therefore the intensities of the predicted bands can differ from the experimental spectra. DFT calculations allow us to assign the IR bands as shown in Tables 5.1.

122 Observed Predicted DFT Predicted 1 a 1 b c Species bands (cm- ) DFT bands (cm- ) rel. intensities Mode 1751 1748, 1724 111.6 C=O stretch LC 1568 1556 48.8 C=N stretch 1264 1299 34.9 C=C stretch 1196 1206 11.2 C-H bending 3LC* 1776, 1685 1735, 1695 140.1, 97.8 C=O stretch 1498, 1392 1512, 1373 52.6, 18.0 C=N stretch 1324, 1216 1331, 1216 113.3, 18.8 C=C stretch 1136 1109 24.7 C-H bending 1740 1747, 1711 117.06, 74.37 C=O stretch LCO 1576 1560, 1533 45.80, 68.85 C=N stretch 1461 17.47 NÆ O strech 1336 1362 67.35 C=C stretch 1260 1193 19.84 C-H bending 3LCO* 1692 1742, 1687 145.36, 76.74 C=O stretch 1508 1561, 1505 39.90, 17.88 C=N stretch 1408 1461 30.55 NÆ O strech 1316 1370 29.18 C=C stretch 1192, 1136 1208 25.66 C-H bending LCO2 1744 1766, 1736 125.10, 77.57 C=O stretch 1568 1525 92.31 C=N stretch 1444, 1385 22.57, 22.11 NÆ O strech 1264 1328 68.46 C=C stretch 1184 31.10 C-H bending 3 LCO2* 1688 1754, 1720 129.60, 74.75 C=O stretch 1596, 1545 1530 97.65 C=N stretch 1508, 1356 1447, 1372 29.36, 22.97 NÆ O strech 1324 1320 53.36 C=C stretch 1186 21.38 C-H bending a) TRIR b) B3LYP calculations with the 6-31G* basis set after scaling by a factor of 0.9613 c) the largest calculated peak in the spectrum is defined as 100%.

Table 5.1. Experimental and calculated frequencies for lumichrome, lumichrome-N- oxide and lumichrome di-N-oxide ground states and triplet states, LC, LCO, LCO2,

3 3 3 LC*, LCO* and LCO2*:

123 Kinetic studies were performed at the most prominent IR bands of the ground states of LC, LCO and LCO2 and of the IR active transient species produced by LFP. The carriers of transient absorption have a lifetime of 1.2 ± 0.1 µs (Figures 5.18, 5.19 and

5.20, respectively) in the absence of oxygen and under these conditions the ground state vibrational bands of LC, LCO and LCO2 recover with the same time constant. As referred to earlier, Sikorski et al. reported the efficiencies of the photosensitised production of singlet oxygen by lumichrome in acetonitrile. The transients produced upon 266 nm LFP of LC, LCO and LCO2 are quenched by oxygen and can be confirmed as LC, LCO and

LCO2 triplet states.

124 200 5 -1 -1 k = 6.5 x10 s at 1512 cm 150

-6 100 x10 A

∆ 50

0

-50

0 2 4 6 8 Time, µs

100

50

-6 0

x10 A -50 ∆

-1 00

5 -1 -1 k = 7.6 x10 s at 1568 cm -1 50

0 2 4 6 8 Time, µs

Figure 5.22. The decay of the 1512 cm-1 absorbing transient (top) and ground state depletion at 1568 cm-1 (bottom) produced upon LFP (266 nm) of LC under ___ argon purge and ---- in aerated acetonitrile-d3. Single exponential decay τ = 3-5 µs.

125 300 k = 3.33 X105 s-1 at 1692 cm-1 250

200 -6

x10 150 A 100

50

0

-50

0 5 10 15 µs

k = 1.95 X105 s-1 at 1336 cm-1 0

-6 -50 x10 ∆ -1 00 A ∆

-1 50

-2 00

0 5 10 15 µs

Figure 5.23. The decay of the 1692 cm-1 absorbing transient (top) and ground state depletion at 1336 cm-1 (bottom) produced upon LFP (266 nm) of LCO under argon purge acetonitrile-d3. Single exponential decay τ = 10 µs.

126

5 -1 -1 250 k = 7.97 x10 s at 1688 cm

200

-6 150 x10

∆Α 100

50

0

-50

0 2 4 6 8 µs

0

-50 -6 x10 -1 00

∆Α -1 50

5 -1 -1 k = 5.29 x10 s at 1744 cm -2 00

0 2 4 6 8 µs

Figure 5.24. The decay of the 1688 cm-1 absorbing transient (top) and ground state

-1 depletion at 1744 cm (bottom) produced upon LFP (266 nm) of LCO2 under argon purge acetonitrile. Single exponential decay τ = 1-2 µs.

The TRIR spectra of LC, LCO and LCO2 present similar features with strong IR bands between 1800 cm-1 and 1700 cm-1, 1600 cm-1 and 1400 cm-1, and 1400 and 1300 cm-1. The strongest IR bands of lumichrome and its oxides are due to their carbonyl C=O

127 and imino C=N stretches, respectively. The calculations predict that two of the most intense IR bands of LC will be found at 1748 cm-1, 1724 cm-1 and 1556 cm-1 (Figure

5.17), at 1747 cm-1, 1711 cm-1, 1537 cm-1 and 1362 cm-1 (Figure 5.19) for LCO and of

-1 -1 -1 -1 LCO2 at 1766 cm , 1736 cm , 1525 cm and 1328 cm (Figure 5.21). These IR bands are due to their carbonyl C=O and imino double bond C=N stretches, respectively. We observed prominent bands of the ground state of LC in the IR spectra at 1748 cm-1, 1724 cm-1 and 1556 cm-1 (Figure 5.16), at 1740 cm-1 and 1576 cm-1 for LCO (Figure 5.18) and

-1 -1 of the ground state of LCO2 at 1744 cm and 1568 cm (Figure 5.20), presumably due to the carbonyl and imino double bond C=N stretching vibrations predicted by the DFT calculations.

Upon photoexcitation from ground state to excited state, IR stretching bands are, of course, expected to shift. Martin et al.40 obtained the TRIR spectra of the triplet of riboflavin tetraacetate and they reported a significant shift in the IR absorption bands between the ground ad triplet excited state. The triplet-excited states of LC, LCO and

LCO2 present similar IR spectral profiles. The characteristic IR absorption bands (± 10

-1 -1 -1 -1 -1 cm ) of three compounds were identified as 1776 cm , 1685 cm , 1512 cm , 1392 cm

-1 3 -1 -1 -1 -1 and 1216 cm for LC*: (Figure 5.16), 1692 cm , 1508 cm , 1316 cm and 1192 cm

3 -1 -1 -1 -1 for LCO*: (Figure 5.18), and 1688 cm , 1596 cm , 1508 cm and 1356 cm for

3 -1 -1 -1 LCO2*: (Figure 5.20). The IR bands at 1685 cm (and 1776 cm for LC), 1692 cm and 1688 cm-1 in Figures 5.16, 5.18 and 5.20 should be assigned to the carbonyl C=O

3 3 3 -1 bands of LC*, LCO* and LCO2* respectively. The IR bands at 1512 cm and 1508 cm-1 in Figures 5.16, 5.18 and 5.20 should be assigned to the imino C=N bands of 3LC*,

3 3 LCO* and LCO2* respectively.

128 The band of 3LC*observed at 1392 and 1324 cm-1 is attributed to the predicted bands at 1373 and 1331 cm-1 of the aromatic double bond C=C stretching bands of 3LC*

(Figures 5.16 and 5.17). The 1316 cm-1 bands of 3LCO* are associated with the predicted

-1 -1 3 band at 1370 cm (Figures 5.18 and 5.19). The 1324 cm band of LCO2* is associated with the predicted band at 1320 cm-1 (Figures 5.20 and 5.21).

The N-oxide group vibration stretching is observed at 1408 cm-1 for 3LCO* and at

-1 3 1508 and 1356 cm for LCO2* (Figures 5.18 and 5.20). The N-oxide group was

-1 3 -1 3 predicted at 1461 cm for LCO* and 1447 and 1372 cm for LCO2* (Figures 5.19 and

5.21). The calculations predicted the N-oxide vibrational stretching ground state of LCO

-1 -1 at 1461 cm , and at 1444 and 1385 cm for ground state LCO2, however the TRIR spectra do not show the N-O IR bands that are predicted. The calculations present relatively small intensities for the N-oxide IR bands in the ground states of LCO and

LCO2 (Table 5.1).

The C=N double bond is predicted to have very low IR intensity in the ground state LC, LCO and LCO2. Also from Figures 5.16, 5.18 and 5.20 a relatively minor shift for the IR bands assigned to C=N vibrational stretching; from 1568 cm-1 to 1512 cm-1 for

-1 -1 -1 -1 LC, from 1576 cm to 1500 cm for LCO, and from 1545 cm to 1508 cm for LCO2 can be assigned.

The carbonyl C=O stretching vibrations of the ground state and triplet state of LC,

LCO and LCO2 present the strongest IR intensity (Figures 5.16, 5.18 and 5.20, respectively), as predicted by DFT calculations (Figures 5.17, 5.19 and 5.21, respectively). The observed IR bands assigned to the carbonyl C=O stretching vibrations of the ground state show a small shift in the excited triplet states of the three compounds

129 (Figures 5.16, 5.18 and 5.20); from 1751 cm-1 to 1685 cm-1 for LC, from 1740 cm-1 to

-1 -1 -1 1692 cm for LCO, and from 1744 cm to 1688 cm for LCO2. This results can indicate that there is little electron reorganization within the carbonyl and C=N bonds upon excitation. The oxide N=O bond in the triplet excited states might be of interest to the main site of photoreactivity of these compounds.

5.4 Conclusions

The transient absorption spectra and the lifetimes of the triplet states of lumichrome, lumichrome N-oxide and lumichrome di-N-oxide were measured by LFP methods with UV-vis detection and TRIR spectroscopy upon 266 nm LFP in acetonitrile.

3 * 3 * 3 * The transient UV-vis spectra of LC , LCO and LCO2 were obtained upon 266 nm

LFP in argon saturated acetonitrile and their lifetimes were determined to be 3 ± 1 µs in deoxygenated acetonitrile. The OMA spectra of 3LCO* produced upon 266 nm LFP in acetonitrile present absorption maxima at 290 nm, 360 nm and 450 nm, in aqueous solution the 450 nm peak is shifted to 550 nm and a new peak is formed beyond 600 nm.

The 600 nm peak corresponds to the LCO triplet state since it is quenched by O2. The transient spectra of 3LC* is also in good agreement with previous reports 35, however the spectroscopic assignments for LC, LCO and LCO2 triplet states are not in good agreement with DFT calculations. The transient vibrational spectra of LC, LCO and

LCO2 triplet excited states were obtained upon 266 nm and present similar features with moderately intense IR bands between 1800 cm-1 and 1700 cm-1, 1600 cm-1 and 1400 cm-1, and 1400 and 1300 cm-1. The strongest IR bands of lumichrome and its oxides were

130 assigned to the carbonyl C=O and C=N stretching vibrations as predicted by the DFT calculations. Kinetic studies were performed at the most prominent IR bands of the ground states of LC, LCO and LCO2 and of the IR active transient species produced by

LFP. The transients produced upon 266 nm LFP of LC, LCO and LCO2 are quenched by

3 * 3 * 3 * oxygen and the transient absorption of LC , LCO and LCO2 have a lifetime of 1.2 ±

0.1 µs in the absence of oxygen and under these conditions the ground state vibrational bands of LC, LCO and LCO2 recover with the same time constant. LFP-UV results are consistent with the TRIR data.

5.5 References

1. Massey, V. Biochem. Soc. Trans. 2000, 28 (part 4), 283-296.

2. Walsh, C. Acc. Chem. Res. 1980, 13, 148-155.

3. Chapman, S. K., Perham, R. N., Scrutton, N. S., Favins and Flavoproteins; Eds; Rudolf Weber Agency for Scientific Publications: Berlin, Germany, 2002.

4. Yagi, K., Yamano, K., Flavins and Flavoproteins; Eds; Japan Scientific Societies Press, Tokyo and University Park Press: Baltimore, MD, 1980.

5. Chastain and D. B. McCormick, in F. Muller (ed.), Chemistry and Biochemistry of Flavoenzymes, vol 1. CRC Press, Boston, 1991 p.196.

6. Corbin, F. Bus. Briefing: Med. DeVice Manuf. Technol. 2002, 1.

7. Heelis, P. F. Chem. Soc. Rev. 1982, 11, 15-39.

8. Ahmad, I.; Rapson, D. C. J. Org. Chem. 1980, 45, 731-733.

9. Smith, E. C.; Metzler, D. E. J. Am. Chem. Soc. 1963, 85, 3285-3288. 10. Rivlin, R. S. New England J. Med. 1970, 283, 463-472.

11. Goodrich, R. P. Vox Sang. 2000, 78 Suppl 2, 211-215.

131 12. Goodrich, R. P. In In Cambridge Healthtech Institute's Sixth Annual Blood Product Safety Conference; 2000

13. Ennever, J. F.; Carr, H. S.; Speck, W. T. Pediatr. Res. 1983, 17, 192-194

14. Cadet, J. C.; Decarroz, S.; Wang, Y.; Midden, W. R. Isr. J. Chem. 1983, 23, 420- 429.

15. Ono, S.; Oikawa, K.; Hirano, H.; Obara, Y. Int. J. Vitam. Nutr. Res. 1986, 56, 259-262.

16. Tapia, G.; Silva, E. Radiat. Environ. Biophys. 1991, 30, 131-138.

17. Silva, E.; Salim-Hanna, M.; Edwards, A. M.; Becker, M. I.; De Ioannes, A. E. A light-induced tryptophan-riboflavin binding: biological implications; Plenum: New York, NY, 1991.

18. Jacques, P. F. 1997, 149-177.

19. Nogami, H.; Hanano, M.; Awazu, S.; Iga, T. Chem. Phar. Bull. 1970, 18, 228- 234.

20. a) Joshi, P.C., Ind. J. Biochem. Biophys 1989, 26, 186-189. b) Joshi, P. C., Toxicol. Lett. 1985, 26, 211-217. c) Kasai, H.; Crain, P. F.; Kuchina, Y.; Nishimura, S.; Outsuyama,A.; Tanoka, H. Carcinogenesis 1986, 7, 1847-1851.

21. Denny, W. A. Cancer Invest. 2004, 22, 604-619.

22. Zeman, E. M.; Brown, J. M.; Lemmon, M. J.; Hirst, V. K.; Lee, W. W. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1239-1242.

23. Brown, J. M.; Wilson, W. R. Nat. Rev. Cancer. 2004, 4, 437-447.

24. Brown. J. M. Br. J. Cancer. 1993, 67, 1163.

25. Laderoute, K.; Wardman, P.; Rauth, A. M. Biochem. Pharmacol. 1988, 37, 1487- 1495.

26. Daniels, J. S.; Gates, K. S. J. Am. Chem. Soc. 1996, 118, 3380-3385.

27. Daniels, J. S.; Gates, K. S.; Tronche, C.; Greenberg, M. M. Chem. Res. Toxicol. 1998, 11, 1254-1257.

132 28. Wardman, P. In Chemistry of Nitroarene and Aromatic N-oxide Radicals; Alfassi, Z. B., Ed.; N-Centered Radicals; John Wiley & Sons Ltd, 1998.

29. Mataga, N.; Chosrowjan H.; Taniguchi S.; Tanaka F.; Kido N.; Kitamura M. J. Phys. Chem. B 2002, 106, 8917-8920.

30. Albini, A.; Pietra, S. In Heterocyclic N-oxides; CRC Press, Inc.: 1991.

31. Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic:Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996.

32. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, J. V.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

33. Gross, E. K. U.; Kohn, W. Adv. Quantum Chem. 1990, 21, 255-291

34. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027

35. a) Sikorski, M.; Sikorska, E.; Worrall, D.R.; Wilkinson, F. Steer, R. P. Can. J. Chem.1999, 77, 472. (b)Sikorska, E.; Sikorski, M.; Steer, R. P.; Wilkinson, F.; Worrall, D. R. J. Chem. Soc., Faraday Trans. 1998, 94, 2347.

36. Grodowski, M. S.; Veyret, B.; Weiss, K. Photochem. Photobiol. 26, 1977, 341.

37. Koziolowa, A. Photochem. Photobiol. 29, 1979, 459.

38. Dekker, R. H.; Srinivasan, B. N.; Huber, J. R.; Weiss, K. Photochem. Photobiol., 18, 1973, 457.

39. Knowles, A.; Roe, E. M. Photochem. Photobiol. 1968, 7, 421-436.

40. a) Martin, C.B; Tsao, M.-L; Hadad, C. M.; Platz, M. S. J. Am. Chem. Soc. 2002, 124, 7226.

133 b) Martin, C.B; Shi, X.; Tsao, M.-L; Karweik, J.; Brooke, C.M.; Hadad, C. M.; Platz, M. S. J. Phys. Chem. B 2002, 106, 10263.

41. Schreiner, S.; Steiner, V.; Kramer, H. E. A. Photochem. Photobiol. 1975, 21, 81- 84

42. Silverstein, R. M.; Bassler, C. G.; Morrill, T. C.; 5th ed.; John Wiley & Sons, Inc.: New York, 1991, p 293.

134

CHAPTER 6

FLUORESCENCE, TIME CORRELATED SINGLE PHOTON COUNTING AND

ULTRAFAST SPECTROSCOPY STUDIES OF LUMICHROME AND ITS

OXIDES, AND OTHER AROMATIC N-OXIDES

6.1 Introduction

Alloxazines are products of the decomposition of biologically important flavins and are comparable to flavins in many organisms. 1, 2 Alloxazines as flavins (7,8- dimethyl-substituted isoalloxazines) possess nitrogen heterocycles with active centers at

N (10), N (5), N (3), and N (1), and at both carbonyl at C (2) and C (4). These compounds also possess the yellow chromophore characteristic of flavoproteins, which are enzymes occurring widely in animals and plants. Since the discovery of the yellow enzyme some 70 years ago, it has become clear that flavoproteins are involved in a very wide range of biological processes. 3 In most cases, their reactions are not light-driven; however, considerable studies on photo-induced electron transfer (ET) reactions of flavins as models to facilitate the elucidation of the reaction mechanisms in those biological systems have been performed.3

135 The early interest in the photophysical and photochemical properties of alloxazines including lumichromes was mainly driven by their closeness to flavins. The photochemistry of alloxazines is of importance. Of particular interest is information about its reactions with oxygen and the production of singlet oxygen. There is strong evidence for the involvement of singlet oxygen in many damaging photooxidations in biological systems. Singlet oxygen reacts with a wide variety of compounds containing carbon- carbon double bonds and conjugated double bonds, which are structural attributes of all biologically important substrates. 4-6

Riboflavin (RB, Figure 6.1) is well known to generate long-lived oxidants such as hydrogen peroxide and superoxide ion and short-lived singlet oxygen when riboflavin is in water or growth medium and exposed to visible light. RB is also known to form adducts with proteins, most likely between the flavin and tryptophan residues.7, 8 RB has recently received enormous attention from industry as a pathogen inactivator for the sterilization of blood products. 9, 10 Navigant Technologies (formerly Gambro BCT) suggested that nucleic acids are one target of riboflavin inactivation, and showed that riboflavin sensitizes nicks and crosslinks in DNA.9, 10

136

OH

HO OH

OH

H3C N N O

N H C N H 3 O Riboflavin (RB) CH3 H

H C N N O 3 H3C N N O

N N H C N H 3 H3C N H

O O Lumiflavin Lumichrome (LF) (LC)

Figure 6.1. Structures of riboflavin, and its photoproducts, lumiflavin and lumichrome.

Sensitizer photophysics and photochemistry can be summarized with the aid of a

11, 12 Jablonski diagram, as shown in Figure 6.2.

137

Figure 6.2. A Jablonski diagram. See text for details.

Upon absorption of light, the electronic ground state of the sensitizer So is converted to an electronically excited singlet state S1. The singlet state S1 can either go back to its ground state with light emission: fluorescence (φF=0.26, τF=5 ns, 520 nm for

1RB*) 14 or without light emission: radiationless decay. In solution the lifetimes of singlet states are short, in the range of 1-10 ns. S1 can undergo rapid intersystem crossing, ISC,

φ 1 * 3 * τ µ 15 ( ISC=0.7 for RB ) to the triplet excited state T1 ( RB , T1=10-100 s). The singlet state can also be quenched through intermolecular or intramolecular reactions.

Considering the short lifetime of S1, bimolecular reactions will occur only if the reagent is highly concentrated or if the reagent is complexed with S1. Thus, a sensitizer bound to protein or nucleic acid will likely show singlet state chemistry.16 On the other hand, the

13, 16 triplet state lifetimes are much longer than those of S1 . For example, the RB triplet

138 state has a lifetime of 0.1-0.2 s in solution. The triplet flavin can phosphoresce

15 (φP=0.0012, τP= 0.1 - 0.2 s, 610 nm) or undergo further chemistry, as shown in Figure

6.2. T1 reacts rapidly with oxygen, which has a triplet ground state, and this bimolecular reaction produces singlet oxygen, a very powerful oxidant, that is employed in many lipid targeted, photosensitized, and viral inactivation strategies. 19-23

Riboflavin (RB, Figure 6.1) absorbs strongly in both the UV and visible regions of the spectrum with maxima at 220, 265, 375, and 446 nm in water and is yellow-orange in color. RB was reported to convert into lumiflavin (LF, Figure 6.1) when it is irradiated in alkaline solution. 13-15 The irradiation of RB in neutral or acid solution yields a different

13-15 product: lumichrome (LC, Figure 6.1).

Riboflavin possesses some natural virtues that make it a good candidate as a photosensitizer. This fact motivated this study of the photochemistry of lumichrome and its oxides, LCO and LCO2 (Figure 6.3). Aromatic N-oxides generally have relatively high redox potentials and hence are oxidative compounds.24 As proposed by Daniels et al. 25, tirapazamine as an anti-tumor agent is also able to generate hydroxyl radical. The drug is proposed to not only produce hydroxyl radical, but, since tirapazamine has an N-oxide functional group, it may oxygenate DNA radicals, and the resulting radicals could induce

DNA strand breaks. Because of the likely involvement of hydroxyl radical in this bioreductively-activated drug, it is of interest to transplant this unique chemistry of aromatic N-oxides to the much studied photochemical generation of reactive oxygen species (ROS) of photosensitizers. The marriage of two types of anti-tumor therapeutic strategies, PDT and hypoxia-selective drug, may be able to create a new route toward cancer treatment.

139 Although heteroaromatic N-oxides do not have a significant occurrence in nature, many do possess bioactivity. In addition, N-oxidation is a general process during the metabolization of nitrogen heterocyles, and several N-oxides have been obtained as drug metabolites.26 Lumichrome N-oxides appear to have some advantages over tirapazamine as an anti-tumor agent. LCO and LCO2 present much higher water than riboflavin or lumichrome, and as analogs of LC which is generally regarded as safe, since

12 it is also a known metabolic breakdown product of RB (vitamin B2) in the human body.

O

H C H H C H 3 N N O 3 N N O

NH NH H3C N H3C N

O O O O

LCO LCO2

Figure 6.3. Structures of lumichrome N-oxide (LCO) and lumichrome di-N-oxide

(LCO2).

Although there are a large number of reports of photochemical reactions of thearomatic N-oxides family of compounds, there has been a lack of basic understanding of the photophysics of aromatic N-oxides, and the mechanism of these photoreactions is largely based on hypothesis. Therefore, it is necessary to investigate the photophysics of these compounds and study their energy and electron transfer reactions. In this chapter, we present a preliminary study of the singlet excited states of lumichrome (LC),

140 Lumichrome N-oxide (LCO) and lumichrome di-N-oxide (LCO2), along with pyridine N- oxide (PNO), isoquinoline N-oxide (IQNO) and riboflavin derivatives using ultrafast spectroscopy in acetonitrile; their fluorescence lifetimes were determined using time correlated single photon counting (TCSPC) in water, acetonitrile and methanol. The fluorescence quantum yields were also obtained.

6.2 Experimental

6.2.1 Materials

Lumichrome (LC, MW=242.24 g/mol), pyridine N-oxide (PNO, MW= 95.10 g/mol), isoquinoline N-oxide (IQNO, MW= 145.16 g/mol), methanol (purity >99%,

HPLC), acetonitrile (purity >99%, HPLC) and deuterated acetonitrile (purity >99%,

HPLC) were purchased from Sigma-Aldrich (St. Louis, MO) and were used as received.

All of these chemicals were used as received. Lumichrome N-oxide (LCO) and lumichrome-di-N-oxide (LCO2) were synthesized following the procedures described below. 2', 3’, 4’, 5’-tetraacetylriboflavin (riboflavin tetraacetate, RBTA) and riboflavin tetrabenzoate were synthesized according to the method of McCormick as utilized by

Shi.27

141 6.2.2 Synthesis of lumichrome N-oxide and lumichrome di-N-oxide

The prepararation of lumichrome N-oxide and lumichrome di-N-oxide were synthesized following the procedures of Litvak et al.28

• Synthesis of Lumichrome N-oxide.

Lumichrome (0.5 g, 2.1 mmol) was dissolved in 40 mL of concentrated acetic acid. To this, 4 mL of perchloric acid (50 %) was added slowly. The solution was heated at 70-80 °C for 4 hours. The mixture was then cooled to 10-12 °C. The precipitant was then removed and washed in 25 mL of water, 5 mL of ethanol, and 5 mL of diethylether.

The product was a yellow powder and the yield was 0.13 g (26 %). 1H NMR (δ, ppm,

DMSO-d6, 500 MHz). 1H NMR (500 MHz, δ, ppm, DMSO): 2.473 (s, 3H), 2.532 (s,

3H), 8.004 (s, 1H), 8.193 (s, 1H), 11.800 (s, 1H), 11. 950 (s, 1H). The was not obtained since the compound decomposed at 220 °C.

To obtain an analytically pure sample, the product was recrystallized 3 times from

50% acetic acid. The product is known to look like yellow micro needles.

• Synthesis of Lumichrome-di-N-oxide.

Lumichrome (0.5 g, 2.1 mmol) was dissolved in a solution of 8 mL of trifluoro acetic acid and 12 mL of trifluoro acetic acid anhydride to which 3 mL of perchloric acid

(50 %) was added slowly. The solution was then boiled for 3 hours. The reaction mixture was cooled down to 20-25 °C and then poured into 100 mL of water. The yellow-orange powder of LCO2 was precipitated and filtered and washed with 25 mL of water, 5 mL of

142 ethanol and 5 mL of diethylether. The yield was 0.16 g (32 %). 1H NMR (500 MHz, δ, ppm, DMSO-d6): 2.472 (s, 3H), 2.529 (s, 3H), 8.204 (s, 1H), 8.227 (s, 1H), 11.680 (s,

1H). The acidic properties of LCO2 can provide proton exchange with water, and therefore might explain why the tenth proton was not observed on the NMR spectra.

To obtain an analytically pure sample, the product was recrystallized 3 times from

50% acetic acid.

6.2.3 Fluorescence and ultrafast transient UV-Vis Spectroscopy

Fluorescence lifetimes were measured using the time correlated single photon counting (TCSPC) method and the picosecond time resolved absorption measurements were performed at the Center for Chemical and Biophysical Dynamics of The Ohio State

University. The experimental details are described in Chapter 2.

Fluorescence quantum yield (ΦF) experiments were carried out using a Spex

Fluorolog 1680 double spectrometer (JY Horiba Inc., Edison NJ, USA). Measurements of the fluorescence quantum yield were performed according to the protocol described at

31 the Jobin Yvon Ltd. Website. Harmane ((ΦF= 0.81, λex=390 nm, integrated from 405 to

650 nm, in 0.1 M H2SO4) was used as the standard for LCO. Acridine orange (ΦF= 0.46,

λex=475 nm, integrated from 500 to 750 nm, in ethanol) was used as the standard for

LCO2. A series of fluorescence intensities were plotted versus the corresponding absorptions (controlled under 0.2) at the excitation wavelengths to obtain the slopes (S) of the samples and standards. The quantum yields of samples were calculated by:

2 ΦX=ΦST (SX/SST)(ηX/ηST) , where η is the refractive index of the solution.

143 6.3 Results and discussion

The photophysical and spectroscopic properties of lumichrome and its oxides in their excited singlet states were investigated using fluorescence and ultrafast transient

UV-Vis spectroscopy.

6.3.1 Quantum yield and fluorescence lifetime measurement

Fluorescence spectroscopy was used to determine the quantum yield of lumichrome (LC) and its analogues lumichrome-N-oxide (LCO) and lumichrome di-N- oxide (LCO2). The absorption spectrum for lumichrome in acetonitrile is presented in

Figure 6.4. The photophysical and spectroscopic properties of LCO and LCO2 were studied in four solvents: water, acetonitrile, 1, 2-dichloroethane, and methanol, despite the limited solubility of LCO and LCO2 in a number of solvents. The lumichrome (Figure

6.4) and both lumichrome N-oxides absorption spectra (Figure 6.5) present two maxima between 270 and 500 nm and theoretical calculations predict that the two long- wavelength bands in the absorption spectra of lumichromes reflect two independent π -π

* transitions.32. Fluorescence emission spectra of lumichromes exhibit a single band with a maximum at about 440 nm, the exact position depending on solvent (Figures 6.4, 6.6 and 6.7).

144

1.5 B

1.0

Absorbance 0.5 334 380

A 0.0

200 300 400 500 600 700 Wavelength, nm

Figure 6.4. Absorption (A) and fluorescence (B) spectra of lumichrome in acetonitrile at room temperature with excitation wavelength at 355 nm.

1.4 UV-Vis spectra in acetonitrile of LCO LCO2 1.2

1.0

0.8

Absorbance 0.6

0.4 354 398 458 0.2 358

250 300 350 400 450 500 Wavelength, nm

Figure 6.5. Absorption spectra of LCO and LCO2 in acetonitrile.

145

Fluorescence of LCO with λ = 355 nm 120 c ex a 100

b 6 80

x10 60 d 40

# of photons 20

0 400 450 500 550 600 650 Wavelength, nm

Figure 6.6. Fluorescence spectra of LCO (λex=355 nm) in acetonitrile (a), methanol (b), water (c) and 1, 2 dichloroethane (d) at room temperature.

Fluorescence of LCO with λ = 355 nm 80 2 ex

b 60

6 d x10 40 c

a

20 # of photons # of photons

0 450 500 550 600 650 Wavelength, nm

Figure 6.7. Fluorescence spectra of LCO2 (λex=355 nm) in acetonitrile (a), methanol (b) water (c) and 1, 2 dichloroethane (d) at room temperature.

146 The wavelengths of the absorption and fluorescence maxima are listed in Table

6.1, together with quantum yields and fluorescence lifetimes in Table 6.2. Sikorska et al. concluded that for lumichromes, a significant solvent dependence is observed for both radiative and nonradiative rate constants, with the rate constants decreasing with increasing solvent polarity and with an increasingly protic nature of the solvent. 33-35 A red shift in the λ2 absorption band is observed for both lumichromes and lumiflavins with increasing polarity and the hydrogen-donating ability of the solvent, which may be explained on the basis of hydrogen bonding. A hydrogen donor may bond at the N (10)

33-35 and/or N (5) positions in lumichromes, long-wavelength shifts of the λ2 absorption band have been previously observed for lumichrome and riboflavin in the presence of the hydrogen-donating agent hexafluoro-2-propanol.36 The absorption and emission spectra of LCO and LCO2 were recorded in acetonitrile, methanol, 1, 2-dichloroethane and water as shown in Figures D.1 and D.2 (Appendix D), 6.6, and 6.7. The absorption and emission band positions of LCO were affected by the solvent polarity as previously

34 reported for LC (Table 6.1). The λ2 absorption of LCO in acetonitrile at 354 is shifted to 360 nm in water (Table 6.1). The fluorescence band maximum of LCO (Figure 6.6) is shifted from 463 nm in acetonitrile to 508 nm in methanol and 524 nm in water. The solvent effect is much smaller for LCO2 absorption and emission spectra (Figures D.2 and 6.7, Table 6.1). As observed in previous work for a large number of lumichromes studied, in polar protic solvents, water and methanol, the absorption and emission bands undergo red shifts, the fluorescence quantum yields becoming higher and fluorescence lifetimes longer, if compared to lumichromes in aprotic solvents. 34

147

Compound λ2, nm λ1, nm λfl , nm acetonitrile LC 336 382 439

LCO 354 398 463

LCO2 354 452 526 1, 2 dichloroethane LC 344 382 440

LCO 356 398 464 LCO 357 449 525 2 methanol LC 339 384 453 LCO 353 399 508 LCO2 354 447 537 water LC 353 385 479 LCO 360 401 524 LCO2 373 442 527

Table 6.1. Solvent effects on absorption and emission spectra of LC, LCO and LCO2. λ2 and λ1 are the positions of the two lowest energy bands in the absorption spectra; λfl is the fluorescence emission maximum,

Fluorescence spectroscopy was used to measure the quantum yield of lumichrome analogues lumichrome-N-oxide (LCO) and lumichrome di-N-oxide (LCO2) in acetonitrile. Harmane was used as the standard for LCO and acridine orange was used for

LCO2. The fluorescence quantum yield for LCO and LCO2 was determined in acetonitrile to be 0.122 and 0.131 respectively, the yields are 10 times larger than for LC. The results are summarized in Table 6.2.

148 λ2, nm λ1, nm λfl , nm φfl τfl, ns τfl, ns τfl, ns CH3CN CH3OH W RBTA 344 440 518 6.65 6.36 4.97 RBTB 352 446 514 5.85 5.74 6.13 LC 336 382 439 0.028a 0.714, 0.7a 1.38 1.53, 2.7a 0.9b LCO 354 398 463 0.122 1.21 0.79# 2.27# # # # # LCO2 354 452 526 0.131 1.01 2.55 0.46 3.85 IQNO 300 312 425 0.012c 0.71#, 1.49# PNO 216 278 400 0.19c 0.16#, 1.57# * The analysis were done using igor pro, the fitting error analysis is ± 0.02; # bi- exponential fitting a, reference 34; b, reference 38; c, reference 12.

Table 6.2. Spectroscopic and photophysical data for the singlet states of the flavins lumichromes and other aromatic N-oxides studied. λ2 and λ1 are the positions of the two lowest energy bands in the absorption spectra, λfl is the fluorescence emission maximum,

φfl is the fluorescence quantum yield, τfl is the fluorescence lifetime. W= PBS buffer, pH

= 7.4.

The time correlated single-photon counting fluorescence decays were obtained for lumichrome, its N-oxides, riboflavin derivatives, pyridine N-oxide and isoquinoline N- oxide in a variety of solvents at ambient temperature. Time-resolved fluorescence data were fitted to single exponential by an iterative convolution method employing a least squares fitting procedure. The samples were excited at 308 nm and the probing was adjusted to the spectral properties of the compounds. The emission decay of lumichrome is described well by a single-exponential function (Figure 6.10) and the data are

149 consistent with previous work that has been reported. 34, 37, 38 The TCSPC kinetic traces for LCO2 emission were fitted to a bi-exponential function (Figure 6.12) and the recorded fluorescence lifetimes in acetonitrile and aqueous solution show no significant effect of the solvent polarity for LCO2. A similar trend has been reported for lumichromes in some other protic solvents; in ethanol and in methanol the reported fluorescence lifetime is about 0.9 ns for LC and a fluorescence lifetime of about 1.0 ns has been reported for all others lumichromes studied.38 However LCO present different TCSPC traces and lifetime fluorescence in acetonitrile and in the buffer, LCO might interact with the solvent.

RBTA and RBTB present strong fluorescence spectra and as shown in Figures 6.8 and 6.9 their absorption and fluorescence spectra have similar features. Table 6.2 presents the fluorescence lifetimes of RBTA and RBTB obtained in acetonitrile, methanol and water. The molecules have similar fluorescence lifetimes (τf) on the order of 6 (± 0.5) ns. The fluorescence lifetimes were not affected by the excitation energy or by the solvent polarity. Lifetimes measured with 308 nm excitation were identical to those obtained with 355 nm excitation.

Isoquinoline N-oxide and pyridine N-oxide have very weak fluorescence and fluorescence lifetimes with these samples were determined by bi-exponential fitting to have a component shorter than 1 ns and another about 1.5 ± 0.2 ns using the TCSPC technique. The fluorescence obtained from these two compounds was very weak. It is known that these compounds photodegrade rapidly. Thus, it is possible that with these two compounds that we are observing the fluorescence of photoproducts.

150 2.0 UV-Vis spectrum of RBTA RBTB 1.5 PNO IQNO

1.0 Absorbance

0.5

0.0 200 250 300 350 400 450 500 550 W avelength, nm

Figure 6.8. Absorbance spectra of RBTA, RBTB, pyridine N-oxide and isoquinoline N- oxide in acetonitrile.

160 Fluorescence spectrum of RBTA 140 RBTB PNO * 5

120 IQNO * 5 6

x10 100 80 60 40

20 0 400 450 500 550 600 650 700 Wavelength, nm

Figure 6.9. Fluorescence spectra of RBTA (A= 0.067), RBTB (A= 0.065), pyridine N- oxide (A= 0.39) and isoquinoline N-oxide (A= 0.45) with excitation at 308 nm in acetonitrile.

151

10 a) LC in acetonitrile τ f = 0.714 ns 8

3

x10 6

4

# of photons of # 2

0 0 1 2 3 4 5 Time, ns 10 b) LC in methanol τ f = 1.38 ns 8

3

x10 6

4

# ofphotons 2

0 0 1 2 3 4 5 10 Time, ns c) LC in PBS τ f = 1.53 ns 8

6

3 x10 4

2

0 0 2 4 6 8 10

Figure 6.10. Fluorescence decay of LC obtained upon 308 nm excitation in a) acetonitrile, b) methanol, c) PBS buffer and monitored with TCSPC at 440 nm. The decay kinetics were fit to a single exponential function.

152 10 a) LCO in acetonitrile τ f = 1.21 ns 8

3

x10 6

4 # of photons # of 2

0

0 1 2 Time, ns 3 4 5

10 b) LCO in PBS τ f = 0.79 ns τ 8 f = 2.27 ns

3

x10 6

4 # of photons 2

0 0 2 4 6 8 10 Time, ns

Figure 6.11. Fluorescence decay of LCO obtained upon 308 nm excitation in a) acetonitrile, and b) in PBS buffer. Both were monitored with TCSPC at 440 nm. The decay kinetics were fit to a single exponential function.

153

10 a)

LCO2 in acetonitrile

τ =1.01 ns 3 8 f τ f =2.55 ns x10 6

4 # of photons of # 2

0 0 2 4 6 8 10

14 b) LCO2 in PBS 12 τ = 0.46 ns

f 3 τ = 3.85 ns 10 f x10 8

6

# of photons 4

2 0

0 2 4 6 8 10 Time, ns

Figure 6.12. Fluorescence decay of LCO2 obtained upon 308 nm excitation in a) acetonitrile, and b) in PBS buffer. Both decays were monitored using TCSPC at 520 nm.

The decay kinetics were fit to a double (a), a single (b) exponential function.

154

10 Pyridine-N-oxide in acetonitrile τ 8 f = 0.16 ns τ f = 1.57 ns 6

3

x10 4

# of photons 2

0

0 2 4 Time, ns 6 8 10

Figure 6.13. Fluorescence decay of PNO obtained upon 308 nm excitation in acetonitrile and monitored with TCSPC at 400 nm. The decay kinetic was fit to a double exponential function.

10

Isoquinoline-N-oxide in acetonitrile τ 8 f = 0.71 ns τ f = 1.49 ns 6

3 x10 4 # of photons

2

0 0 2 4 Time, ns 6 8 10

Figure 6.14. Fluorescence decay of IQNO obtained upon 308 nm excitation in acetonitrile and monitored with TCSPC at 400 nm. The decay kinetic was fit to a double exponential function.

155

10 a) RBTA in acetonitrile τ f = 6.65 ns

8 3

x10 6

4

# of photons 2

0 0 10 20 30 40 50 Time, ns

b) 10 RBTA in methanol τ f = 6.36 ns

3 8 x10 6

4 # of photons 2

0 0 10 20 30 40 50 Time, ns 10 c) RBTA in PBS τ f = 4.97 ns 8

3

x10 6

4 # of photons 2

0 0 10 20 30 40 50 Time, ns

Figure 6.15. Fluorescence decay of RBTA obtained upon 308 nm excitation in a) acetonitrile, b) methanol, and c) PBS buffer and monitored with TCSPC at 520 nm. The decay kinetics were fit to a single exponential function.

156

10 a) RBTB in acetonitrile τ = 5.85 ns 8 f

3 x10 6

4

# ofphotons 2

0

0 10 20 Time, ns 30 40 50 b) RBTB in Methanol 10 τ f = 5.74 ns

3 8 x10 6

4 # ofphotons 2

0 0 10 20 Time, ns 30 40 50 10 c) RBTB in PBS τ f = 6.13 ns

3 8 x10 6

4 # of photons 2

0 0 10 20 30 40 50 Time, ns

Figure 6.16. Fluorescence decay of RBTB obtained upon 308 nm excitation in a) acetonitrile, b) methanol, and c) PBS buffer and monitored with TCSPC at 520 nm. The decay kinetics were fit to a single exponential function.

157 6.3.2 Picosecond time-resolved LFP studies

Ultrafast spectroscopy was also used to examine the photophysics and photochemistry of the excited singlet states of these aromatic N-oxides.

Lumichrome, lumichrome-N-oxide and lumichrome di-N-oxide.

Ultrafast LFP of lumichrome (O.D. = 0.26 at 273 nm), lumichrome N-oxide

(O.D. = 0.45 at 273 nm) and lumichrome di-N-oxide (O.D. = 0.55 at 273 nm) in acetonitrile produces the transient spectra of Figures 6.17, 6.18 and 6.19. The transient absorption and kinetic traces were reproducible and the ultrafast transients observed with the three compounds present similar behavior. At short time scales (fs, ps) we expect the singlet states of the lumichromes to be observed as the triplet can be observed only at longer time scales (ns). The region between 350 nm and 500 recorded 1 ns after the laser pulse is consistent with the triplet state transient absorption produced upon 266 nm LFP of the lumichromes presented in Chapter 5. However the band at 550 nm of the LC triplet and is missing in the ultrafast spectrum (Figure 6.17), but the transient might be affected by strong fluorescence that overlaps the expected triplet state bands. The band at 380 and

420 nm in Figure 6.17 can be assigned to the LC singlet that is consistent with the

TCSPC studies and the bands at 360 nm and 450 nm are consistent with the triplet state bands. Similar results are obtained for LCO where the singlet bands might be at 400 and

420 nm and the triplet bands at 360 and 440 nm.

158

Instrument artifact 380 S1 420

T1

T 1 Problems due to bad subtraction of emission

Figure 6.17. Transient spectra produced upon ultrafast LFP of LC (O.D. = 0.26 at 273 nm) in acetonitrile.

S1 420 400

T1

440

360 Problems due to bad subtraction of emission

Figure 6.18. Transient spectra produced upon ultrafast LFP of LCO (O.D. = 0.45 at 273 nm) in acetonitrile.

159 Ultrafast LFP of lumichrome di-N-oxide (O.D. = 0.55 at 273 nm) in acetonitrile produces the transient spectra of Figure 6.19. The transient absorption and kinetic traces were reproducible; however the ultrafast transient spectrum is difficult to interpret. The decay at 380 nm may be that of the singlet state of LCO2, the TCSPC experiments do agree with the kinetic traces in Figure 6.20. The band at 520 nm shows a fast decay followed by a growth that decays within 1000 ps. The transient absorption band at 520 nm can be assigned to a possible photoproduct. The ultrafast studies of lumichrome and its oxides present interesting information despite being confounded by emission subtraction.

380 520

T1

Figure 6.19. Transient spectra produced upon ultrafast LFP of LCO2 (O.D. = 0.55 at 273 nm) in acetonitrile.

160

520

380

Figure 6.20. Transient absorption kinetic traces obtained by photoexcitation of LCO2 in acetonitrile at 273 nm and probing at 380 nm and 520 nm.

161 Riboflavin tetraacetate and Riboflavin tetrabenzoate.

Figures 6.21 and 6.22 present RBTA and RBTB ultrafast transient absorption spectra and show similar features. The strong fluorescence of RBTA and RBTB complicated the ultrafast data. Both compounds present similar nanosecond LFP transient absorption (Figure D.8, Appendix D). The ground state bleaching was observed at 440 nm. The kinetic traces as shown below (Figure 6.23) for RBTA and RBTB samples show a long-lived bleaching band and a positive long-lived absorption band. The TCSPC measurements confirmed that result and showed that the lifetime of S1 is longer than 1 ns.

The TCSPC measurements showed that RBTA and RBTB fluorescence lifetime are 6.65 and 5.85 ns respectively. Despite the clean ground state bleaching at 440 nm, the strong fluorescence the 480-620 nm however prevents study of these molecules with ultrafast techniques.

Very strong fluorescence

So instant rise

Figure 6.21. Transient spectra produced upon ultrafast LFP of RBTA (O.D. = 0.25 at

355 nm) in acetonitrile.

162

440

670

Figure 6.22. Transient spectra produced upon ultrafast LFP of RBTB (O.D. = 0.3 at 355 nm) in acetonitrile.

163

680

440

670

Figure 6.23. Transient absorption kinetic traces after photoexcitation in acetonitrile at

355 nm of RBTA (top) probing at 680 nm, and RBTB (bottom) probing at 440 and 670 nm.

164 Isoquinoline N-oxide and pyridine N-oxide.

Ultrafast LFP of isoquinoline N-oxide (O.D. = 0.62 at 273 nm) in acetonitrile produces the transient spectra shown in Figure 6.24. The transient absorption and kinetic traces were reproducible. At early time scales, the transient absorption spectra of IQNO decay at 380 nm, 460 nm and 570 nm and at longer time scales the growth of a 410 nm band is observed. Laser flash photolysis (LFP, 355 nm) of isoquinoline N-oxide produced the transient spectrum of 3IQNO* in methanol at ambient temperature as presented in

Figure 6.26. the IQNO triplet state lifetime is reported to be about 4 µs.39 The transient electronic spectrum of IQNO exhibits broad absorption from 350 to 420 nm (Figure

6.26), in excellent agreement with the literature. 39, 40 In Figure 6.24, the growth region present similar features to the UV-vis absorption of 3IQNO* and the kinetic trace at 410 nm shows a growth (Figure 6.25) which can help assign that peak to 3IQNO*. However, heterocycle N-oxides generally exhibit photochemical reactivity and photoproducts could be formed by electrocyclic rearrangement to three-membered rings.41

Isoquinoline N-oxide has a weak fluorescence and its fluorescence lifetimes obtained by the TCSPC technique are not consistent with the picosecond LFP data where the excited singlet state is seen to be ~ 300 ps, therefore, much shorter than 1 ns, the fluorescence lifetime reported above. The TCSPC results might not be reliable because

IQNO isomerizes readily and the weak fluorescence may be due to photoproducts.

165

A 380 570

480

Decay

B

Photoproduct Relaxed singlet S1 ?

Figure 6.24. Transient spectra produced upon ultrafast LFP of IQNO (O.D. = 0.62 at

273 nm) and recorded from 0.8 ps to 1000 ps after photoexcitation of PNO in acetonitrile.

166 480

570 410 370

Biexponential decay

410 T1

S1 τs ~ 300 ps

Figure 6.25. Transient absorption kinetic traces obtained after photoexcitation of IQNO in acetonitrile at 370 nm (a), 410 (b), 480 nm (c) and 570 (d) in shorter (top) and extended (bottom) time ranges.

167

0.12 4.2 mM iso-quinoline N-oxide in methanol upon 355 nm LFP, 50 ns after laser pulse 0.10 0.08

0.06

0.04

0.02 Transient absorbance 0.00

300 350 400 450 500 wavelength, nm

Figure 6.26. The transient UV-vis spectrum of triplet IQNO produced upon 355 nm LFP in methanol.

Ultrafast LFP of pyridine N-oxide (O.D. = 0.74 at 273 nm) in acetonitrile produces the transient spectra of Figure 6.27. The transient absorption maxima bands at

380 nm, 410 nm and 620 nm can be assigned to the long-lived singlet state and the recorded kinetic traces at these wavelengths do indeed decay with the same rate (Figure

6.28). The kinetic trace at 410 nm at longer time ranges after 2 ps decays much faster than at the other wavelengths (Figure 6.27), which might be due to a possible formation of photoproducts. As shown in Scheme 6.1, there is a large amount of possible photoproducts for this N-oxide compound. The kinetic traces are not consistent with

TCSPC data, which indicated that the fluorescence lifetime was less than 1 ns. PNO transient absorption decay at 380 nm, 410 nm, and 620 nm has a shorter lifetime. This study is not conclusive for IQNO or PNO, because their weak and possibly photoproduct fluorescence cannot provide reliable TCSPC traces.

168

1

2

1

3

Scheme 6.1. Possible heterocyclization reactions of pyridine N-oxide upon photolysis: oxaziridine (1), zwitterions (2) and 1, 2-oxazepine (3). 41

410

380

620

Long-lived S1 or photoproduct?

Figure 6.27. Transient spectra produced upon ultrafast LFP of PNO (O.D. = 0.74 at 273 nm) and recorded from 0.8 ps to 1000 ps after photoexcitation of PNO in acetonitrile.

169

410

380

620

410

380

620

Figure 6.28. Transient absorption kinetic traces after photoexcitation of PNO in acetonitrile at 380 nm, 410 and and 620 in shorter (top) and extended (bottom) time ranges.

170 6.4 Conclusions

The fluorescence quantum yield of lumichrome-N-oxide and lumichrome di-N- oxide was determined in acetonitrile and found to be 0.122 and 0.131 respectively. The

TCSPC traces recorded for LCO2 show no significant effect by the solvent polarity for

LCO2. However LCO presents different TCSPC traces and fluorescence lifetimes in acetonitrile and in the buffer. In fact the absorption and emission band positions of LCO were affected by the solvent polarity; the λ2 absorption of LCO in acetonitrile at 354 is shifted to 360 nm in water and the fluorescence band maximum of LCO is shifted from

463 nm in acetonitrile to 508 nm in methanol and 524 nm in water. The ultrafast transient absorption spectra of LC, LCO and LCO2 (273 nm LFP) in acetonitrile present similar behavior. At shorter time scales (fs, ps) the singlet state of the lumichromes is supposed to be observed and the triplet can be observed at longer time scales (ns). The region between 350 nm and 500 nm is consistent with the triplet state transient absorption produced upon 266 nm LFP of the lumichromes presented in Chapter 5. The ultrafast studies of the lumichromes are consistent with their TCSPC and nanosecond transient absorption spectra studies, despite being affected by emission subtraction.

The ultrafast transient absorption spectra of riboflavin derivatives, RBTA and

RBTB, show similar features despite the clean ground state bleaching at 440 nm.

However, the strong fluorescence the 480-620 nm however prevents from studying these molecules with ultrafast. The TCSPC measurements indicate that the RBTA and RBTB fluorescence lifetimes are 6.65 and 5.85 ns respectively.

171 Ultrafast transient absorption of isoquinoline N-oxide (273 nm LFP) in acetonitrile presents reproducible data. At early time scales (fs, ps) the transient absorption bands at 380 nm, 460 nm and 570 nm can be assigned to the singlet state and at longer time scales (ns) to the triplet state and photoproducts rising at 410 nm. The picosecond transient absorption spectra of pyridine N-oxide (273 nm LFP) in acetonitrile presents maxima bands at 380 nm, 410 nm and 620 nm that can be assigned to the long- lived singlet states. Isoquinoline N-oxide and pyridine N-oxide have a weak fluorescence and could not provide reliable TCSPC traces which are not consistent with the picosecond LFP data where the excited singlet state is seen to be ~ 300 ps.

6.5 References

1. Chastain, J.; McCormick, D. B., F. Muller Eds.;Chemistry and Biochemistry of Flavoenzymes, vol 1. CRC Press, Boston, 1991, p.196.

2. Toyosaki, T.; Hayashi, A. Milchwissenschaft - Milk Science International, 48, 1993, 607.

3. Chapman, S. K., Perham, R. N., Scrutton, N. S., Eds.; Flavins and Flavoprotein; Rudolf Weber Agency for Scientific Publications: Berlin, Germany, 2002.

4. Wilkinson, F.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data, 24, 1995, 663.

5. Wilkinson, F.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data, 22, 1993, 113.

6. Lissi, E. A.; Encias, M. V.; Lemp, E.; Rubio, M. A. Chem. Rev., 93, 1993, 699- 723.

7. Ono, S.; Oikawa, K.; Hirano, H.; Obara, Y. Int. J. Vitam. Nutr. Res. 1986, 56, 259-262.

8. Tapia, G.; Silva, E. Radiat. Environ. Biophys. 1991, 30, 131-138.

172 9. Goodrich, R. P. In In Cambridge Healthtech Institute's Sixth Annual Blood Product Safety Conference; 2000.

10. Ennever, J. F.; Carr, H. S.; Speck, W. T. Pediatr. Res. 1983, 17, 192-194.

11. http://grants.nih.gov/grants/guide/rfa-files/RFA-HL-00-010.html

12. Murov, S.C.; Carmichael, I.; Hug, G.L. “Handbook of Photochemistry” 2nd ed., Marcel Dekker, Inc.; New York, NY 1993.

13. Ahmad, I.; Rapson, D. C. J. Org. Chem. 1980, 45, 731-733

14. Smith, E. C.; Metzler, D. E. J. Am. Chem. Soc. 1963, 85, 3285-3288.

15. (a) Rivlin, R.S, New Engl J. Med., 1970, 283, 463-472. (b)The Merck Index, Twelfth Edition, Budavari, S.; ed. Merck Research Laboratories, 1996, see pages 956, 957 and 1410.

16. Lide, D. R. In CRC Handbook of Chemistry and Physics; 73rd ed.; Chemical Rubber Publishing Company: Ann Arbor, 1992, pp 9.2-9.8.

17. Voet, D.; Rich, A. Proc. Nat. Acad. Sci. USA 1971, 68, 1151.

18. Heelis, P.F., Chem. Biochem. Flavoenzymes, 1991, 1, 171-93.

19. Bensasson, R.V.; Land, E.J.; Truscott, T.G., Pergamon Press, U.K.; 1983.

20. Heelis, P.F., Chem. Soc. Rev., 1982, 11, 15-39.

21. (a) Ben-Hur, E. and Horowitz, B., Photochem. Photobiol., 1995, 62, 383-388. (b) Prince, A.M.; Horowitz, B.; Zang, E. M.S., Eur J Epidermiol 1987, 3, 103-18.

22. Gross, E. K. U.; Kohn, W. Adv. Quantum Chem. 1990, 21, 255-291.

23. Scarbrough, F. E.; Shieh, H. S.; Voet, D. Acta Crystallogr.,Sect.B, 1977, 33, 2512

24. Wardman, P. In Chemistry of Nitroarene and Aromatic N-oxide Radicals; Alfassi, Z. B., Ed.; N-Centered Radicals; John Wiley & Sons Ltd, 1998.

25. Daniels, J. S.; Gates, K. S.; Tronche, C.; Greenberg, M. M. Chem. Res. Toxicol. 1998, 11, 1254-1257.

26. Albini, A.; Pietra, S. In Heterocyclic N-oxides; CRC Press, Inc., 1991.

27. McCormick, D. B. Heterocycl. Chem. 1970, 7, 447.

173 28. Litvak, Z. I.; Berezovskii, V. M. Zhurnal Obshchei Khimii, 1981, 51, (2), 464- 466.

29. Yoneda, F.; Yoshiharu, S.; Misuzu, I. And Kazuko, S. J. Am. Chem. Soc. 1976, 98, 830-835.

30. Frost, D. V. J. Biol. Chem., 1942, 145, 693-700

31. http://www.jobinyvon.com/usadivisions/Fluorescence/applications/quantumyields trad.pdf

32. a) Sun, M.; Moore, T. A.; Song, P. S. J. Am. Chem. Soc., 94, 1972, 1730. b) Komasa, J.; Rychlewski, J.; Koziol, J. J. Mol. Struct. , 170, 1988, 205. c) Szymusiak, H.; Konarski, J.; Koziol, J. J. Chem. Soc., Perkin Trans., 2, 1990, 229.

33. Sikorska E., Koziolowa, A. J. Photochem. Photobiol., A. Chemistry, 95, 1996, 215

34. Sikorska, E.; Khmelinskii,I. V.; Pruka W.; Patel, M.; Worrall, D. R.; Bourdelande, J. L.; Koput,J.; Sikorski, M. J. Phys. Chem. A 2004, 108, 1501- 1508

35. Sikorska, E.; Kozio³owa, A.; Sikorski, M.; Siemiarczuk, A. J.Photochem. Photobiol. A, 2003, 157, 5.

36. a) Szafran, M. M.; Kozio³, J.; Heelis, P. F. Photochem. Photobiol.1990, 52, 353. b) Kozio³, J.; Szafran, M. M. J. Photochem. Photobiol. B 1990, 5, 429.

37. Sikorski, M.; Sikorska, E.; Wilkinson, F.; Steer, R. P. Can. J. Chem.1999, 77, 472.

38. Sikorski, M.; Sikorska, E.; Kozio³owa, A.; Gonzalez-Moreno, R.; Bourdelande, J. L.; Steer, R. P.; Wilkinson, F. J. Photochem. Photobiol. B 2001, 60, 114.

39. Shi, X.; Platz, M. S. J. Phys. Chem. A 2004, 108, 4385-4390.

40. Ono, I.; Hata, N. Bull. Chem. Soc. Jpn. 1973, 46, 3658.

41. Albani, A.; Alpegiani, M. Chem. Rev. 1984, 84, 43-71.

174

BIBLIOGRAPHY

1. Abdel-Fattah, A.; Aboul Enein, M. N.; Wassel, G. M.; El Menshawi, B. S. Dermatologica 1982, 165, 136-140.

2. Abeysekera, B. F.; Abramowski, Z.; Towers, G. N. H. Photochem.Photobiol. 1983, 38, 311-315.

3. Ahmad, I.; Rapson, D. C.; Heelis, P. F.; Phillips, G. D. J. Org. Chem. 1980, 45, 731.

4. Ahmad, N.; Mukhtar, H. Methods Enzymol. 2000, 319, 342-358.

5. Albini, A.; Pietra, S. In Heterocyclic N-oxides; CRC Press, Inc.: 1991.

6. Ali, H.; van Lier, J. E. Chem. Rev. 1999, 99, 2379.

7. Becker, R. S.; Chakravorti, S.; Gartner, C. A. Miguel, M. de G., J. Chem. Soc., Faraday Trans., 1993, 89, 1007–1019.

8. (a) Ben-Hur, E. and Horowitz, B., Photochem. Photobiol., 1995, 62, 383-388. (b) Prince, A.M.; Horowitz, B.; Zang, E. M.S., Eur J Epidermiol 1987, 3, 103-18.

9. (a) Bensasson, R. V.; Chalvet, O.; Land, E. J.; Ronfard-Haret, J. C. Photochem. Photobiol. 1984, 39, 287–291. (b) Bensasson, R. V.; Land E. J.; Salet, C. Photochem. Photobiol., 1978, 27,273– 280.

10. Bensasson, R.V.; Land, E.J.; Truscott, T.G., Pergamon Press, U.K.; 1983.

11. Bensasson, R. V.; Land, E. J.; Truscott, T. G. Excited States and Free Radicals in Biology and Medicine; Oxford University Press: Oxford, 1993.

12. Bevilacqua, R.; Bordin, F. Photochem. Photobiol. 1973, 17, 191-194.

13. (a) BIRBA "Toxicity Profile: Riboflavin and its derivatives," 1990. (b) http://grants.nih.gov/grants/guide/rfa-files/RFA-HL-00-010.html

14. Brown, J. M. Br. J. Cancer 1993, 67, 1163-1170. 175 15. Brown, J. M.; Wilson, W. R. Nat. Rev. Cancer. 2004, 4, 437-447.

16. Burger, P.M.; Simons, J.W.I.M. Mutat Res 1979, 63, 371-380.

17. Buterbaugh, J. S.; Toscano, J. P.; Weaver, W. L.; Gord, J. R.; Hadad, C. M.; Gustafson, T. L.; Platz, M. S. J. Am. Chem. Soc. 1997, 119, 3580.

18. Cadet, J. C.; Decarroz, S.; Wang, Y.; Midden, W. R. Isr. J. Chem. 1983, 23, 420- 429.

19. Caffieri, S.; Daga, A.; Vedaldi, D.; Dall’Acqua, F. J. Photochem.Photobiol. B: Biol. 1988, 2, 515.

20. Carlie, G.; Ntusi, N. B.; Hulley, P. A.; Kidson, S. H. Br. J. Dermatol. 2003, 149, 707.

21. Chapman, S. K., Perham, R. N., Scrutton, N. S., Favins and Flavoproteins; Eds; Rudolf Weber Agency for Scientific Publications: Berlin, Germany, 2002.

22. Chastain and D. B. McCormick, in F. Muller (ed.), Chemistry and Biochemistry of Flavoenzymes, vol 1. CRC Press, Boston, 1991 p.196.

23. Chen, T.; Platz, M. S.; Robert, M.; Saveant, J.-M.; Marcinek, A.;Rogowski, J.; Gebicki, J.; Zhu, Z.; Bally, T. J. Phys. Chem. A 1997, 101, 2124.

24. Corbin, F. Bus. Briefing: Med. DeVice Manuf. Technol. 2002, 1.

25. Coven, T. R.; Murphy, F. P.; Gilleaudeau, P.; Cardinale, I.; Krueger, J. G. Arch Dermatol. 1998, 134, 1263-1268.

26. Dall’Acqua, F.; Martelli, P. J. Photochem. Photobiol. B: Biol. 1991,8, 235.

27. Dalle C. M.; Pathak, M. A. J. Photochem. Photobiol. B. 1992, 14, 105-124.

28. Daniels, J. S.; Gates, K. S.; Tronche, C.; Greenberg, M. M. Chem. Res. Toxicol. 1998, 11, 1254-1257.

29. Dekker, R. H.; Srinivasan, B. N.; Huber, J. R.; Weiss, K. Photochem. Photobiol., 18, 1973, 457.

30. De Mol, N. J.; Beijersbergen van Henegouwen, G. M. J. Photochem.Photobiol. 1979, 30, 331.

31. Denny, W. A. Cancer Invest. 2004, 22, 604-619.

176 32. Edelson, R. L. Yale J. Biol. Med. 1989, 62, 565-577.

33. El Mofty A. M. J. R. Egypt Med Assos 1948, 31, 651.

34. Ennever, J. F.; Carr, H. S.; Speck, W. T. Pediat. Res. 1983, 17, 192-194.

35. Fisher, G. J.; Johns, H. E. Photochemistry and Photobiology of Nucleic Acids; Wang, S. Y., Ed; Academic Press: New York, 1976; Vol. 17. 1, p 226.

36. Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic:Structure Methods, 2nd ed.; Gaussian, Inc.: Pittsburgh, PA, 1996.

37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, J. V.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

38. Frost, D. V. J. Biol. Chem., 1942, 145, 693-700.

39. Gasparro, F. P., Psoralen DNA Photobiology; Ed.; CRC Press:Boca Raton, FL, 1988; Vols. 1 and 2.

40. Gasparro, F. P. Psoralen-DNA interactions: thermodynamics and photochemistry, Psoralen DNA Photobiology, vols. 1 and 2, CRC Press, Boca Raton, 1988, pp. 5– 36.

41. Daniels, J. S.; Gates, K. S. J. Am. Chem. Soc. 1996, 118, 3380-3385.

42. Daniels, J. S.; Gates, K. S.; Tronche, C.; Greenberg, M. M. Chem. Res. Toxicol. 1998, 11, 1254-1257.

43. Gilbert, A.; Bagott, J. Essentials of Molecular Photochemistry, Blackwell Scientific Publications, Oxford, 1991.

44. Gonzalez, E. Dermatol. Clinics 1995, 13, 851.

45. (a) Goodrich, R. P.; Platz, M. S. J. Phys. Chem. A 1998, 102(28), 5591.

177 (b) Goodrich, R. P.; Platz, M. S. Drugs Future 1997, 22, 159.

46. Goodrich, R. P. In Cambridge Healthtech Institute's Sixth Annual Blood Product Safety Conference, 2000.

47. Goodrich, R. P. Vox Sang. 2000, 78 Suppl 2, 211-215.

48. Goodrich, R. P.; Yerram, N. R.; Tay-Goodrich, B. H.; Forster, P.;Platz, M. S.; Kasturi, C.; Park, S. C.; Aebischer, J. N.; Rai, S.; Kulaga, L.Proc. Natl. Acad. Sci. U.S.A 1994, 91, 5552.

49. Grodowski, M. S.; Veyret, B.; Weiss, K. Photochem. Photobiol. 26, 1977, 341.

50. Gross, E. K. U.; Kohn, W. Adv. Quantum Chem. 1990, 21, 255-291.

51. Grossweiner, L.I. Singlet Oxygen: Generation and Properties, Web Document at http://www.photobiology.com/educational/len2/singox.html.

52. Gurzadyan, G. G. Photochem. Photobiol. Sci., 2002, 1, 757–762.

53. Harriman, A. RC Handbook of Photochemistry and Photobiology, CRC Press, Boca Raton, 1995.

54. Heelis, P. F. Chem. Soc. Rev. 1982, 11, 15-39.

55. Heelis, P.F., Chem. Biochem. Flavoenzymes, 1991,1, 171-93.

56. Honigsmann H, Ortel B. 1985, 2, 193-194.

57. Hofer A, Kerl H, Wolf D. Eur J Dermatol 2001, 11, 225-229.

58. http://www.jobinyvon.com/usadivisions/Fluorescence/applications/quantumyields trad.pdf

59. http://nobelprize.org/chemistry/laureates/1999/zewail-lecture.html

60. Jacques, P. F. 1997, 149-177.

61. Jori, G. J. Photochem. Photobiol. B. 1996, 36, 87-93.

62. (a) Joshi, P.C., Ind. J. Biochem. Biophys 1989, 26, 186-189. (b) Joshi, P. C., Toxicol. Lett. 1985, 26, 211-217. c) Kasai, H.; Crain, P. F.; Kuchina, Y.; Nishimura, S.; Outsuyama,A.; Tanoka, H. Carcinogenesis 1986, 7, 1847-1851.

178 63. Kanne, D.; Straub, K.; Rapoport, H.; Hearst, J. E. Biochemistry 1982, 21, 861- 871.

64. Knowles, A.; Roe, E. M. Photochem. Photobiol. 1968, 7, 421-436.

65. Kochevar, I. E.; Redmond, R. W. Methods Enzymol. 2000, 319, 20-28.

66. Korbelik, M. J. Clin. Laser Med. Surg. 1996, 14, 329.

67. Kovalskaya, N. I.; Sokolova, I. V. High Energy Chem., 2002, 36, 237–240.

68. Koziolowa, A. Photochem. Photobiol. 29, 1979, 459.

69. Laderoute, K.; Wardman, P.; Rauth, A. M. Biochem. Pharmacol. 1988, 37, 1487- 1495.

70. Lai, T.I.; Lim B. T.; Lim,E. C. J. Am. Chem. Soc., 1982, 104, 7631–7635.

71. Lide, D. R. In CRC Handbook of Chemistry and Physics; 73rd ed.; Chemical Rubber Publishing Company: Ann Arbor, 1992, pp 92-98.

72. (a) Lindelof, B.; Sigurgeirsson, B.; Tegner, E. Lancet 1991, 338, 91-93. (b) Lindelof, B.; Sigurgeirsson, B.; Tegner, E.Arch Dermatol 1992, 128, 1341- 1344.

73. Lissi, E. A.; Encias, M. V.; Lemp, E.; Rubio, M. A. Chem. Rev., 93, 1993, 699- 723.

74. Litvak, Z. I.; Berezovskii, V. M. Zhurnal Obshchei Khimii, 1981, 51, (2), 464- 466.

75. (a) Martin, C.B.; Shi, X.; Tsao, M. -L.; Karweik, D.; Brooke, J.; Hadad, C. M.; Platz, M. S. J. Phys. Chem. B 2002, 106, 10263. (b) Martin, C. B; Tsao, M. -L; Hadad, C. M.; Platz, M. S. J. Am. Chem. Soc. 2002, 124, 7226.

76. Massey, V. Biochem. Soc. Trans. 2000, 28 (part 4), 283-296.

77. Mataga, N.; Chosrowjan H.; Taniguchi S.; Tanaka F.; Kido N.; Kitamura M. J. Phys. Chem. B 2002, 106, 8917-8920.

78. McCormick, D. B. Heterocycl. Chem. 1970, 7, 447.

79. McCormick, D. B. Nutr. Rev. 1972, 30, 75-79.

179 80. a) Mantulin, W. W.; Song, P. S. J. Am. Chem. Soc. 1973, 95, 5122-5129. b) Song, P. S. Photochem. Photobiol. 1979, 29, 1177-1197.

81. Morliere, P.; Hönigsmann, H.; Averbeck, D.; Dardalhon, M.; Hüppe, G.; Ortel, B.; Santus, R.; Dubertret, L. J. InVest. Dermatol. 1988, 90, 720.

82. Murov, S.C.; Carmichael, I.; Hug, G.L. “Handbook of Photochemistry” 2nd ed., Marcel Dekker, Inc.; New York, NY 1993. 83. Nogami, H.; Hanano, M.; Awazu, S.; Iga, T. Chem. Phar. Bull. 1970, 18, 228- 234.

84. Ochsner, M. J. Photochem. Photobiol. B. 1997, 39, 1-18.

85. Oleinick, N. L.; Evans, H. H. Radiat. Res. 1998, 150, S146-56.

86. Ono, I.; Hata, N. Bull. Chem. Soc. Jpn. 1973, 46, 3658.

87. Ono, S.; Oikawa, K.; Hirano, H.; Obara, Y. Int. J. Vitam. Nutr. Res. 1986, 56, 259-262.

88. Orecchia G, Perfetti L. Dermatology 1992; 184, 120-123.

89. Ortel B, Tanew A, Honigsmann H. J Am Acad Dermatol. 1988, 18, 683-701.

90. Papodopoulu, D.; Averbeck, D. Mut Res 1985, 151, 281-291.

91. Pathak, M. A.; Fitzpatrick, T. B. J. Photochem. Photobiol., B: Biol. 1992, 14, 3.

92. Peckler, S.; Graves, B.; Kanne, D.; Rapoport, H.; Hearst, J. E.; Kim, S. H. J. Mol. Biol. 1982, 162, 157-172.

93. Poppe, W.; Grossweiner, L. I. Photochem. Photobiol. 1975, 22, 217.

94. Rai, S.; Kasturi, C.; Grayzar, J.; Platz, M. S.; Goodrich, R. P.; Yerram, N. R.; Wong, V.; Tay-Goodrich, B. H. Photochem. Photobiol. 1993, 58, 59.

95. Redpath, J. L.; Ihara J.; Patterson, L. K., Int. J. Radiat. Biol., 1978, 33, 309–315.

96. (a) Rivlin, R. S. N. Engl. J. Med. 1970, 283, 463-472. (b)The Merck Index, Twelfth Edition, Budavari, S.; ed. Merck Research Laboratories, 1996, see pages 956, 957 and 1410.

97. Roos, B. O. Int. J. Quant. Chem. Symp. 1987, 15, 175

98. Rosenthal, I.; Ben-Hur, E. Int. J. Radiat. Biol. 1995, 67, 85-91.

180 99. Sa E Melo, M. T.; Averbeck, D.; Bensasson, R. V.; Land E. L.; Salet, C. Photochem. Photobiol., 1979, 30, 645–651.

100. Scarbrough, F. E.; Shieh, H. S.; Voet, D. Acta Crystallogr.,Sect.B, 1977, 33, 2512.

101. Schmitt, I. M.; Chimenti, S.; Gasparro, F. P. J. Photochem.Photobiol. B: Biol. 1995, 27, 101.

102. Schreiner, S.; Steiner, V.; Kramer, H. E. A. Photochem. Photobiol. 1975, 21, 81-84.

103. Shaquiri, Z.; Keskinova, E.; Spassky, A.; Angelov, D. Photochem.Photobiol. 1997, 65, 517.

104. Sharman, W. M.; Allen, C. M.; van Lier, J. E. Methods Enzymol. 2000, 319, 376-400.

105. Shi, X.; Platz, M. S. J. Phys. Chem. A 2004, 108, 4385-4390.

106. Shi. X.; Poole J.S.; Emenike J.; Burdzinski G.; Platz M. S. J. Phys. Chem. A 2005, 109, 1491.

107. Shi, Y. B.; Lipson, S. E.; Chi, D. Y.; Spielman, P.; Monforte, J. A.; Hearst. In Biorganic Photochemistry; Morrison, H., Ed.; Wiley: New York, 1990; pp 341- 378.

108. Shida, T. Electronic Absorption Spectra of Radical Ions, Elsevier, Amsterdam, 1988.

109. Sikorska, E.; Khmelinskii,I. V.; Pruka W.; Patel, M.; Worrall, D. R.; Bourdelande, J. L.; Koput,J.; Sikorski, M. J. Phys. Chem. A 2004, 108, 1501- 1508.

110. Sikorska E., Koziolowa, A. J. Photochem. Photobiol., A. Chemistry, 95, 1996, 215.

111. Sikorski, M.; Sikorska, E.; Koziolowa, A.; Gonzalez-Moreno, R.; Bourdelande,J. L.; Steer, R. P.; Wilkinson, F. J. Photochem. Photobiol. B 2001, 60, 114.

112. (a) Sikorski, M.; Sikorska, E.; Worrall, D.R.; Wilkinson, F. Steer, R. P. Can. J. Chem.1999, 77, 472. (b) Sikorska, E.; Sikorski, M.; Steer, R. P.; Wilkinson, F.; Worrall, D. R. J. Chem. Soc., Faraday Trans. 1998, 94, 2347.

181 113. Sikorska, E.; Koziolowa, A.J.; Sikorski, M.; Siemiarczuk, A. J.Photochem. Photobiol. A, 2003, 157, 5.

114. Silva, E.; Salim-Hanna, M.; Edwards, A. M.; Becker, M. I.; De Ioannes, A. E. A light-induced tryptophan-riboflavin binding: biological implications; Plenum: New York, NY, 1991.

115. Silverstein, R. M.; Bassler, C. G.; Morrill, T. C.; 5th ed.; John Wiley & Sons, Inc.: New York, 1991, p 293. 116. Sloper, R. W.; Truscott T. G. Land, E. J. Photochem. Photobiol., 1979, 29, 1025–1029.

117. Smith, E. C.; Metzler, D. E. J. Am. Chem. Soc. 1963, 85, 3285-3288.

118. Snellman E., Klimenko T., Rantanen T. Acta Derm Venereol. 2004, 84, 132-7.

119. Solar S.; Quint R., Radiat. Phys.Chem., 1992, 39, 171–175.

120. (a) Stern, R.S. Lancet 1994, 344, 1644-5. (b) Stern, R.S. and Lange, R. J Invest Dermatol 1988, 91, 120-124.

121. Stern, R. S.; Nichols, K. T.; Vakeva, L. H. N. Engl. J. Med. 1997, 336, 1041.

122. Studinberg, H.M.; Weller, P. J Am Acad Dermatol 1993, 29, 1013-1022.

123. (a) Sun, M.; Moore, T. A.; Song, P. S. J. Am. Chem. Soc., 94, 1972, 1730. (b) Komasa, J.; Rychlewski, J.; Koziol, J. J. Mol. Struct. , 170, 1988, 205. (c) Szymusiak, H.; Konarski, J.; Koziol, J. J. Chem. Soc., Perkin Trans., 2, 1990, 229.

124. Szacilowski, K.; Macyk, W.; Drzewiecka-Matuszek, A.; Brindell, M.; Stochel, G. Chem. Rev. 2005, 105, 2647-2694.

125. (a) Szafran, M. M.; Kozio³, J.; Heelis, P. F. Photochem. Photobiol.1990, 52, 353. (b) Kozio³, J.; Szafran, M. M. J. Photochem. Photobiol. B 1990, 5, 429.

126. Tapia, G.; Silva, E. Radiat. Environ. Biophys. 1991, 30, 131-138.

127. Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027.

128. Toyosaki, T.; Hayashi, A. Milchwissenschaft - Milk Science International, 48, 1993, 607.

129. Valkova, S.; Trashlieva, M.; Christova, P. Clin. Exp. Dermatol.2004, 29, 180.

182 130. Voet, D.; Rich, A. Proc. Nat. Acad. Sci. USA 1971, 68, 1151.

131. Walsh, C. Acc. Chem. Res. 1980, 13, 148-155.

132. Wardman, P. In Chemistry of Nitroarene and Aromatic N-oxide Radicals, Alfassi, Z. B., Ed.; N-Centered Radicals; John Wiley & Sons Ltd, 1998.

133. Wilkinson, F.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data, 22, 1993, 113.

134. Wilkinson, F.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data, 24, 1995, 663.

135. Wolkenberg, S. E.; Boger, D. L. Chem. Rev. 2002, 102, 2477-2495.

136. Wood P. D.; Johnston, L. J., Photochem. Photobiol., 1997, 66, 642–648.

137. Wood P. D.; Johnston, L. J., J. Phys. Chem. A 1998, 102, 5585-5591.

138. Wood, P. D.; Mnyusiwalla, A.; Chen, L.; Johnston,L. J., Photochem. Photobiol., 2000, 72, 155-162.

139. Yagi, K., Yamano, K., Flavins and Flavoproteins; Eds; Japan Scientific Societies Press, Tokyo and University Park Press: Baltimore, MD, 1980.

140. Yoneda, F.; Yoshiharu, S.; Misuzu, I. And Kazuko, S. J. Am. Chem. Soc. 1976, 98, 830-835.

141. Young, A. R. J. Photochem. Photobiol. B: Biol. 1990, 6, 237.

142. Zeman, E. M.; Brown, J. M.; Lemmon, M. J.; Hirst, V. K.; Lee, W. W. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 1239-1242.

143. Zempleni, J.; Galloway, J. R.; McCormick, D. B. Am. J. Clin. Nutr. 1996, 63, 54-66.

183

APPENDIX A

SUPPORTING INFORMATION FOR CHAPTER 3

Support Information includes geometries, energies, S2 values, thermal corrections, frequencies, IR intensities energetic gaps of electronic states and oscillation factors (all

energies and frequencies are uncorrected) in gas phase and acetonitrile.

184 Psoralen ground state in gas phase

Point group: C01

6 2.940866000 1.053303000 -0.001593000 6 3.048261000 -0.401827000 0.000329000 8 1.841127000 -1.103739000 -0.000815000 6 0.619544000 -0.491637000 -0.000347000 6 0.509882000 0.925026000 0.000135000 6 1.740950000 1.675613000 -0.001148000 6 -0.497305000 -1.324403000 -0.000340000 6 -1.727120000 -0.684791000 -0.000041000 6 -1.893811000 0.720024000 0.000925000 6 -0.757957000 1.527565000 0.001279000 8 -2.942137000 -1.304325000 -0.000703000 6 -3.884708000 -0.298492000 -0.000277000 6 -3.323481000 0.932936000 0.000809000 8 4.072323000 -1.042267000 0.002127000 1 3.880572000 1.593002000 -0.002828000 1 1.683440000 2.761916000 -0.001993000 1 -0.391209000 -2.402560000 -0.000588000 1 -0.835519000 2.611429000 0.002254000 1 -4.909401000 -0.638472000 -0.001233000 1 -3.849112000 1.877421000 0.001136000

Thermal correction to Energy= 0.153759 Thermal correction to Gibbs Free Energy= 0.109179 B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -648.444929959

Frequencies -- 79.6125 124.0587 187.1157 Frequencies -- 237.9170 276.3230 350.2364 Frequencies -- 372.6268 396.6991 413.1697 Frequencies -- 455.5306 499.5909 551.3246 Frequencies -- 595.5220 613.2367 666.3801 Frequencies -- 730.1507 740.2310 746.0943 Frequencies -- 763.0929 774.6311 811.0284 Frequencies -- 838.6186 853.7608 860.3160 Frequencies -- 866.5806 893.0184 900.5673

185 Frequencies -- 931.1040 1006.8206 1064.5634 Frequencies -- 1105.2684 1133.2178 1168.3886 Frequencies -- 1194.3195 1206.1668 1255.3725 Frequencies -- 1286.5703 1323.0602 1346.1731 Frequencies -- 1413.2917 1432.6419 1496.0719 Frequencies -- 1510.6250 1600.3896 1617.0229 Frequencies -- 1674.2048 1685.1022 1841.7810 Frequencies -- 3187.7621 3199.3859 3241.8561 Frequencies -- 3246.5879 3272.6222 3304.1456

IR Inten -- 0.3664 2.8802 0.9394 IR Inten -- 0.1664 0.5979 3.8282 IR Inten -- 4.4412 6.6118 0.8513 IR Inten -- 1.6262 2.7298 12.7486 IR Inten -- 3.5134 4.1991 0.0728 IR Inten -- 4.9264 14.5656 12.6043 IR Inten -- 0.3222 28.9687 0.3593 IR Inten -- 19.4694 10.1213 2.2301 IR Inten -- 18.7635 39.1762 9.9968 IR Inten -- 32.4306 0.7470 20.4577 IR Inten -- 28.4371 87.5323 112.8826 IR Inten -- 44.2665 20.3556 7.5762 IR Inten -- 17.6365 42.1609 9.2822 IR Inten -- 6.4352 21.6702 37.5266 IR Inten -- 0.1939 22.4678 67.6162 IR Inten -- 4.3816 137.6548 637.0584 IR Inten -- 9.0138 9.0196 1.4227 IR Inten -- 0.1810 2.5757 0.7020

Psoralen triplet excited state in gas phase

S2 = 2.0238 Point group: C01

C 2.970378 1.027443 0.000496 C 3.053935 -0.387749 -0.000223 O 1.849135 -1.113799 0.000251 C 0.631226 -0.491284 -0.000430 C 0.522711 0.971837 -0.000248 C 1.687011 1.720544 0.000746 C -0.474713 -1.314636 0.000008

186 C -1.724339 -0.686267 -0.000183 C -1.906430 0.722583 -0.000513 C -0.795235 1.549548 -0.000313 O -2.926955 -1.323731 0.000592 C -3.885090 -0.329002 0.000368 C -3.341035 0.910225 -0.000603 O 4.083018 -1.053800 -0.000575 H 3.909700 1.566173 0.000706 H 1.655180 2.803899 0.001728 H -0.363044 -2.392265 0.001095 H -0.888371 2.630972 0.000206 H -4.904612 -0.684093 0.000754 H -3.880947 1.846505 -0.001270

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -648.319412596

Frequencies -- 72.4319 99.7306 154.6232 Frequencies -- 238.4044 243.4756 314.7446 Frequencies -- 342.9851 346.4369 390.2000 Frequencies -- 425.2775 491.7325 544.8107 Frequencies -- 579.3108 588.2173 594.1104 Frequencies -- 668.4713 691.1196 707.2182 Frequencies -- 710.0776 724.3664 738.6052 Frequencies -- 766.5747 792.2244 816.3173 Frequencies -- 836.4036 855.2646 859.1505 Frequencies -- 885.7767 921.9044 954.7606 Frequencies -- 1053.1075 1122.2450 1150.0705 Frequencies -- 1183.1312 1192.0521 1211.4716 Frequencies -- 1274.2512 1303.0818 1340.6856 Frequencies -- 1370.6911 1408.2838 1431.9946 Frequencies -- 1486.8642 1512.2364 1559.4313 Frequencies -- 1597.3404 1603.3534 1650.0887 Frequencies -- 3208.9977 3224.7341 3244.9776 Frequencies -- 3251.5997 3273.7261 3304.9095

IR Inten -- 0.2546 1.3011 0.4206 IR Inten -- 0.8159 5.1537 0.2309 IR Inten -- 2.8161 0.8748 9.9322 IR Inten -- 2.8082 2.4729 5.3594 IR Inten -- 6.1560 0.1622 12.3523 IR Inten -- 19.7246 23.7000 0.3925 IR Inten -- 1.6479 3.7347 1.7911 IR Inten -- 16.4248 2.9601 41.1370 IR Inten -- 5.5652 12.5931 18.6585 IR Inten -- 34.1265 16.6206 21.8482

187 IR Inten -- 31.6058 59.2926 30.1147 IR Inten -- 2.4963 83.6586 26.8343 IR Inten -- 1.9290 59.8228 64.0223 IR Inten -- 23.0620 23.8139 41.6864 IR Inten -- 103.3666 377.7813 20.5572 IR Inten -- 13.9456 73.1939 31.2949 IR Inten -- 3.9997 10.3104 0.0348 IR Inten -- 7.7881 3.7868 0.1480

Excited State 1: ?Spin -?Sym 0.7158 eV 1732.13 nm f=0.0031 Excited State 2: ?Spin -?Sym 1.4591 eV 849.71 nm f=0.0000 Excited State 3: ?Spin -?Sym 1.9409 eV 638.80 nm f=0.0008 Excited State 4: ?Spin -?Sym 2.1296 eV 582.18 nm f=0.0291 Excited State 5: ?Spin -?Sym 2.6766 eV 463.21 nm f=0.0016 Excited State 6: ?Spin -?Sym 3.0106 eV 411.83 nm f=0.2040 Excited State 7: ?Spin -?Sym 3.4658 eV 357.73 nm f=0.0107 Excited State 8: ?Spin -?Sym 3.5650 eV 347.78 nm f=0.0487 Excited State 9: ?Spin -?Sym 3.7102 eV 334.17 nm f=0.0000 Excited State 10: ?Spin -?Sym 3.8960 eV 318.23 nm f=0.0147

Psoralen ground state in acetonitrile

Point group: C01

C -2.939089 1.053121 0.000643 C -3.042918 -0.396002 0.000034 O -1.844518 -1.100992 -0.000555 C -0.617583 -0.491592 -0.000562 C -0.509047 0.923766 -0.000678 C -1.736751 1.674297 -0.000111 C 0.495573 -1.326959 -0.000731 C 1.725008 -0.686571 -0.000317 C 1.891594 0.718480 -0.000151 C 0.758464 1.527967 -0.000736 O 2.938803 -1.304899 0.000170 C 3.883191 -0.296854 0.000798 C 3.320389 0.932632 0.000613 O -4.069093 -1.044133 0.001003 H -3.876040 1.598028 0.001364 H -1.678804 2.760414 -0.000383 H 0.391509 -2.405857 -0.000782 H 0.836470 2.611790 -0.000835

188 H 4.908574 -0.636536 0.001371 H 3.843765 1.878637 0.001498

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -648.454944676

Frequencies -- 32.4491 100.5496 188.6746 Frequencies -- 234.7521 254.8519 353.2221 Frequencies -- 370.3470 396.5603 408.8449 Frequencies -- 452.8963 501.1628 551.1716 Frequencies -- 570.7072 615.8160 665.7315 Frequencies -- 720.9907 741.3694 746.4131 Frequencies -- 764.7262 775.8142 811.5707 Frequencies -- 838.2331 854.9979 860.8967 Frequencies -- 873.1845 896.3317 903.7342 Frequencies -- 936.2311 1013.1839 1056.6207 Frequencies -- 1111.0929 1131.4317 1166.7519 Frequencies -- 1192.5499 1208.0295 1257.1965 Frequencies -- 1286.2772 1322.4704 1342.9655 Frequencies -- 1417.2884 1434.0547 1495.5605 Frequencies -- 1511.6600 1600.6595 1617.0899 Frequencies -- 1672.5622 1680.3247 1807.9383 Frequencies -- 3196.1484 3203.9573 3240.4067 Frequencies -- 3240.5104 3273.2063 3300.8730

IR Inten -- 0.2406 3.3235 0.7062 IR Inten -- 0.5142 1.6756 5.2877 IR Inten -- 8.9936 9.1341 1.3473 IR Inten -- 2.3135 6.5851 25.8803 IR Inten -- 5.8978 7.1741 0.0529 IR Inten -- 5.9425 18.5107 10.8810 IR Inten -- 1.0042 47.0246 0.4516 IR Inten -- 32.3705 16.0173 29.4755 IR Inten -- 0.0326 10.5657 47.0360 IR Inten -- 59.2174 1.6390 42.5398 IR Inten -- 23.3198 120.1737 241.8473 IR Inten -- 54.9235 19.7910 15.4153 IR Inten -- 26.8639 85.9244 15.0959 IR Inten -- 4.8945 43.3612 65.8297 IR Inten -- 0.8633 37.0989 163.4865 IR Inten -- 5.1464 276.2497 1070.7424 IR Inten -- 5.1444 2.0398 1.3695 IR Inten -- 4.9443 5.9600 7.5588

189 Psoralen triplet excited state in acetonitrile

S2 = 2.0272 Point group: C01

C -2.967748 1.029817 0.002710 C -3.052147 -0.383971 0.000424 O -1.853840 -1.114500 -0.001864 C -0.629632 -0.491897 -0.001374 C -0.521898 0.968772 -0.001532 C -1.684400 1.719774 -0.001293 C 0.472574 -1.315405 -0.001148 C 1.724342 -0.686589 -0.000532 C 1.906656 0.721216 -0.000559 C 0.795721 1.547414 -0.001486 O 2.924304 -1.323563 0.000799 C 3.885924 -0.327346 0.002076 C 3.340734 0.909951 0.000796 O -4.083102 -1.052777 0.001231 H -3.904898 1.574443 0.010337 H -1.652964 2.803055 -0.002235 H 0.364366 -2.394002 -0.001340 H 0.887997 2.628972 -0.001677 H 4.905839 -0.683107 0.003518 H 3.880014 1.846949 0.001584

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -648.356784594

Frequencies -- 66.2952 100.4841 155.0369 Frequencies -- 240.8354 243.2922 313.4536 Frequencies -- 343.5653 348.8943 390.9284 Frequencies -- 424.7470 492.3206 545.0179 Frequencies -- 578.8346 590.8788 594.8013 Frequencies -- 671.8210 692.3067 706.8572 Frequencies -- 711.0199 736.4956 739.7076 Frequencies -- 771.8972 794.8511 824.9599 Frequencies -- 835.7697 854.6886 870.2479 Frequencies -- 889.8967 924.9988 959.3862 Frequencies -- 1049.0829 1120.6801 1148.2183 Frequencies -- 1182.8676 1187.4020 1213.0272 Frequencies -- 1274.3063 1303.3480 1344.4237 Frequencies -- 1372.2535 1407.9433 1433.1198 Frequencies -- 1476.6682 1513.3026 1561.8921 Frequencies -- 1599.6525 1605.9395 1659.5578

190 Frequencies -- 3213.1584 3228.7509 3238.3926 Frequencies -- 3239.1100 3273.9545 3301.6837

IR Inten -- 0.5800 1.9300 0.4676 IR Inten -- 2.7522 7.3059 0.5270 IR Inten -- 3.7052 2.5978 20.9908 IR Inten -- 4.0489 3.3532 10.6358 IR Inten -- 8.2367 0.7328 19.9535 IR Inten -- 23.0584 38.4006 0.4541 IR Inten -- 5.6429 4.4571 4.3195 IR Inten -- 25.3428 7.7737 48.2537 IR Inten -- 6.4454 37.1609 5.7948 IR Inten -- 85.8553 25.0819 57.1385 IR Inten -- 57.3889 128.7429 55.2292 IR Inten -- 16.4611 117.7246 79.2415 IR Inten -- 2.0212 129.6903 149.2054 IR Inten -- 44.3967 40.2199 124.6625 IR Inten -- 244.9899 790.9357 22.8478 IR Inten -- 23.5561 114.8326 73.5943 IR Inten -- 1.2773 6.7485 6.6959 IR Inten -- 11.4396 8.1603 17.6646

8-MOP ground state in gas phase

Point group: C01

6 -3.215581000 -1.158287000 0.043085000 6 -3.158666000 0.298624000 -0.021056000 8 -1.883293000 0.858158000 -0.056814000 6 -0.740790000 0.110262000 -0.032859000 6 -0.783536000 -1.303697000 0.030826000 6 -2.092943000 -1.909103000 0.068439000 6 0.469320000 0.830753000 -0.074442000 6 1.625454000 0.044303000 -0.051728000 6 1.614503000 -1.368668000 0.022382000

191 6 0.402307000 -2.051812000 0.062471000 8 2.917640000 0.502142000 -0.103020000 6 3.722340000 -0.613823000 -0.055894000 6 3.006827000 -1.758130000 0.019415000 8 -4.106843000 1.047335000 -0.044176000 8 0.385167000 2.178338000 -0.165814000 6 1.491848000 2.979380000 0.254815000 1 -4.209662000 -1.589125000 0.070308000 1 -2.155368000 -2.993948000 0.118120000 1 0.360622000 -3.135559000 0.112880000 1 4.781939000 -0.408992000 -0.087486000 1 3.403898000 -2.762465000 0.064913000 1 1.117813000 4.004538000 0.255804000 1 2.336906000 2.893501000 -0.433884000 1 1.815989000 2.705459000 1.265216000

Thermal correction to Energy= 0.189089 Thermal correction to Gibbs Free Energy= 0.137087

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -762.957443899

Frequencies -- 26.8684 69.4463 119.8364 Frequencies -- 146.7301 181.2472 191.2951 Frequencies -- 214.6676 246.3274 284.2642 Frequencies -- 344.3652 370.3046 398.2096 Frequencies -- 408.6985 412.5373 499.8513 Frequencies -- 554.4284 566.5215 591.5619 Frequencies -- 600.7165 642.3762 661.6722 Frequencies -- 704.5238 733.0477 760.3405 Frequencies -- 769.1314 823.3517 830.5527 Frequencies -- 846.9724 857.1988 865.5495 Frequencies -- 889.6514 983.5684 1006.9995 Frequencies -- 1034.1367 1071.7652 1104.9486 Frequencies -- 1129.1230 1169.5305 1180.6287 Frequencies -- 1183.8011 1203.9174 1235.5854 Frequencies -- 1246.7908 1299.3437 1326.0482 Frequencies -- 1369.7893 1419.0084 1438.4068 Frequencies -- 1467.7546 1504.6608 1512.6806 Frequencies -- 1520.8988 1528.7860 1609.5087 Frequencies -- 1629.3269 1665.3666 1682.9216 Frequencies -- 1839.3133 3056.0055 3132.3089 Frequencies -- 3167.8459 3187.5355 3207.6667 Frequencies -- 3240.6870 3272.1117 3303.0863

IR Inten -- 7.7164 0.4555 2.7524

192 IR Inten -- 0.3677 1.9447 0.9590 IR Inten -- 0.1146 0.8265 0.1188 IR Inten -- 5.6315 0.7938 4.6291 IR Inten -- 1.2723 5.3882 8.8307 IR Inten -- 7.3476 8.6800 2.2096 IR Inten -- 1.1100 3.1936 0.3126 IR Inten -- 4.0877 2.6197 11.6149 IR Inten -- 34.3182 14.5139 1.7315 IR Inten -- 0.6405 18.7782 38.7127 IR Inten -- 9.6348 12.1366 0.5658 IR Inten -- 49.7660 25.0392 32.3971 IR Inten -- 203.8445 25.9429 53.2269 IR Inten -- 74.6425 15.2971 11.3818 IR Inten -- 72.7071 17.3386 48.5974 IR Inten -- 97.3598 2.5388 100.6937 IR Inten -- 86.0316 7.1847 20.2392 IR Inten -- 6.8695 21.2150 3.1853 IR Inten -- 116.3490 27.1396 62.9627 IR Inten -- 634.1668 50.9549 30.7300 IR Inten -- 18.7233 10.6605 6.4014 IR Inten -- 2.0619 2.0099 0.9605

8-MOP triplet excited state in gas phase

S2 = 2.0251 Point group: C01

6 -2.932182000 -1.524074000 0.105545000 6 -3.054206000 -0.122270000 -0.099479000 8 -1.865598000 0.605808000 -0.247342000 6 -0.624891000 0.028588000 -0.090004000 6 -0.484371000 -1.412902000 0.065653000 6 -1.630382000 -2.181559000 0.142377000 6 0.464719000 0.878930000 -0.126564000

193 6 1.742885000 0.256114000 -0.069385000 6 1.944805000 -1.137133000 0.037267000 6 0.846826000 -1.980307000 0.119745000 8 2.926110000 0.914293000 -0.120912000 6 3.906645000 -0.057016000 -0.054991000 6 3.383946000 -1.301095000 0.042628000 8 -4.095603000 0.515581000 -0.168520000 8 0.429034000 2.225592000 -0.285541000 6 -0.477076000 2.989467000 0.535759000 1 -3.853567000 -2.076693000 0.237489000 1 -1.571727000 -3.259141000 0.242658000 1 0.951064000 -3.055641000 0.219148000 1 4.918007000 0.318110000 -0.095352000 1 3.937052000 -2.227447000 0.106184000 1 -0.195312000 4.030426000 0.368484000 1 -0.335327000 2.736564000 1.596286000 1 -1.522044000 2.823167000 0.252316000

Thermal correction to Energy= 0.185073 Thermal correction to Enthalpy= 0.186018 Thermal correction to Gibbs Free Energy= 0.130095

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -762.862362393

Frequencies -- 41.8316 74.6755 107.3313 Frequencies -- 107.9527 125.8965 168.5980 Frequencies -- 191.3729 221.0821 261.1587 Frequencies -- 282.0251 304.0455 328.5999 Frequencies -- 362.7167 386.0535 433.8060 Frequencies -- 482.4272 493.3978 534.8879 Frequencies -- 557.2590 597.5730 630.2640 Frequencies -- 646.4187 662.2253 680.6672 Frequencies -- 690.0490 734.3774 756.9141 Frequencies -- 768.1161 795.0205 841.7974 Frequencies -- 862.0462 895.9266 955.7804 Frequencies -- 974.8289 1043.9988 1071.1895 Frequencies -- 1122.2646 1140.7242 1155.3118 Frequencies -- 1164.0521 1206.3231 1226.7238 Frequencies -- 1235.4127 1256.4493 1317.0847 Frequencies -- 1390.3720 1399.3100 1411.6859 Frequencies -- 1449.5934 1456.6445 1485.8286 Frequencies -- 1503.3206 1515.8592 1519.1835 Frequencies -- 1532.3424 1554.5713 1609.3606 Frequencies -- 1880.0012 3093.3456 3186.0140

194 Frequencies -- 3189.3982 3190.3045 3220.1842 Frequencies -- 3231.3855 3272.6028 3307.4831

IR Inten -- 7.6160 1.3289 22.7227 IR Inten -- 0.2262 0.5776 0.1111 IR Inten -- 0.2721 0.0522 9.0860 IR Inten -- 0.0568 7.3073 0.2303 IR Inten -- 1.6324 5.5153 5.8027 IR Inten -- 23.2660 7.1298 4.8107 IR Inten -- 16.6812 3.7971 0.0055 IR Inten -- 7.3843 10.3044 7.1296 IR Inten -- 0.5865 30.7519 54.3483 IR Inten -- 5.9097 17.0249 10.8377 IR Inten -- 3.0837 22.0060 3.2281 IR Inten -- 66.7090 133.4489 47.5766 IR Inten -- 33.6689 72.8635 77.2028 IR Inten -- 0.9671 1.5089 10.5033 IR Inten -- 19.4399 354.2771 128.1943 IR Inten -- 1.4249 100.0362 37.1751 IR Inten -- 149.3168 184.2943 48.6901 IR Inten -- 12.5442 8.6074 43.8813 IR Inten -- 45.0911 46.2259 124.0077 IR Inten -- 1272.5407 27.2359 8.8505 IR Inten -- 16.1989 15.4486 19.4274 IR Inten -- 6.1624 4.5431 3.3495

Excited State 1: ?Spin -?Sym 0.4638 eV 2673.10 nm f=0.0020 Excited State 2: ?Spin -?Sym 1.5352 eV 807.62 nm f=0.0002 Excited State 3: ?Spin -?Sym 1.7944 eV 690.96 nm f=0.0222 Excited State 4: ?Spin -?Sym 2.1474 eV 577.36 nm f=0.0201 Excited State 5: ?Spin -?Sym 2.5443 eV 487.30 nm f=0.0026 Excited State 6: ?Spin -?Sym 2.8724 eV 431.64 nm f=0.0339 Excited State 7: ?Spin -?Sym 3.1408 eV 394.76 nm f=0.1619 Excited State 8: ?Spin -?Sym 3.4110 eV 363.48 nm f=0.0033 Excited State 9: ?Spin -?Sym 3.5757 eV 346.74 nm f=0.0122 Excited State 10: ?Spin -?Sym 3.6971 eV 335.35 nm f=0.0051

195 8-MOP ground state in acetonitrile

Point group: C01

C -3.223657 -1.144800 0.004289 C -3.155553 0.306869 -0.000387 O -1.885872 0.864013 -0.003613 C -0.740989 0.110106 -0.002863 C -0.792888 -1.302871 0.000912 C -2.102805 -1.901640 0.004001 C 0.467368 0.831311 -0.006010 C 1.621430 0.041275 -0.004235 C 1.601711 -1.374711 0.001073 C 0.389283 -2.056792 0.002897 O 2.915490 0.490691 -0.007287 C 3.713729 -0.631774 -0.002291 C 2.990477 -1.772794 0.002422 O -4.100636 1.069526 -0.002089 O 0.370248 2.180846 -0.013114 C 1.559224 2.976555 0.017967 H -4.218202 -1.575810 0.007174 H -2.172201 -2.987081 0.006782 H 0.344663 -3.141463 0.006279 H 4.775343 -0.432272 -0.002779 H 3.380014 -2.781347 0.007142 H 1.209062 4.010051 0.022826 H 2.178555 2.801240 -0.866292 H 2.144940 2.781681 0.921034

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -762.966754753

Frequencies -- -13.8223 81.6277 128.3201 Frequencies -- 181.6881 198.3604 234.0035 Frequencies -- 245.0135 288.7776 340.0775 Frequencies -- 352.2314 371.2987 407.9778 Frequencies -- 411.7550 492.5347 538.3027 Frequencies -- 562.3859 579.5718 600.5143 Frequencies -- 622.6971 644.6410 662.6693 Frequencies -- 706.5008 750.5374 762.3079 Frequencies -- 785.1665 828.9251 834.3928 Frequencies -- 849.6365 864.1957 877.5581 Frequencies -- 888.8174 983.5717 1013.4329 Frequencies -- 1036.6303 1070.1681 1109.4753

196 Frequencies -- 1129.6740 1166.8069 1180.5010 Frequencies -- 1186.1274 1203.7946 1236.3906 Frequencies -- 1246.3349 1295.8468 1325.9954 Frequencies -- 1370.3592 1425.7692 1440.1457 Frequencies -- 1468.3481 1506.8786 1512.1433 Frequencies -- 1517.8205 1519.6332 1609.3281 Frequencies -- 1630.0415 1666.1471 1678.4210 Frequencies -- 1804.7632 3067.5165 3144.9746 Frequencies -- 3171.8014 3195.2990 3214.1282 Frequencies -- 3240.3090 3273.0957 3301.1445

IR Inten -- 10.0349 0.2082 4.9488 IR Inten -- 2.6098 0.7956 0.0366 IR Inten -- 0.6347 0.1047 3.4037 IR Inten -- 10.9726 2.5618 0.5175 IR Inten -- 8.1376 15.3995 9.2365 IR Inten -- 16.4147 6.1002 2.0884 IR Inten -- 6.9351 6.4396 0.5012 IR Inten -- 6.2197 2.7656 14.2707 IR Inten -- 43.6572 18.2871 9.1498 IR Inten -- 0.4823 62.9308 9.4625 IR Inten -- 13.4713 10.9629 1.3270 IR Inten -- 84.2520 56.3921 31.9322 IR Inten -- 342.0980 97.3963 1.9088 IR Inten -- 151.3912 22.3276 38.8637 IR Inten -- 100.0233 14.8215 82.0974 IR Inten -- 144.6956 6.7516 187.0717 IR Inten -- 133.5160 10.6916 22.6620 IR Inten -- 9.0695 27.8468 9.8387 IR Inten -- 223.5668 52.5791 119.7786 IR Inten -- 1092.1679 45.0481 26.2614 IR Inten -- 19.3356 4.4083 0.1942 IR Inten -- 1.3952 5.3724 6.9245

197 8-MOP triplet excited state in acetonitrile

S2 = 2.0246

Point group: C01

C 2.939645 -1.574289 -0.001845 C 3.126009 -0.190580 -0.000944 O 1.824637 0.577855 0.004138 C 0.624206 0.009551 0.002705 C 0.480914 -1.412615 0.001790 C 1.665724 -2.167590 0.000344 C -0.512670 0.889479 0.001629 C -1.792109 0.262144 0.001311 C -1.979383 -1.108305 0.000671 C -0.838307 -1.976753 0.001474 O -2.984285 0.921025 -0.000651 C -3.945388 -0.040622 -0.002699 C -3.392707 -1.297642 -0.001778 O 4.098255 0.540606 -0.003260 O -0.519185 2.217517 0.000853 C 0.667944 3.038499 -0.001110 H 3.836736 -2.182799 -0.006622 H 1.588253 -3.251243 -0.000046 H -0.959673 -3.054750 0.001288 H -4.964523 0.316683 -0.004111 H -3.935116 -2.233178 -0.003472 H 0.284953 4.059205 -0.006111 H 1.266605 2.847327 -0.892279 H 1.264130 2.855081 0.893439

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -762.868909235

Frequencies -- -99.3200 71.8946 106.2442 Frequencies -- 123.9854 172.0791 177.4848 Frequencies -- 217.0345 220.8592 282.6503 Frequencies -- 288.0769 320.0218 333.6744 Frequencies -- 362.0963 385.5831 453.5057 Frequencies -- 490.9250 510.6792 545.3608 Frequencies -- 562.6383 600.8389 635.0336 Frequencies -- 655.7986 662.9618 678.5793 Frequencies -- 709.0765 753.1242 758.2912 Frequencies -- 768.9136 798.2670 849.4269

198 Frequencies -- 859.1916 894.5063 956.2434 Frequencies -- 973.3147 1045.2238 1075.8924 Frequencies -- 1120.7283 1145.0053 1146.1590 Frequencies -- 1165.2330 1205.4047 1227.9633 Frequencies -- 1234.5532 1257.5411 1315.2874 Frequencies -- 1382.6510 1399.4380 1415.1756 Frequencies -- 1443.4110 1458.4936 1481.8452 Frequencies -- 1499.1275 1512.3266 1520.0898 Frequencies -- 1530.2209 1547.3487 1612.6739 Frequencies -- 1816.7067 3095.3299 3189.3280 Frequencies -- 3194.8291 3196.6444 3222.5243 Frequencies -- 3227.0911 3273.8894 3302.2629

IR Inten -- 11.5824 0.0992 0.1761 IR Inten -- 2.5480 0.3929 10.0309 IR Inten -- 9.9412 0.1665 0.2714 IR Inten -- 63.0531 2.3297 0.4810 IR Inten -- 2.6303 17.5975 5.0015 IR Inten -- 79.2019 12.2979 13.8827 IR Inten -- 26.9716 5.1270 0.1176 IR Inten -- 6.3731 23.3351 8.7684 IR Inten -- 0.1638 39.7195 84.5675 IR Inten -- 14.3581 37.1643 2.8597 IR Inten -- 9.7824 52.9780 10.1206 IR Inten -- 149.1130 334.4262 53.7317 IR Inten -- 66.3627 91.3947 224.7004 IR Inten -- 0.8486 4.2917 106.8805 IR Inten -- 88.7219 581.6508 170.4365 IR Inten -- 89.0079 187.3047 296.1434 IR Inten -- 494.3332 13.2931 121.6865 IR Inten -- 21.4750 11.2675 82.9134 IR Inten -- 42.6099 55.0357 361.9039 IR Inten -- 2321.7113 19.1136 7.7010 IR Inten -- 18.2040 16.2525 22.8403 IR Inten -- 9.8114 8.5367 45.0444

199 5-MOP ground state in gas phase

Point group: C01

6 2.989316000 1.016575000 -0.150136000 6 3.307566000 -0.393641000 0.035700000 8 2.213433000 -1.261425000 0.117953000 6 0.916330000 -0.843194000 0.037309000 6 0.608150000 0.533181000 -0.136664000 6 1.712092000 1.453119000 -0.231848000 6 -0.065132000 -1.824512000 0.141385000 6 -1.373285000 -1.372339000 0.048845000 6 -1.748469000 -0.022772000 -0.133439000 6 -0.738399000 0.941863000 -0.216534000 8 -2.484292000 -2.163172000 0.095352000 6 -3.563934000 -1.324162000 -0.068457000 6 -3.191753000 -0.030874000 -0.212275000 8 4.411820000 -0.874927000 0.123093000 8 -1.010143000 2.270963000 -0.424271000 6 -1.647317000 2.949193000 0.663982000 1 3.840095000 1.684209000 -0.220299000 1 1.487769000 2.504630000 -0.379354000 1 0.193578000 -2.867578000 0.274380000 1 -4.525623000 -1.814623000 -0.063751000 1 -3.850239000 0.809523000 -0.375770000 1 -1.813907000 3.973770000 0.325841000 1 -1.001735000 2.954402000 1.551197000 1 -2.607476000 2.489527000 0.923533000

Thermal correction to Energy= 0.189065 Thermal correction to Gibbs Free Energy= 0.137443

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -762.947304989

Frequencies -- 47.6775 82.8238 103.8392

200 Frequencies -- 139.7053 148.2234 187.7482 Frequencies -- 227.8321 264.0110 283.3886 Frequencies -- 327.6132 353.4741 375.5291 Frequencies -- 410.5000 426.5366 501.5005 Frequencies -- 531.8085 592.4399 609.4991 Frequencies -- 642.1300 656.0112 675.9246 Frequencies -- 728.0661 753.4576 758.9325 Frequencies -- 775.1044 804.4740 845.3886 Frequencies -- 849.1185 856.9339 873.8274 Frequencies -- 903.4061 957.8326 992.3629 Frequencies -- 1018.8514 1068.7922 1107.0023 Frequencies -- 1111.3963 1151.3240 1180.1560 Frequencies -- 1184.7084 1207.2084 1214.5009 Frequencies -- 1232.6673 1284.4958 1329.0183 Frequencies -- 1382.1544 1410.0071 1418.2879 Frequencies -- 1480.4963 1490.3951 1516.5212 Frequencies -- 1518.5979 1534.5451 1596.4099 Frequencies -- 1621.2105 1665.1845 1678.5244 Frequencies -- 1842.7026 3041.2723 3107.5194 Frequencies -- 3161.6180 3219.9804 3242.2405 Frequencies -- 3251.3193 3279.2089 3306.1134

IR Inten -- 3.2238 0.7560 3.6650 IR Inten -- 1.8585 0.1027 0.8429 IR Inten -- 1.1321 3.2589 2.5482 IR Inten -- 2.9325 4.4521 2.5374 IR Inten -- 11.5193 0.7295 5.2423 IR Inten -- 2.4383 5.5808 7.8401 IR Inten -- 5.0639 3.5659 1.9712 IR Inten -- 3.2225 17.9106 32.6578 IR Inten -- 8.1114 3.2999 2.2651 IR Inten -- 54.6417 7.1483 6.0235 IR Inten -- 17.3930 18.9446 30.0756 IR Inten -- 0.4218 10.9477 39.6418 IR Inten -- 126.3519 149.3970 72.1163 IR Inten -- 56.6931 16.8963 3.2449 IR Inten -- 71.1727 30.2704 25.6727 IR Inten -- 77.2484 11.5474 40.4865 IR Inten -- 34.3624 19.5750 25.8432 IR Inten -- 35.8767 3.9507 31.2460 IR Inten -- 78.4756 48.2612 196.6443 IR Inten -- 640.1178 53.3547 30.0916 IR Inten -- 25.0628 3.1568 2.7216 IR Inten -- 0.4527 1.6898 0.6580

201 5-MOP triplet excited state in gas phase

S2 = 2.0246 Point group: C01

C 3.018347 0.920038 -0.203744 C 3.280268 -0.457273 0.029427 O 2.177953 -1.317856 0.148615 C 0.887277 -0.864938 0.046544 C 0.604706 0.552699 -0.170255 C 1.655638 1.439059 -0.308924 C -0.105859 -1.809856 0.152925 C -1.428327 -1.348421 0.042136 C -1.789606 0.002706 -0.153849 C -0.785383 0.959218 -0.247348 O -2.540712 -2.127896 0.109280 C -3.618710 -1.278225 -0.047972 C -3.234317 0.009609 -0.209120 O 4.385798 -0.970825 0.141034 O -1.071991 2.284434 -0.446147 C -1.265329 3.043539 0.756252 H 3.882282 1.567081 -0.291003 H 1.478245 2.484864 -0.521736 H 0.134341 -2.854928 0.306185 H -4.583470 -1.761643 -0.023905 H -3.879426 0.862093 -0.363426 H -1.480285 4.066315 0.439967 H -0.362408 3.032602 1.378906 H -2.109902 2.651828 1.336323

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -762.832981058

Frequencies -- 30.1724 71.6323 87.5488 Frequencies -- 132.5555 150.6972 164.4916 Frequencies -- 224.5138 242.3289 274.7037 Frequencies -- 284.7011 338.5623 351.0959 Frequencies -- 371.7106 400.2149 493.5957 Frequencies -- 513.6914 576.5404 582.3756 Frequencies -- 593.3187 607.5964 643.0088 Frequencies -- 672.3415 686.0595 714.2119 Frequencies -- 730.1417 743.7568 762.5998 Frequencies -- 788.8257 849.1797 854.0322 Frequencies -- 866.0432 897.6237 953.1582

202 Frequencies -- 966.8991 996.7392 1053.9553 Frequencies -- 1103.8428 1136.5896 1166.2733 Frequencies -- 1177.4798 1184.2621 1211.1864 Frequencies -- 1215.8977 1272.0257 1292.3417 Frequencies -- 1349.8892 1365.1728 1403.3968 Frequencies -- 1417.4726 1463.4904 1505.2999 Frequencies -- 1516.7860 1522.6981 1531.5348 Frequencies -- 1564.5673 1588.1798 1614.8360 Frequencies -- 1656.1714 3036.9994 3101.7552 Frequencies -- 3158.3858 3245.9773 3247.0161 Frequencies -- 3255.8651 3281.4361 3307.7791

IR Inten -- 2.2968 0.2938 2.0090 IR Inten -- 1.2039 0.9521 0.0354 IR Inten -- 1.5478 4.5872 6.6364 IR Inten -- 4.0330 2.0984 2.6777 IR Inten -- 0.3763 10.8696 4.3252 IR Inten -- 5.0967 13.3940 0.5186 IR Inten -- 20.2968 4.2624 2.3371 IR Inten -- 6.7541 34.4511 6.1795 IR Inten -- 1.3990 7.9213 35.0385 IR Inten -- 10.3343 18.8314 9.1732 IR Inten -- 0.8056 21.2964 19.7352 IR Inten -- 33.4106 13.5138 8.1708 IR Inten -- 103.2318 134.1349 9.4454 IR Inten -- 4.6136 147.7163 54.8809 IR Inten -- 8.8793 89.1909 7.8787 IR Inten -- 124.9579 60.0585 10.1423 IR Inten -- 45.0344 149.7104 42.3271 IR Inten -- 22.3759 236.5192 2.4143 IR Inten -- 38.8626 12.4412 94.4474 IR Inten -- 51.2734 52.6379 24.3431 IR Inten -- 30.1600 8.2643 1.6183 IR Inten -- 1.2117 1.8134 0.3694

Excited State 1: ?Spin -?Sym 0.6690 eV 1853.31 nm f=0.0015 Excited State 2: ?Spin -?Sym 1.4993 eV 826.95 nm f=0.0000 Excited State 3: ?Spin -?Sym 2.0005 eV 619.76 nm f=0.0022 Excited State 4: ?Spin -?Sym 2.1694 eV 571.52 nm f=0.0249 Excited State 5: ?Spin -?Sym 2.5435 eV 487.44 nm f=0.0003 Excited State 6: ?Spin -?Sym 2.7473 eV 451.29 nm f=0.0020 Excited State 7: ?Spin -?Sym 3.0455 eV 407.10 nm f=0.2078 Excited State 8: ?Spin -?Sym 3.3710 eV 367.80 nm f=0.0025 Excited State 9: ?Spin -?Sym 3.4868 eV 355.58 nm f=0.0264 Excited State 10: ?Spin -?Sym 3.7961 eV 326.61 nm f=0.0054

203 5-MOP ground state in acetonitrile

Point group: C01

C 2.987657 1.036704 -0.129181 C 3.310035 -0.368742 0.033427 O 2.231307 -1.245173 0.107513 C 0.925866 -0.838020 0.034882 C 0.610593 0.536581 -0.124172 C 1.704952 1.463532 -0.203652 C -0.045150 -1.827340 0.130516 C -1.355901 -1.380522 0.046553 C -1.741735 -0.032030 -0.123463 C -0.738781 0.940225 -0.202018 O -2.458700 -2.179054 0.087513 C -3.547426 -1.345992 -0.065453 C -3.184482 -0.050529 -0.200624 O 4.420849 -0.851519 0.112968 O -1.002735 2.264799 -0.413076 C -1.743715 2.934871 0.618270 H 3.830026 1.716361 -0.186393 H 1.475716 2.516941 -0.328594 H 0.217028 -2.871383 0.253390 H -4.506527 -1.842610 -0.056635 H -3.853526 0.785158 -0.345143 H -1.877900 3.961026 0.271712 H -1.179273 2.934554 1.558102 H -2.722802 2.475100 0.783707 B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -762.972469663

Frequencies -- -195.3378 69.9039 105.0384 Frequencies -- 122.8093 144.3262 168.7385 Frequencies -- 213.4861 237.1470 279.9496 Frequencies -- 316.0829 356.7661 366.5184 Frequencies -- 410.4318 425.9667 503.8166 Frequencies -- 533.5160 569.1651 588.7600 Frequencies -- 638.7415 657.1408 675.3629 Frequencies -- 714.7428 730.0044 757.6065 Frequencies -- 775.0677 807.7581 841.9174 Frequencies -- 845.5344 865.2869 873.8296 Frequencies -- 903.3766 957.8045 990.0693 Frequencies -- 1023.0900 1064.5207 1111.9398 Frequencies -- 1124.9333 1149.5124 1176.7162 Frequencies -- 1185.4537 1209.9730 1215.3810 Frequencies -- 1232.1933 1286.6284 1329.7196

204 Frequencies -- 1382.2180 1410.0810 1425.7223 Frequencies -- 1462.0922 1490.1397 1514.1897 Frequencies -- 1517.3525 1529.6379 1593.7975 Frequencies -- 1624.1742 1660.8373 1678.6729 Frequencies -- 1808.1282 3054.1304 3127.6276 Frequencies -- 3170.5557 3223.0503 3242.1634 Frequencies -- 3245.0598 3278.9372 3303.7129

IR Inten -- 1.9365 1.3020 5.2751 IR Inten -- 1.5037 5.7081 2.0999 IR Inten -- 1.6901 6.5494 2.3160 IR Inten -- 5.0980 6.3719 3.4511 IR Inten -- 15.8751 1.1041 11.7744 IR Inten -- 4.0125 17.4082 9.9115 IR Inten -- 7.2080 5.7224 2.9656 IR Inten -- 22.1547 5.9404 50.2723 IR Inten -- 16.3635 3.4296 5.1883 IR Inten -- 79.7469 2.6101 4.5887 IR Inten -- 38.9908 20.5539 49.9468 IR Inten -- 0.9532 12.2611 174.5827 IR Inten -- 115.0403 214.4554 84.2595 IR Inten -- 126.7015 9.1594 9.5733 IR Inten -- 114.4205 40.9419 82.0616 IR Inten -- 139.3067 71.3476 22.4522 IR Inten -- 66.3771 37.8285 6.2435 IR Inten -- 100.9016 8.4284 34.6017 IR Inten -- 306.6242 21.9506 324.2954 IR Inten -- 1060.2758 48.9954 30.0819 IR Inten -- 18.6207 4.1083 0.3500 IR Inten -- 8.0870 5.5138 7.7823

5-MOP triplet excited state in acetonitrile

S2 = 2.0268 Point group: C01

C 3.015132 0.913424 -0.197590 C 3.273783 -0.464074 0.030654 O 2.175711 -1.324413 0.144498 C 0.880399 -0.868184 0.041331 C 0.603537 0.547315 -0.170763 C 1.654989 1.432784 -0.305402 C -0.111920 -1.810220 0.143575

205 C -1.435982 -1.344288 0.038550 C -1.794406 0.005985 -0.150962 C -0.786400 0.958837 -0.248610 O -2.547349 -2.120787 0.108330 C -3.627037 -1.267924 -0.038232 C -3.238878 0.018299 -0.196613 O 4.379978 -0.984008 0.142593 O -1.064743 2.281247 -0.452082 C -1.224688 3.056598 0.748536 H 3.877252 1.564874 -0.278447 H 1.484432 2.481310 -0.509717 H 0.122107 -2.857577 0.294738 H -4.593251 -1.748899 -0.005210 H -3.884354 0.873494 -0.336665 H -1.443337 4.075874 0.424824 H -0.305890 3.049134 1.346196 H -2.056916 2.674169 1.350733

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -762.874856665

Frequencies -- -27.8074 72.1798 86.2107 Frequencies -- 138.7269 150.2354 162.2704 Frequencies -- 219.5613 244.8484 274.4188 Frequencies -- 282.2389 339.4475 350.2203 Frequencies -- 370.4141 395.7784 475.3896 Frequencies -- 514.1991 580.9791 587.9202 Frequencies -- 591.6242 608.2120 645.5390 Frequencies -- 675.8846 704.3355 727.9828 Frequencies -- 736.1250 746.9280 769.3423 Frequencies -- 785.6316 850.3960 862.5000 Frequencies -- 866.8167 892.8526 954.7836 Frequencies -- 966.8138 995.0316 1050.9999 Frequencies -- 1101.5981 1129.4369 1161.0267 Frequencies -- 1176.4403 1187.9250 1210.1491 Frequencies -- 1214.3574 1265.9851 1294.4337 Frequencies -- 1350.0530 1367.3895 1403.4451 Frequencies -- 1417.2321 1456.6190 1504.6790 Frequencies -- 1512.9750 1520.8519 1527.3213 Frequencies -- 1562.3017 1586.8720 1618.9758 Frequencies -- 1663.9023 3045.5720 3115.0647 Frequencies -- 3166.6703 3232.8136 3241.5234 Frequencies -- 3256.4862 3279.3128 3305.3516

IR Inten -- 3.7807 0.2739 3.4162 IR Inten -- 1.9003 1.4955 0.1124

206 IR Inten -- 2.2280 6.7753 13.0885 IR Inten -- 8.3706 2.9647 7.3253 IR Inten -- 0.5653 20.7068 9.9944 IR Inten -- 12.1183 19.1041 11.0118 IR Inten -- 26.5216 4.9848 7.7157 IR Inten -- 20.0497 53.2404 1.1174 IR Inten -- 2.5983 17.8155 43.8791 IR Inten -- 18.9623 32.9192 6.4537 IR Inten -- 3.0713 29.5120 33.4422 IR Inten -- 68.4402 39.4108 8.5964 IR Inten -- 163.5330 200.3473 18.3162 IR Inten -- 2.3142 340.9002 127.6737 IR Inten -- 17.0451 177.1057 11.1279 IR Inten -- 210.9445 90.7365 48.3707 IR Inten -- 94.2088 240.4121 53.8133 IR Inten -- 30.9306 508.9511 10.1314 IR Inten -- 85.1288 16.6352 137.9005 IR Inten -- 132.5883 45.7913 24.1245 IR Inten -- 26.5957 8.2909 4.3527 IR Inten -- 8.3840 8.4590 10.1722

TMP ground state in gas phase

Point group: C01

6 -3.336629000 0.578545000 -0.000119000 6 -3.222010000 -0.870536000 -0.000338000 8 -1.924479000 -1.377166000 0.000027000 6 -0.813808000 -0.577646000 0.000110000 6 -0.923824000 0.837700000 0.000050000 6 -2.263328000 1.408702000 0.000118000 6 0.411698000 -1.259763000 0.000256000 6 1.525177000 -0.429791000 0.000160000 6 1.483827000 0.982010000 -0.000085000 6 0.245673000 1.618134000 -0.000026000

207 8 2.823659000 -0.860407000 0.000117000 6 3.619480000 0.273815000 -0.000228000 6 2.865531000 1.402139000 -0.000316000 8 -4.136994000 -1.661696000 -0.000846000 6 -2.444711000 2.903451000 0.000535000 6 0.494054000 -2.762702000 0.000700000 6 5.085811000 0.029145000 -0.000354000 1 -4.352210000 0.959083000 -0.000134000 1 0.180335000 2.700708000 -0.000063000 1 3.242897000 2.415506000 -0.000529000 1 -1.977629000 3.358686000 -0.881386000 1 -1.978067000 3.358097000 0.882993000 1 -3.504926000 3.168899000 0.000370000 1 1.535501000 -3.091691000 -0.003474000 1 -0.010421000 -3.183551000 -0.876063000 1 -0.003003000 -3.182744000 0.882285000 1 5.391954000 -0.543046000 0.883991000 1 5.624949000 0.979939000 -0.001526000 1 5.391486000 -0.544949000 -0.883628000

Thermal correction to Energy= 0.242631 Thermal correction to Gibbs Free Energy= 0.186640

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -766.392779826

Frequencies -- 60.1615 80.0492 84.7078 Frequencies -- 134.8655 147.6335 167.8897 Frequencies -- 174.1434 177.8354 213.2333 Frequencies -- 222.4561 235.4581 286.3262 Frequencies -- 338.3028 341.1407 370.7570 Frequencies -- 391.7565 427.7476 480.6644 Frequencies -- 493.4928 555.1444 570.4413 Frequencies -- 574.3732 606.7098 624.5775 Frequencies -- 659.6015 692.7606 731.4055 Frequencies -- 733.5374 745.7907 811.0061 Frequencies -- 816.2250 841.1814 868.3555 Frequencies -- 884.1508 945.3942 957.6382 Frequencies -- 986.3344 1028.5877 1050.8396 Frequencies -- 1071.1075 1075.9916 1080.6872 Frequencies -- 1087.2557 1137.4833 1174.8777 Frequencies -- 1185.6826 1208.4335 1257.2218 Frequencies -- 1272.2750 1316.3071 1337.0472 Frequencies -- 1391.0171 1425.7828 1439.8931 Frequencies -- 1442.8813 1448.7132 1465.8409 Frequencies -- 1499.9978 1500.1083 1510.5308

208 Frequencies -- 1514.7776 1518.5258 1520.1450 Frequencies -- 1523.4514 1635.4736 1667.1927 Frequencies -- 1671.9487 1683.3266 1834.7919 Frequencies -- 3048.7656 3049.0641 3061.5409 Frequencies -- 3100.5120 3101.5213 3114.2089 Frequencies -- 3143.4807 3148.3509 3156.2547 Frequencies -- 3220.7869 3227.8344 3267.8173

IR Inten -- 0.6344 0.0348 2.1919 IR Inten -- 0.0781 0.4195 0.3700 IR Inten -- 0.1275 2.7980 1.2536 IR Inten -- 2.5456 0.0038 0.0002 IR Inten -- 1.2180 1.5205 1.3502 IR Inten -- 0.1462 6.9076 6.3817 IR Inten -- 0.4981 1.6625 6.0087 IR Inten -- 1.6830 6.6601 0.0006 IR Inten -- 4.0665 2.0855 0.5783 IR Inten -- 7.3382 10.2109 13.5277 IR Inten -- 10.8691 1.4042 0.0044 IR Inten -- 41.6204 39.8960 19.2104 IR Inten -- 9.6460 3.3018 13.2239 IR Inten -- 0.2061 2.9856 3.0274 IR Inten -- 0.7419 161.5306 10.1806 IR Inten -- 27.2603 89.0184 8.6376 IR Inten -- 2.3766 26.2842 13.0776 IR Inten -- 95.5503 52.3222 24.4041 IR Inten -- 2.6676 9.4954 20.5693 IR Inten -- 7.8428 11.5026 8.6780 IR Inten -- 6.3613 7.5445 11.7743 IR Inten -- 6.5190 78.9653 42.2546 IR Inten -- 1.5875 50.8636 679.4643 IR Inten -- 11.8380 31.7414 16.1972 IR Inten -- 11.7750 12.4560 10.1200 IR Inten -- 18.3609 9.8055 8.2287 IR Inten -- 5.4134 3.0988 6.4415

209 TMP triplet excited state in gas phase

S2 = 2.0212 Point group: C01

C -3.358032 0.541516 0.000351 C -3.224794 -0.864767 0.000232 O -1.921848 -1.397029 -0.000384 C -0.819564 -0.586077 -0.000264 C -0.943269 0.875245 -0.000240 C -2.215331 1.450372 -0.000130 C 0.397993 -1.258039 -0.000262 C 1.524339 -0.430011 -0.000160 C 1.488271 0.991156 -0.000204 C 0.266763 1.644142 -0.000271 O 2.818342 -0.870739 0.000032 C 3.620357 0.260693 0.000126 C 2.872903 1.395376 -0.000051 O -4.137820 -1.686244 0.000565 C -2.436039 2.935627 -0.000005 C 0.481957 -2.761928 -0.000275 C 5.083826 0.007397 0.000541 H -4.372439 0.923056 0.000850 H 0.210315 2.726233 -0.000253 H 3.258958 2.405389 -0.000032 H -1.991863 3.420973 -0.881512 H -1.993210 3.420654 0.882371 H -3.504408 3.172712 -0.000767 H 1.523872 -3.090138 -0.001430 H -0.018936 -3.183284 -0.878797 H -0.016790 -3.183140 0.879558 H 5.384239 -0.568861 0.884404 H 5.629969 0.953985 0.000214 H 5.384612 -0.569700 -0.882636

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -766.277754742

Frequencies -- 51.7537 68.3409 74.8385 Frequencies -- 92.6676 110.3031 130.3303 Frequencies -- 149.9246 168.8596 172.0752 Frequencies -- 220.7403 227.7780 276.7448 Frequencies -- 310.8624 320.0584 345.5767 Frequencies -- 361.1493 409.2592 411.3723 Frequencies -- 465.5397 532.7652 535.4963

210 Frequencies -- 561.6978 592.5363 594.8585 Frequencies -- 612.1521 649.2827 683.8261 Frequencies -- 700.6751 708.3762 720.6866 Frequencies -- 763.3795 788.1388 821.6295 Frequencies -- 834.8146 874.6202 945.5368 Frequencies -- 964.6149 1003.8816 1026.3056 Frequencies -- 1042.2171 1069.5716 1076.0776 Frequencies -- 1076.5978 1093.2308 1137.9620 Frequencies -- 1171.7670 1197.9153 1207.9205 Frequencies -- 1239.2806 1294.2464 1326.8799 Frequencies -- 1352.2393 1412.6095 1415.5996 Frequencies -- 1440.8070 1443.1631 1447.4653 Frequencies -- 1469.1526 1482.3128 1497.9949 Frequencies -- 1508.5296 1512.6495 1515.1935 Frequencies -- 1521.3797 1526.8670 1587.8001 Frequencies -- 1595.5516 1636.1775 1657.6665 Frequencies -- 3011.1078 3048.0678 3048.2344 Frequencies -- 3061.6460 3099.0299 3114.7424 Frequencies -- 3120.3454 3150.4894 3154.2485 Frequencies -- 3228.7011 3237.9933 3269.2144

IR Inten -- 0.0004 0.4493 0.1369 IR Inten -- 1.3012 0.0002 0.0008 IR Inten -- 1.0636 4.1806 1.7254 IR Inten -- 0.0401 0.1348 0.1617 IR Inten -- 2.8470 27.0679 1.6039 IR Inten -- 16.7706 3.3133 0.2993 IR Inten -- 10.8868 13.2860 1.8841 IR Inten -- 5.0671 18.9136 0.4485 IR Inten -- 0.0293 21.6538 0.9000 IR Inten -- 73.8170 2.4577 19.2186 IR Inten -- 29.6122 4.3709 39.5044 IR Inten -- 7.0301 147.8171 21.3133 IR Inten -- 97.1870 18.3081 0.8591 IR Inten -- 0.7488 0.5628 6.9957 IR Inten -- 3.3883 96.5964 64.1457 IR Inten -- 39.7674 4.7388 100.3451 IR Inten -- 168.8416 37.3103 61.4443 IR Inten -- 48.7069 33.9498 42.8730 IR Inten -- 65.9058 50.1379 18.7990 IR Inten -- 244.0672 297.0565 8.0806 IR Inten -- 6.3848 13.2661 6.0284 IR Inten -- 72.1330 4.2212 54.4986 IR Inten -- 28.2002 85.2277 37.5939 IR Inten -- 50.7407 30.2080 25.2401

211 IR Inten -- 18.7991 10.5445 10.6489 IR Inten -- 15.0866 9.9149 7.1838 IR Inten -- 4.5452 15.6018 8.1358

Excited State 1: ?Spin -?Sym 0.5776 eV 2146.65 nm f=0.0069 Excited State 2: ?Spin -?Sym 1.4632 eV 847.36 nm f=0.0000 Excited State 3: ?Spin -?Sym 1.8282 eV 678.19 nm f=0.0109 Excited State 4: ?Spin -?Sym 1.9119 eV 648.48 nm f=0.0329 Excited State 5: ?Spin -?Sym 2.5387 eV 488.37 nm f=0.0052 Excited State 6: ?Spin -?Sym 2.8076 eV 441.60 nm f=0.1668 Excited State 7: ?Spin -?Sym 3.3781 eV 367.02 nm f=0.0050 Excited State 8: ?Spin -?Sym 3.5276 eV 351.46 nm f=0.0787 Excited State 9: ?Spin -?Sym 3.6342 eV 341.16 nm f=0.0000 Excited State 10: ?Spin -?Sym 3.7471 eV 330.88 nm f=0.0255

TMP radical anion in gas phase

S2 = 0.7577 Point group: C01

C -3.372493 0.559547 -0.000060 C -3.280577 -0.842301 -0.000020 O -1.931337 -1.362786 0.000174 C -0.823753 -0.565659 0.000065 C -0.937797 0.869026 0.000043 C -2.251717 1.417357 0.000006 C 0.398188 -1.241851 -0.000025 C 1.539020 -0.420502 0.000043 C 1.505895 0.979391 0.000047 C 0.261142 1.637308 0.000048 O 2.844261 -0.875027 0.000003 C 3.648130 0.246346 -0.000054 C 2.892251 1.382211 -0.000002 O -4.159732 -1.703865 -0.000114 C -2.436760 2.909987 -0.000019 C 0.467864 -2.746511 -0.000042 C 5.115585 0.000331 -0.000056 H -4.378380 0.969759 -0.000146 H 0.210211 2.721622 0.000042 H 3.279721 2.394142 -0.000014 H -1.975988 3.390745 -0.879827 H -1.976013 3.390768 0.879789 H -3.501054 3.173535 -0.000037

212 H 1.508335 -3.086529 -0.003767 H -0.040147 -3.171859 -0.875212 H -0.033546 -3.171869 0.878999 H 5.439882 -0.569711 0.883144 H 5.651817 0.954966 -0.000360 H 5.439766 -0.570221 -0.882964

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -766.406315678

Frequencies -- 40.3646 62.9296 83.8651 Frequencies -- 124.4422 136.8450 155.0705 Frequencies -- 169.2069 179.5129 183.2234 Frequencies -- 218.2616 224.9363 277.5909 Frequencies -- 321.3801 331.7763 361.8834 Frequencies -- 368.2255 419.6265 421.4677 Frequencies -- 473.1016 540.6303 553.8512 Frequencies -- 563.7850 596.4888 600.7876 Frequencies -- 643.3293 666.5062 692.4429 Frequencies -- 707.2138 713.1025 726.2462 Frequencies -- 747.2840 787.7485 789.4826 Frequencies -- 814.9687 902.2039 961.2444 Frequencies -- 975.0771 1018.2127 1025.8716 Frequencies -- 1054.4555 1067.9166 1074.7544 Frequencies -- 1082.8079 1118.5925 1168.8492 Frequencies -- 1183.9970 1198.4366 1225.7001 Frequencies -- 1270.0111 1296.0801 1328.3412 Frequencies -- 1373.0294 1408.9867 1427.7178 Frequencies -- 1434.8802 1439.5130 1460.8637 Frequencies -- 1479.9511 1498.2316 1503.8840 Frequencies -- 1509.2313 1513.4018 1525.7426 Frequencies -- 1526.6009 1545.3424 1590.5282 Frequencies -- 1619.8999 1645.8356 1775.4593 Frequencies -- 2967.5920 2990.5151 3007.5104 Frequencies -- 3033.2710 3042.4050 3075.5970 Frequencies -- 3089.2944 3117.3680 3121.3588 Frequencies -- 3187.6477 3195.3643 3233.4331 IR Inten -- 0.0145 0.4243 1.3804 IR Inten -- 0.0759 0.7831 0.8429 IR Inten -- 0.7309 1.1136 0.0646 IR Inten -- 2.2899 0.0470 0.1140 IR Inten -- 0.6995 0.1630 0.0078 IR Inten -- 2.1083 1.6396 0.0297 IR Inten -- 10.6013 0.9752 2.7952 IR Inten -- 33.5943 4.3423 0.0001 IR Inten -- 0.4800 1.1278 0.2680

213 IR Inten -- 21.1886 9.8329 4.7567 IR Inten -- 28.0224 10.1691 21.1446 IR Inten -- 2.6203 30.2268 7.3124 IR Inten -- 7.7414 28.0057 68.5055 IR Inten -- 1.1054 0.7611 2.3419 IR Inten -- 8.9235 74.6346 12.5637 IR Inten -- 17.8311 11.2034 55.2577 IR Inten -- 35.4011 100.1042 7.2055 IR Inten -- 20.8902 32.3829 37.5902 IR Inten -- 4.3191 32.5709 3.9110 IR Inten -- 24.3104 3.1543 1.9816 IR Inten -- 78.7131 2.0242 9.9547 IR Inten -- 38.5584 31.1340 10.9252 IR Inten -- 25.1796 110.9125 1208.6898 IR Inten -- 158.9816 68.1646 240.6087 IR Inten -- 68.0430 43.0686 30.9533 IR Inten -- 34.9766 21.9155 14.9606 IR Inten -- 51.1862 37.5386 27.3687

TMP radical cation state in gas phase

S2 = 0.7609 Point group: C01

C -3.351305 0.572967 0.000011 C -3.231294 -0.871514 0.000052 O -1.870513 -1.375488 0.000012 C -0.808515 -0.588663 -0.000009 C -0.938460 0.848607 0.000009 C -2.287416 1.413782 0.000012 C 0.451062 -1.285788 -0.000035 C 1.532866 -0.448420 -0.000012 C 1.474127 0.976337 0.000001 C 0.211360 1.621228 0.000013 O 2.850109 -0.850723 -0.000033 C 3.608972 0.272453 -0.000032 C 2.808582 1.417162 -0.000011 O -4.089547 -1.700947 -0.000071 C -2.472722 2.905020 0.000005 C 0.518231 -2.782832 0.000032 C 5.075095 0.092994 0.000007 H -4.370899 0.942013 -0.000013

214 H 0.155124 2.703409 0.000025 H 3.177032 2.433893 -0.000011 H -2.011291 3.360430 -0.884667 H -2.011288 3.360441 0.884670 H -3.532888 3.165678 0.000005 H 1.553884 -3.125920 -0.001240 H 0.006781 -3.191345 -0.878527 H 0.009137 -3.191103 0.880099 H 5.388608 -0.478980 0.882521 H 5.583363 1.058716 -0.000514 H 5.388556 -0.479964 -0.881876

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -766.143600356

Frequencies -- 52.8636 75.0838 91.4302 Frequencies -- 115.9940 141.1277 159.8957 Frequencies -- 168.4711 174.5675 206.4595 Frequencies -- 222.1564 223.2336 284.7838 Frequencies -- 334.0460 343.0399 365.6560 Frequencies -- 368.3418 419.8976 472.2298 Frequencies -- 496.0964 549.9754 563.2236 Frequencies -- 568.6671 594.0283 623.1128 Frequencies -- 639.4397 678.6788 705.9244 Frequencies -- 716.1370 732.9909 794.7175 Frequencies -- 804.5023 846.1402 886.2314 Frequencies -- 894.4666 913.8187 954.3985 Frequencies -- 982.3275 1015.7059 1039.3274 Frequencies -- 1052.0206 1058.0155 1073.4768 Frequencies -- 1082.5632 1118.8032 1144.4480 Frequencies -- 1186.4965 1195.5726 1253.7870 Frequencies -- 1291.7747 1345.8064 1372.8529 Frequencies -- 1378.5320 1422.7430 1430.1487 Frequencies -- 1438.6882 1443.0000 1447.8682 Frequencies -- 1469.3930 1482.1152 1499.7978 Frequencies -- 1503.2449 1506.9073 1512.4329 Frequencies -- 1522.6005 1549.4060 1584.4601 Frequencies -- 1674.7316 1696.7179 1880.9440 Frequencies -- 3053.8725 3054.4233 3068.6299 Frequencies -- 3108.0778 3109.6430 3124.8159 Frequencies -- 3162.1249 3174.9088 3175.9110 Frequencies -- 3241.0824 3244.0392 3281.8708

IR Inten -- 0.4139 1.9563 0.1263 IR Inten -- 1.0829 0.0566 2.5056 IR Inten -- 1.7887 0.1633 1.8002

215 IR Inten -- 0.1960 0.9469 0.2045 IR Inten -- 0.9649 0.9516 1.9638 IR Inten -- 0.6138 15.7214 0.6510 IR Inten -- 0.7411 1.3775 2.0067 IR Inten -- 2.1575 3.7036 0.0013 IR Inten -- 45.1572 2.2585 25.8444 IR Inten -- 0.8439 9.5355 80.8496 IR Inten -- 7.9584 11.6012 3.2572 IR Inten -- 68.3652 43.1074 15.5163 IR Inten -- 18.4645 13.4113 23.5307 IR Inten -- 8.8965 0.0745 2.9291 IR Inten -- 54.3485 59.9458 95.6936 IR Inten -- 2.0172 10.8592 21.4547 IR Inten -- 64.5065 88.0205 41.4492 IR Inten -- 42.1354 39.6641 159.1038 IR Inten -- 78.8771 11.6735 157.3458 IR Inten -- 42.0246 14.7298 12.3930 IR Inten -- 27.5267 15.3977 4.9062 IR Inten -- 0.5085 576.5328 16.4774 IR Inten -- 60.4088 3.2626 309.2900 IR Inten -- 15.1988 1.1369 0.6915 IR Inten -- 0.3171 3.5287 0.1704 IR Inten -- 3.8194 4.1081 3.0445 IR Inten -- 2.2627 0.4639 5.2613

TMP neutral radical in gas phase

S2 = 0.7700 Point group: C01

C 3.322051 0.618185 -0.000172 C 3.152016 -0.731412 -0.000241 O 1.927661 -1.331335 -0.000019 C 0.781603 -0.534774 0.000246 C 0.891857 0.890612 0.000146 C 2.203179 1.486734 -0.000126 C -0.418007 -1.239164 0.000221 C -1.557468 -0.429854 0.000318 C -1.535987 0.974226 0.000383 C -0.304083 1.638363 0.000348

216 O -2.849339 -0.888788 0.000071 C -3.662561 0.229667 -0.000071 C -2.924134 1.370821 0.000198 C 2.377755 2.976945 0.000077 C -0.479429 -2.744443 0.000378 C -5.126009 -0.035261 -0.000831 O 4.158578 -1.632937 -0.001202 H 4.335712 1.003156 -0.000101 H -0.260912 2.721945 0.000327 H -3.318030 2.378176 0.000114 H 1.916829 3.447468 0.881520 H 1.916584 3.447755 -0.881080 H 3.438532 3.246752 -0.000033 H -1.517251 -3.084985 -0.007826 H 0.012806 -3.163010 0.886231 H 0.027481 -3.163670 -0.876750 H -5.427127 -0.610028 -0.885627 H -5.677113 0.908892 0.000502 H -5.427547 -0.612856 0.881955 H 3.760143 -2.518987 0.004728

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -766.955828345

Frequencies -- 62.1462 76.6097 86.3655 Frequencies -- 128.5437 135.1691 153.5723 Frequencies -- 170.8012 174.9423 181.3364 Frequencies -- 202.0076 219.5645 241.3961 Frequencies -- 274.1330 324.7102 331.1494 Frequencies -- 366.2422 372.1434 409.4264 Frequencies -- 436.5636 481.1177 532.2399 Frequencies -- 546.4494 559.0700 562.3319 Frequencies -- 575.3253 621.7276 660.3320 Frequencies -- 694.1512 729.6449 734.4140 Frequencies -- 788.9002 806.6377 835.8612 Frequencies -- 845.2745 852.6180 951.6748 Frequencies -- 964.8364 985.9286 1025.0212 Frequencies -- 1030.9570 1049.7708 1070.6349 Frequencies -- 1079.5796 1086.1128 1122.2835 Frequencies -- 1170.9886 1189.2071 1213.7829 Frequencies -- 1232.8951 1237.1864 1296.8640 Frequencies -- 1328.3593 1339.8888 1377.6438 Frequencies -- 1389.3263 1439.0530 1441.5574 Frequencies -- 1445.5563 1456.2778 1470.1471 Frequencies -- 1488.2420 1500.5440 1506.3429 Frequencies -- 1518.1625 1519.1173 1525.1491

217 Frequencies -- 1533.9088 1628.3802 1641.1798 Frequencies -- 1661.1640 1697.2688 3007.4156 Frequencies -- 3042.3154 3044.6900 3051.9708 Frequencies -- 3094.1685 3101.1739 3117.7949 Frequencies -- 3144.5841 3152.4392 3219.1152 Frequencies -- 3226.4527 3263.7368 3742.4473

IR Inten -- 0.4702 0.0370 1.3305 IR Inten -- 0.2402 0.0118 0.6646 IR Inten -- 0.6106 0.2473 23.3994 IR Inten -- 90.2786 1.0158 11.0146 IR Inten -- 0.3484 2.7376 0.3064 IR Inten -- 0.9139 0.0421 1.7988 IR Inten -- 0.0202 1.9677 0.7286 IR Inten -- 16.8959 0.0848 3.0343 IR Inten -- 11.3313 0.0031 1.8945 IR Inten -- 0.0414 3.4539 1.5136 IR Inten -- 5.1946 6.8929 2.0630 IR Inten -- 42.5516 16.1111 10.3627 IR Inten -- 71.8806 6.2585 3.6015 IR Inten -- 13.7831 1.2280 0.7197 IR Inten -- 2.8186 1.7430 114.1447 IR Inten -- 15.0678 1.1123 111.8475 IR Inten -- 53.5213 41.5023 5.5935 IR Inten -- 9.9436 305.0522 25.7399 IR Inten -- 74.6708 21.9612 1.2015 IR Inten -- 2.9683 74.3254 114.0705 IR Inten -- 4.0658 7.1389 5.8109 IR Inten -- 5.9075 10.7649 20.0039 IR Inten -- 0.3205 17.5136 15.6165 IR Inten -- 21.5785 125.3293 52.4496 IR Inten -- 30.3662 46.6394 27.7886 IR Inten -- 15.3607 17.9842 24.2966 IR Inten -- 10.9805 7.4243 8.9270 IR Inten -- 9.7409 8.1796 90.4472

218 TMP ground state in acetonitrile

Point group: C01

6 3.335483000 0.578901000 -0.000868000 6 3.217127000 -0.863773000 -0.001423000 8 1.928566000 -1.375077000 -0.000462000 6 0.812748000 -0.576961000 0.000509000 6 0.923348000 0.836944000 0.000489000 6 2.259729000 1.408842000 0.000249000 6 -0.409931000 -1.260921000 0.001410000 6 -1.523516000 -0.431610000 0.001183000 6 -1.482423000 0.980558000 0.000332000 6 -0.245891000 1.617921000 0.000544000 8 -2.819632000 -0.862391000 0.000970000 6 -3.617298000 0.273904000 -0.000612000 6 -2.863012000 1.401108000 -0.001032000 8 4.134074000 -1.661966000 -0.002306000 6 2.439119000 2.900675000 0.001434000 6 -0.494478000 -2.762073000 0.002032000 6 -5.081393000 0.030330000 -0.002029000 1 4.349535000 0.963819000 -0.001248000 1 -0.182026000 2.700534000 0.000273000 1 -3.239739000 2.414846000 -0.002921000 1 1.971445000 3.353699000 0.884060000 1 1.969299000 3.355699000 -0.878940000 1 3.498652000 3.168426000 0.000433000 1 -1.536419000 -3.089702000 0.004274000 1 0.003417000 -3.185859000 0.881412000 1 -0.000051000 -3.186432000 -0.879054000 1 -5.387143000 -0.544186000 -0.885058000 1 -5.619051000 0.981799000 -0.004852000 1 -5.389666000 -0.540245000 0.882697000

Thermal correction to Energy= 0.242619 Thermal correction to Gibbs Free Energy= 0.186715

219

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -766.418431550

Frequencies -- 64.5127 74.1012 88.6990 Frequencies -- 138.2062 152.5103 160.0571 Frequencies -- 167.5821 190.0627 213.6046 Frequencies -- 217.3539 241.8674 284.0692 Frequencies -- 335.0238 340.5884 370.7667 Frequencies -- 395.7269 427.8763 483.7239 Frequencies -- 495.1949 555.8163 571.6490 Frequencies -- 576.3877 607.9319 625.5983 Frequencies -- 659.7846 694.6426 730.4623 Frequencies -- 735.8237 746.7659 818.3632 Frequencies -- 819.0602 844.8273 867.9991 Frequencies -- 887.9268 950.4370 955.1316 Frequencies -- 986.7283 1021.7157 1053.9016 Frequencies -- 1071.2086 1073.5708 1080.0510 Frequencies -- 1088.1638 1137.0634 1180.9860 Frequencies -- 1187.1108 1210.1042 1259.6698 Frequencies -- 1271.7610 1315.5920 1334.3920 Frequencies -- 1392.9894 1427.4513 1440.0462 Frequencies -- 1441.2025 1445.9478 1467.6888 Frequencies -- 1494.7531 1498.6855 1505.5045 Frequencies -- 1510.9066 1512.7336 1515.1789 Frequencies -- 1520.8436 1634.8596 1667.8379 Frequencies -- 1673.3286 1679.7803 1799.6566 Frequencies -- 3050.6472 3052.3937 3060.8959 Frequencies -- 3103.0315 3106.7186 3113.6271 Frequencies -- 3147.8735 3152.6244 3156.1087 Frequencies -- 3225.0696 3227.7851 3269.6297

IR Inten -- 0.3117 0.0754 3.6857 IR Inten -- 0.2445 0.3361 1.9213 IR Inten -- 0.9367 2.4351 2.3150 IR Inten -- 4.5563 0.3804 0.0019 IR Inten -- 1.9121 2.1758 2.0020 IR Inten -- 0.3054 12.9796 11.4769 IR Inten -- 0.5779 4.7588 11.6578 IR Inten -- 2.7422 10.2049 0.3156 IR Inten -- 3.3882 2.5187 6.2928 IR Inten -- 3.4845 15.9901 17.1269 IR Inten -- 20.3112 2.4307 7.9996 IR Inten -- 53.7663 36.0180 59.9808 IR Inten -- 14.3488 5.5510 15.1922 IR Inten -- 0.0565 5.5223 4.1208

220 IR Inten -- 1.0595 290.0117 3.7144 IR Inten -- 57.1765 116.8820 12.0151 IR Inten -- 5.1306 50.6683 21.1096 IR Inten -- 157.1013 85.4100 51.7189 IR Inten -- 3.9595 28.9417 30.7485 IR Inten -- 10.3078 18.9737 11.8433 IR Inten -- 9.2142 12.7169 25.1324 IR Inten -- 11.8021 192.8963 72.5387 IR Inten -- 0.1510 96.9465 1175.2579 IR Inten -- 21.0403 5.1722 16.2421 IR Inten -- 10.2885 7.1555 11.3352 IR Inten -- 15.9905 6.0001 7.4159 IR Inten -- 0.7206 1.1089 3.4108

TMP triplet excited state in acetonitrile

S2 = 2.0243 Point group: C01

C 3.355497 0.545021 -0.002780 C 3.222903 -0.859635 -0.001321 O 1.924674 -1.398872 0.002495 C 0.818242 -0.587284 0.001473 C 0.942404 0.873340 0.001221 C 2.214392 1.449616 0.000342 C -0.396845 -1.259208 0.001342 C -1.523956 -0.431411 0.001019 C -1.487357 0.990685 0.000729 C -0.265712 1.642540 0.001362 O -2.815156 -0.872287 0.000365 C -3.618604 0.261816 -0.000826 C -2.870061 1.395459 -0.000672 O 4.136429 -1.685429 -0.002843 C 2.431449 2.933577 0.001123 C -0.484766 -2.761044 0.001187 C -5.079414 0.009840 -0.002549 H 4.369446 0.930899 -0.007824 H -0.209548 2.724692 0.001166 H -3.256408 2.405544 -0.002198 H 1.986659 3.417066 0.883093 H 1.985431 3.418558 -0.879393

221 H 3.499198 3.172495 0.000477 H -1.527244 -3.087196 0.001768 H 0.010956 -3.186244 0.881064 H 0.010179 -3.186051 -0.879234 H -5.378980 -0.568293 -0.885595 H -5.624618 0.956762 -0.004845 H -5.381682 -0.565391 0.881490

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -766.318830197

Frequencies -- 64.9780 66.0495 74.4140 Frequencies -- 98.1921 116.1164 132.0292 Frequencies -- 156.8880 168.7085 171.7218 Frequencies -- 212.6407 230.8150 278.4665 Frequencies -- 296.7327 312.4906 345.7549 Frequencies -- 358.3038 405.5678 414.8758 Frequencies -- 464.3287 526.9807 537.0512 Frequencies -- 563.4305 588.3163 598.0764 Frequencies -- 615.3831 634.4224 682.8210 Frequencies -- 683.6637 708.0274 734.4321 Frequencies -- 759.9534 797.4960 828.5686 Frequencies -- 835.8515 851.0284 943.1478 Frequencies -- 960.9481 1002.3698 1025.9781 Frequencies -- 1043.1816 1068.5526 1074.2623 Frequencies -- 1075.1996 1079.3414 1137.6361 Frequencies -- 1168.8544 1202.6667 1209.8680 Frequencies -- 1235.9729 1299.8907 1323.6125 Frequencies -- 1353.1912 1411.4916 1416.8205 Frequencies -- 1437.8216 1441.9666 1444.6705 Frequencies -- 1462.1801 1482.2796 1491.8925 Frequencies -- 1504.3950 1504.8574 1511.0365 Frequencies -- 1516.5745 1522.8821 1589.0901 Frequencies -- 1592.0190 1644.6021 1657.5613 Frequencies -- 3015.7077 3049.4084 3053.9558 Frequencies -- 3060.7318 3101.3351 3113.4378 Frequencies -- 3125.8921 3155.1012 3155.5766 Frequencies -- 3221.2000 3231.2229 3271.4390

IR Inten -- 0.0650 0.2222 1.4504 IR Inten -- 1.4778 0.1392 0.0480 IR Inten -- 1.3146 6.8811 18.1636 IR Inten -- 10.5249 0.3881 0.5553 IR Inten -- 376.2178 4.5517 2.6659 IR Inten -- 70.3124 31.6780 2.9394 IR Inten -- 84.6499 154.4206 6.2425

222 IR Inten -- 8.9008 158.5756 0.8531 IR Inten -- 0.2617 405.8790 266.3157 IR Inten -- 87.4300 4.9533 28.5494 IR Inten -- 143.9390 6.7543 57.2392 IR Inten -- 40.3603 671.1876 39.8329 IR Inten -- 261.9827 105.9974 0.5348 IR Inten -- 1.2502 5.2232 153.8740 IR Inten -- 6.4591 102.5731 226.6943 IR Inten -- 133.5215 21.8605 399.9151 IR Inten -- 335.4533 83.3828 184.7424 IR Inten -- 66.4006 110.3767 165.8989 IR Inten -- 377.8575 129.1594 37.3879 IR Inten -- 869.9244 313.6038 11.0161 IR Inten -- 33.2200 8.7941 8.8962 IR Inten -- 154.2567 6.3247 112.6344 IR Inten -- 33.5357 215.1467 52.0439 IR Inten -- 43.4072 10.8453 23.6050 IR Inten -- 18.3623 7.3149 11.9190 IR Inten -- 13.1074 6.9375 5.2331 IR Inten -- 32.3972 0.7283 4.1467

TMP radical anion state in acetonitrile

S2 = 0.7593 Point group: C01

C 3.369455 0.560065 -0.001452 C 3.275930 -0.834244 -0.001617 O 1.937242 -1.367699 -0.000351 C 0.821393 -0.567870 0.000440 C 0.936486 0.865562 0.000221 C 2.247724 1.423071 -0.000172 C -0.397563 -1.244804 0.001683 C -1.537127 -0.423966 0.001109 C -1.503199 0.975909 0.000452 C -0.260953 1.631517 0.000803 O -2.840525 -0.875566 0.000771 C -3.643937 0.249663 -0.000527 C -2.889789 1.382662 -0.000734 O 4.160429 -1.703491 -0.002479 C 2.430541 2.914030 0.001775 C -0.473894 -2.748065 0.002723

223 C -5.110174 0.005316 -0.002612 H 4.374257 0.972863 -0.001773 H -0.209461 2.715467 0.001477 H -3.277251 2.393577 -0.002207 H 1.972097 3.394113 0.881823 H 1.969624 3.397241 -0.875315 H 3.493177 3.180991 0.000670 H -1.514274 -3.085102 0.007668 H 0.028427 -3.177785 0.878651 H 0.020184 -3.178711 -0.877465 H -5.426716 -0.565208 -0.885976 H -5.647023 0.958141 -0.003764 H -5.429563 -0.564606 0.880136

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -766.483454249

Frequencies -- 56.9548 77.0377 86.5449 Frequencies -- 131.6045 154.1776 159.8033 Frequencies -- 169.7611 179.9579 196.2106 Frequencies -- 219.0639 235.9390 278.5848 Frequencies -- 328.6281 333.7524 367.1975 Frequencies -- 370.5755 421.0831 426.6873 Frequencies -- 472.0887 541.6092 554.4433 Frequencies -- 564.4548 596.5623 618.5480 Frequencies -- 645.0909 683.6401 696.0694 Frequencies -- 715.9038 719.6409 749.1188 Frequencies -- 759.6725 789.3628 808.0920 Frequencies -- 819.2516 906.0134 959.3353 Frequencies -- 975.9754 1022.2900 1027.0633 Frequencies -- 1052.3320 1066.9987 1077.3792 Frequencies -- 1083.4935 1117.0821 1173.0605 Frequencies -- 1192.9190 1202.5107 1227.1976 Frequencies -- 1270.9551 1294.2509 1329.9245 Frequencies -- 1371.0817 1412.7718 1432.0468 Frequencies -- 1437.7661 1441.9500 1455.8494 Frequencies -- 1475.9232 1496.2111 1502.7023 Frequencies -- 1504.9599 1511.3131 1516.8885 Frequencies -- 1522.1482 1541.2243 1604.7454 Frequencies -- 1621.2172 1655.5440 1739.6103 Frequencies -- 2983.6520 3009.1637 3034.4114 Frequencies -- 3040.7770 3079.2389 3084.1471 Frequencies -- 3102.8729 3134.8237 3139.7112 Frequencies -- 3192.7707 3205.4367 3252.6372

IR Inten -- 0.0158 0.5421 2.3162

224 IR Inten -- 0.2920 0.1563 2.9849 IR Inten -- 1.0703 1.2619 0.2958 IR Inten -- 5.4553 0.0616 0.3405 IR Inten -- 1.3154 0.2562 1.4858 IR Inten -- 2.0049 4.6035 0.2844 IR Inten -- 15.3647 1.0976 5.2979 IR Inten -- 51.2499 7.1723 0.0409 IR Inten -- 1.7364 1.2772 0.7231 IR Inten -- 14.8227 13.1180 10.4088 IR Inten -- 47.3994 34.0024 36.3586 IR Inten -- 4.0828 94.7094 21.9772 IR Inten -- 21.0104 0.7998 87.3771 IR Inten -- 0.9397 1.0154 3.4775 IR Inten -- 4.4245 214.5702 16.9778 IR Inten -- 98.1005 23.4047 138.2798 IR Inten -- 0.1527 93.8260 4.6461 IR Inten -- 42.2861 17.6380 85.3526 IR Inten -- 0.1667 11.6048 3.2948 IR Inten -- 92.1864 7.8493 4.3527 IR Inten -- 29.2544 5.1798 28.0829 IR Inten -- 50.8273 10.9850 19.5318 IR Inten -- 140.9550 83.0622 1882.5855 IR Inten -- 125.7984 61.9283 90.6060 IR Inten -- 57.6885 22.8269 30.8711 IR Inten -- 32.3649 15.0946 11.6569 IR Inten -- 34.1099 30.1783 4.9000

TMP radical cation in acetonitrile

S2 = 0.7591 Point group: C01

C 3.345022 0.570744 -0.000600 C 3.215612 -0.868550 -0.002567 O 1.876503 -1.372140 -0.001280 C 0.807673 -0.583343 0.000701 C 0.936036 0.847256 0.000355 C 2.281663 1.411781 0.000841 C -0.446596 -1.281533 0.002559 C -1.529361 -0.448305 0.002197 C -1.473225 0.974779 -0.000323 C -0.212914 1.621833 -0.000377

225 O -2.845252 -0.853584 0.002161 C -3.603083 0.266360 -0.001207 C -2.803889 1.415167 -0.002884 O 4.084761 -1.697779 -0.004691 C 2.464456 2.899835 0.003632 C -0.513994 -2.776223 0.003920 C -5.065822 0.089522 -0.002710 H 4.364425 0.941268 -0.000550 H -0.161619 2.704761 -0.001428 H -3.173949 2.432348 -0.006568 H 2.000329 3.351238 0.889139 H 1.997519 3.355311 -0.878192 H 3.524827 3.161234 0.002540 H -1.550594 -3.117384 0.004820 H -0.005965 -3.182869 0.885416 H -0.006482 -3.184743 -0.877060 H -5.376254 -0.487714 -0.883254 H -5.570516 1.057224 -0.008324 H -5.379276 -0.478597 0.882729

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -766.200362193

Frequencies -- 56.0699 68.6072 89.2007 Frequencies -- 117.0393 146.8001 160.9834 Frequencies -- 170.3364 174.5417 211.0298 Frequencies -- 219.7064 224.2358 286.0595 Frequencies -- 334.3421 344.2348 367.0424 Frequencies -- 369.0099 420.7161 476.8155 Frequencies -- 496.5081 553.8864 566.1270 Frequencies -- 570.7465 595.7335 622.0102 Frequencies -- 651.1212 685.9691 720.0358 Frequencies -- 720.5647 738.1958 805.9816 Frequencies -- 812.1604 850.3215 880.6831 Frequencies -- 906.7697 914.1236 959.0723 Frequencies -- 983.4918 1016.5919 1046.9264 Frequencies -- 1049.0725 1061.5791 1072.9314 Frequencies -- 1087.3623 1125.4713 1153.2920 Frequencies -- 1189.1724 1201.3241 1257.1062 Frequencies -- 1295.9134 1342.8080 1370.6112 Frequencies -- 1382.3765 1420.5717 1426.3162 Frequencies -- 1435.6470 1440.8230 1445.9962 Frequencies -- 1462.2546 1475.9833 1496.9554 Frequencies -- 1501.7881 1502.7801 1509.4433 Frequencies -- 1521.0265 1546.3786 1599.3043 Frequencies -- 1676.5401 1702.7980 1849.0689

226 Frequencies -- 3050.0189 3053.6918 3066.6158 Frequencies -- 3104.7985 3109.8284 3124.0399 Frequencies -- 3158.4178 3172.0082 3174.2452 Frequencies -- 3233.8136 3240.0649 3272.2266

IR Inten -- 0.5134 2.1438 0.3078 IR Inten -- 1.2866 0.2534 3.2193 IR Inten -- 2.4024 0.2197 2.1390 IR Inten -- 2.6673 0.2892 0.4403 IR Inten -- 3.5401 1.2454 3.5481 IR Inten -- 1.4410 33.7814 0.6390 IR Inten -- 1.0556 0.3518 3.2407 IR Inten -- 6.4945 7.1708 0.0706 IR Inten -- 45.9995 2.6859 41.5571 IR Inten -- 8.6639 16.9583 81.5871 IR Inten -- 85.0998 15.8778 9.4495 IR Inten -- 198.9614 55.2165 19.3534 IR Inten -- 32.9414 36.3039 47.1219 IR Inten -- 15.1046 0.5939 5.4524 IR Inten -- 143.1757 142.5957 271.5668 IR Inten -- 8.4965 38.4926 73.2120 IR Inten -- 81.3793 148.7552 333.4712 IR Inten -- 2.7511 257.0207 90.4490 IR Inten -- 130.2297 50.3006 277.3788 IR Inten -- 53.7131 16.2965 14.8851 IR Inten -- 72.0127 16.5346 11.9679 IR Inten -- 2.0747 868.5005 23.8481 IR Inten -- 171.8465 41.9830 821.9531 IR Inten -- 39.6147 1.1054 1.0832 IR Inten -- 1.2506 1.6239 0.3162 IR Inten -- 5.6831 2.3854 3.9091 IR Inten -- 17.0697 7.2090 40.8282

227 TMP neutral radical in acetonitrile

S2 = 0.7577 Point group: C01

Thermal correction to Energy= 0.239248 Thermal correction to Gibbs Free Energy= 0.181928 Thermal correction to Enthalpy= 0.240192

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -766.475398446

Frequencies -- 169.7611 179.9579 196.2106 Frequencies -- 219.0639 235.9390 278.5848 Frequencies -- 328.6281 333.7524 367.1975 Frequencies -- 370.5755 421.0831 426.6873 Frequencies -- 472.0887 541.6092 554.4433 Frequencies -- 564.4548 596.5623 618.5480 Frequencies -- 645.0909 683.6401 696.0694 Frequencies -- 715.9038 719.6409 749.1188 Frequencies -- 759.6725 789.3628 808.0920 Frequencies -- 819.2516 906.0134 959.3353 Frequencies -- 975.9754 1022.2900 1027.0633 Frequencies -- 1052.3320 1066.9987 1077.3792 Frequencies -- 1083.4935 1117.0821 1173.0605 Frequencies -- 1192.9190 1202.5107 1227.1976 Frequencies -- 1270.9551 1294.2509 1329.9245 Frequencies -- 1371.0817 1412.7718 1432.0468 Frequencies -- 1437.7661 1441.9500 1455.8494 Frequencies -- 1475.9232 1496.2111 1502.7023 Frequencies -- 1504.9599 1511.3131 1516.8885 Frequencies -- 1522.1482 1541.2243 1604.7454 Frequencies -- 1621.2172 1655.5440 1739.6103 Frequencies -- 2983.6520 3009.1637 3034.4114 Frequencies -- 3040.7770 3079.2389 3084.1471 Frequencies -- 3102.8729 3134.8237 3139.7112 Frequencies -- 3192.7707 3205.4367 3252.6372

228

IR Inten -- 2.0049 4.6035 0.2844 IR Inten -- 15.3647 1.0976 5.2979 IR Inten -- 51.2499 7.1723 0.0409 IR Inten -- 1.7364 1.2772 0.7231 IR Inten -- 14.8227 13.1180 10.4088 IR Inten -- 47.3994 34.0024 36.3586 IR Inten -- 4.0828 94.7094 21.9772 IR Inten -- 21.0104 0.7998 87.3771 IR Inten -- 0.9397 1.0154 3.4775 IR Inten -- 4.4245 214.5702 16.9778 IR Inten -- 98.1005 23.4047 138.2798 IR Inten -- 0.1527 93.8260 4.6461 IR Inten -- 42.2861 17.6380 85.3526 IR Inten -- 0.1667 11.6048 3.2948 IR Inten -- 92.1864 7.8493 4.3527 IR Inten -- 29.2544 5.1798 28.0829 IR Inten -- 50.8273 10.9850 19.5318 IR Inten -- 140.9550 83.0622 1882.5855 IR Inten -- 125.7984 61.9283 90.6060 IR Inten -- 57.6885 22.8269 30.8711 IR Inten -- 32.3649 15.0946 11.6569 IR Inten -- 34.1099 30.1783 4.9000

Chloranil ground state in gas phase

Point group: C01

6 -0.000008000 -1.458355000 -0.000728000 6 -1.279807000 -0.675481000 -0.000327000 6 -1.279800000 0.675489000 0.000006000 6 0.000021000 1.458353000 -0.000624000 6 1.279796000 0.675478000 -0.000348000 6 1.279786000 -0.675493000 0.000080000 8 -0.000004000 -2.671101000 -0.001686000 8 0.000045000 2.671099000 -0.001219000 17 2.719560000 1.618863000 -0.000334000 17 -2.719570000 -1.618860000 -0.000139000 17 -2.719544000 1.618890000 0.001169000 17 2.719539000 -1.618888000 0.001356000

229 Thermal correction to Energy= 0.058127 Thermal correction to Gibbs Free Energy= 0.008127

B3LYP/6-31+G**//B3LYP/6-31G* E(RB+HF-LYP) = -2219.78811953

Frequencies -- 52.7222 62.3346 86.5732 Frequencies -- 179.4737 198.5299 204.5109 Frequencies -- 212.7954 265.2992 307.1588 Frequencies -- 324.8508 339.4363 379.7674 Frequencies -- 431.6565 467.3422 488.7187 Frequencies -- 555.5356 730.5993 731.0341 Frequencies -- 736.7860 770.1053 850.5434 Frequencies -- 909.5059 994.6985 1112.4012 Frequencies -- 1232.3243 1247.5313 1609.0396 Frequencies -- 1647.9901 1775.6483 1779.4905

IR Inten -- 1.6991 0.0000 0.0000 IR Inten -- 5.8345 0.0000 0.0004 IR Inten -- 0.0990 0.0000 0.0000 IR Inten -- 0.0000 0.0000 5.0761 IR Inten -- 0.0000 4.1435 0.0000 IR Inten -- 0.0000 0.0497 18.5889 IR Inten -- 200.7218 0.0001 0.0000 IR Inten -- 22.1753 0.0000 378.5608 IR Inten -- 104.8769 0.0001 232.0711 IR Inten -- 0.0001 0.0001 301.9106

Chloranil triplet excited state in gas phase

S2= 2.0193 Point group: C01

C -0.002556 1.501685 0.000226 C 1.232544 0.686883 -0.000045 C 1.232545 -0.686880 -0.000012 C -0.002553 -1.501684 -0.000095 C -1.232690 -0.736562 -0.000146 C -1.232692 0.736559 0.000036 O 0.006546 2.738995 0.000455 O 0.006552 -2.738995 -0.000023 Cl -2.694799 -1.596733 0.000076

230 Cl 2.692672 1.597604 -0.000187 Cl 2.692676 -1.597600 0.000087 Cl -2.694806 1.596728 -0.000167

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -2219.74291211

Frequencies -- 51.8826 67.3982 83.9946 Frequencies -- 175.1579 208.5895 213.9794 Frequencies -- 220.1673 278.4804 323.5207 Frequencies -- 325.2974 330.9439 346.2148 Frequencies -- 359.7436 460.1509 485.7605 Frequencies -- 549.5887 674.0047 719.9878 Frequencies -- 728.0566 749.4281 875.4044 Frequencies -- 938.4087 1047.3732 1166.3446 Frequencies -- 1205.5677 1225.6816 1346.4831 Frequencies -- 1502.0867 1587.1167 1598.1276

IR Inten -- 32.8369 4.0431 26.6252 IR Inten -- 8.6580 0.1979 0.3377 IR Inten -- 0.1802 2.3783 12.9770 IR Inten -- 0.6145 0.1824 1.8861 IR Inten -- 0.7086 2.0624 10.6360 IR Inten -- 15.1776 14.4223 18.5102 IR Inten -- 0.2099 364.4989 2.1242 IR Inten -- 154.8457 3.6221 346.9080 IR Inten -- 851.0336 0.0819 18.9830 IR Inten -- 422.7638 269.0723 3.4236

Chloranil radical anion in gas phase

S2= 0.7805 Point group: C01

C 0.000002 1.484861 0.000021 C 1.225873 0.686697 0.000002 C 1.225868 -0.686700 -0.000056 C -0.000010 -1.484855 0.000036 C -1.225859 -0.686698 0.000044 C -1.225856 0.686709 -0.000055 O 0.000002 2.732205 0.000081 O -0.000029 -2.732196 0.000128 Cl -2.717704 -1.607723 0.000141

231 Cl 2.717713 1.607716 0.000169 Cl 2.717696 -1.607735 -0.000213 Cl -2.717697 1.607733 -0.000192

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -2219.85226040

Thermal correction to Energy= 0.056570 Thermal correction to Gibbs Free Energy= 0.006465

Frequencies -- 68.9144 76.9991 111.4427 Frequencies -- 185.5480 201.2226 205.5389 Frequencies -- 214.0023 276.8139 319.0400 Frequencies -- 327.7845 329.2273 360.1300 Frequencies -- 382.2099 444.6471 498.0853 Frequencies -- 542.8758 699.0436 704.4111 Frequencies -- 723.1662 729.6317 824.2606 Frequencies -- 903.2820 1003.3707 1130.6468 Frequencies -- 1136.6603 1333.0692 1483.6424 Frequencies -- 1566.6868 1588.4218 1633.1852

IR Inten -- 0.0000 2.8611 0.0000 IR Inten -- 5.7347 0.0000 1.0702 IR Inten -- 0.4768 0.0000 0.0000 IR Inten -- 0.0000 0.0000 0.6052 IR Inten -- 0.0000 0.4321 0.0000 IR Inten -- 0.0000 153.0843 13.3297 IR Inten -- 0.0000 0.0000 0.0000 IR Inten -- 149.1926 0.0000 96.9955 IR Inten -- 180.3867 0.0000 0.1418 IR Inten -- 0.0000 229.6628 0.0000

Chloranil ground state in acetonitrile

Point group: C01

C 0.000000 -1.458787 0.000196 C 1.279688 -0.675496 -0.000061 C 1.279689 0.675494 -0.000254 C 0.000000 1.458788 0.000064 C -1.279685 0.675496 -0.000024 C -1.279686 -0.675495 -0.000258 O 0.000003 -2.671646 0.000654

232 O 0.000012 2.671646 0.000529 Cl -2.719597 1.618407 0.000207 Cl 2.719593 -1.618415 0.000143 Cl 2.719590 1.618414 -0.000359 Cl -2.719595 -1.618406 -0.000428

B3LYP/6-31+G**//B3LYP/6-31G* E(RB+HF-LYP) = -2219.81255437 Thermal correction to Energy= 0.058123 Thermal correction to Gibbs Free Energy= 0.008137

Frequencies -- 53.1979 62.2429 86.9652 Frequencies -- 179.7259 198.6044 204.4632 Frequencies -- 212.8712 265.2989 307.0928 Frequencies -- 324.8702 339.3779 379.7085 Frequencies -- 431.7956 467.3998 488.6769 Frequencies -- 555.5243 730.6185 731.1989 Frequencies -- 737.0524 770.2336 850.6614 Frequencies -- 909.4204 994.7734 1112.4295 Frequencies -- 1232.0024 1247.2101 1608.9020 Frequencies -- 1647.8838 1774.9115 1778.7735

IR Inten -- 1.6770 0.0000 0.0000 IR Inten -- 5.8501 0.0000 0.0004 IR Inten -- 0.0994 0.0000 0.0000 IR Inten -- 0.0000 0.0000 5.0662 IR Inten -- 0.0000 4.1391 0.0000 IR Inten -- 0.0000 0.0043 18.6409 IR Inten -- 200.7738 0.0000 0.0000 IR Inten -- 21.9540 0.0000 378.7398 IR Inten -- 104.9622 0.0000 232.1438 IR Inten -- 0.0000 0.0000 302.0886

Chloranil triplet excited state in acetonitrile

S2 = 2.0108 Point group: C01

C 0.002252 -1.498458 0.001707 C -1.227460 -0.686650 0.001852 C -1.227118 0.686781 -0.003845 C 0.002720 1.498506 -0.005885 C 1.232133 0.734016 -0.000585

233 C 1.231821 -0.734185 -0.002697 O -0.006871 -2.737761 0.003941 O -0.006395 2.737834 -0.007939 Cl 2.691306 1.590062 0.015510 Cl -2.690814 -1.591305 0.009065 Cl -2.690121 1.591804 -0.006559 Cl 2.690808 -1.590599 -0.012799

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -2219.74196884

Frequencies -- 51.8826 67.3982 83.9946 Frequencies -- 175.1579 208.5895 213.9794 Frequencies -- 220.1673 278.4804 323.5207 Frequencies -- 325.2974 330.9439 346.2148 Frequencies -- 359.7436 460.1509 485.7605 Frequencies -- 549.5887 674.0047 719.9878 Frequencies -- 728.0566 749.4281 875.4044 Frequencies -- 938.4087 1047.3732 1166.3446 Frequencies -- 1205.5677 1225.6816 1346.4831 Frequencies -- 1502.0867 1587.1167 1598.1276

IR Inten -- 32.8369 4.0431 26.6252 IR Inten -- 8.6580 0.1979 0.3377 IR Inten -- 0.1802 2.3783 12.9770 IR Inten -- 0.6145 0.1824 1.8861 IR Inten -- 0.7086 2.0624 10.6360 IR Inten -- 15.1776 14.4223 18.5102 IR Inten -- 0.2099 364.4989 2.1242 IR Inten -- 154.8457 3.6221 346.9080 IR Inten -- 851.0336 0.0819 18.9830 IR Inten -- 422.7638 269.0723 3.4236

Chloranil radical anion in acetonitrile

S2= 0.7607 Point group: C01

C 0.000002 -1.479913 0.000017 C 1.224971 -0.686257 0.000182 C 1.224969 0.686267 0.000014 C -0.000005 1.479923 0.000051 C -1.224973 0.686263 0.000032

234 C -1.224966 -0.686262 -0.000146 O 0.000005 -2.728955 0.000002 O -0.000003 2.728967 -0.000033 Cl -2.713226 1.601568 -0.000042 Cl 2.713213 -1.601573 -0.000075 Cl 2.713220 1.601572 0.000031 Cl -2.713207 -1.601579 0.000048

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -2219.97426218

Frequencies -- 67.2105 77.7127 113.0950 Frequencies -- 161.4938 191.5061 203.4291 Frequencies -- 215.8387 275.1184 318.3489 Frequencies -- 329.2397 331.1897 362.7768 Frequencies -- 388.7028 470.1119 500.0832 Frequencies -- 553.5934 703.5490 704.0714 Frequencies -- 729.8355 743.5277 841.6986 Frequencies -- 913.9750 1013.9916 1147.9649 Frequencies -- 1150.1496 1349.7254 1486.5245 Frequencies -- 1567.2878 1588.0574 1635.5336

IR Inten -- 0.3987 3.7756 0.1334 IR Inten -- 4.3172 5.9764 0.0253 IR Inten -- 0.1242 0.2314 0.0769 IR Inten -- 0.0512 0.0058 2.6997 IR Inten -- 1.5137 0.0006 0.0080 IR Inten -- 1.7019 223.8172 20.5141 IR Inten -- 3.1431 0.5407 3.1553 IR Inten -- 223.0598 0.0699 141.8998 IR Inten -- 301.1586 0.1189 1.1138 IR Inten -- 0.1062 513.8371 0.0119

Hydroquinone ground state in gas phase

Point group: C01

C -0.698922 -1.195977 -0.000042 C 0.698891 -1.195946 -0.000057 C 1.401276 0.009804 -0.000047 C 0.695025 1.218605 -0.000007 C -0.694985 1.218579 -0.000025 C -1.401254 0.009789 0.000024 H -1.236271 -2.142705 -0.000154

235 H 1.236342 -2.142624 -0.000540 H 1.251368 2.150649 -0.000150 H -1.251441 2.150562 -0.000137 O -2.772779 0.077646 0.000010 H -3.129864 -0.823525 0.000696 O 2.772764 0.077615 0.000020 H 3.129798 -0.823570 0.000965

B3LYP/6-31+G**//B3LYP/6-31G* E(RB+HF-LYP) = -382.677825046

Thermal correction to Energy= 0.115393 Thermal correction to Gibbs Free Energy= 0.078077

Frequencies -- 157.8846 313.3430 318.8278 Frequencies -- 342.8971 369.8861 425.9007 Frequencies -- 447.5125 470.6471 524.1105 Frequencies -- 659.3587 702.0511 766.7346 Frequencies -- 791.2204 841.2519 868.8012 Frequencies -- 884.8287 947.3381 1028.6974 Frequencies -- 1124.1636 1196.7615 1201.1320 Frequencies -- 1213.1236 1288.2453 1314.9177 Frequencies -- 1373.3993 1384.3182 1513.2830 Frequencies -- 1566.4812 1665.6866 1685.7599 Frequencies -- 3163.8624 3180.4470 3208.4738 Frequencies -- 3222.6345 3756.4308 3757.4157

IR Inten -- 0.2762 0.0047 243.7006 IR Inten -- 0.0004 0.0000 0.0000 IR Inten -- 22.6187 0.3464 9.6185 IR Inten -- 2.1557 0.0000 47.9655 IR Inten -- 21.4946 39.0315 0.2215 IR Inten -- 0.0000 0.0000 0.0000 IR Inten -- 10.3988 1.6966 8.6475 IR Inten -- 318.3994 130.0337 0.0930 IR Inten -- 112.9138 9.2984 0.0275 IR Inten -- 212.7343 13.0275 0.0718 IR Inten -- 22.9911 17.2547 5.8667 IR Inten -- 5.9318 45.5462 29.0436

236 Hydroquinone neutral radical in gas phase

S2 = 0.7772 Point group: C01

C 0.728615 -1.236715 0.000217 C -0.646597 -1.216156 -0.000442 C -1.333538 0.018592 -0.000449 C -0.623071 1.242009 -0.000444 C 0.749303 1.234256 0.000230 C 1.505194 -0.008329 0.000141 H 1.280918 -2.171191 0.001016 H -1.216473 -2.144517 -0.000668 H -1.192625 2.166518 -0.000574 H 1.320038 2.157706 0.001120 O 2.760726 -0.021863 -0.000104 O -2.686601 0.095445 0.000441 H -3.064302 -0.799113 0.000884

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -382.036377882

Frequencies -- 135.9857 324.1307 369.3482 Frequencies -- 385.7941 433.9608 460.1438 Frequencies -- 465.9923 517.3601 632.1200 Frequencies -- 725.2173 779.5287 784.7043 Frequencies -- 828.0247 853.9957 944.2093 Frequencies -- 970.8260 990.0069 1110.1376 Frequencies -- 1172.6024 1195.1054 1276.4238 Frequencies -- 1327.0090 1372.9354 1458.9378 Frequencies -- 1477.8844 1529.4363 1565.8810 Frequencies -- 1638.4350 3163.8128 3207.7953 Frequencies -- 3222.3755 3225.1682 3738.6632

IR Inten -- 2.3904 4.3928 10.3234 IR Inten -- 9.1230 114.3370 5.1461 IR Inten -- 0.7926 4.5988 1.0180 IR Inten -- 1.6037 26.5360 4.2467 IR Inten -- 3.8198 60.1346 0.1895 IR Inten -- 0.0336 5.1526 21.4726 IR Inten -- 13.7297 123.2362 1.3147 IR Inten -- 91.6048 73.5395 22.8295 IR Inten -- 2.6365 64.1443 11.1189 IR Inten -- 157.0966 16.7638 3.9800

237 IR Inten -- 4.4080 2.4577 72.5885

Hydroquinone ground state in acetonitrile

Point group: C01

C -0.698591 -1.195458 -0.000527 C 0.698523 -1.195504 0.000492 C 1.401425 0.011057 -0.000155 C 0.695712 1.219788 -0.000519 C -0.695644 1.219836 0.000531 C -1.401422 0.011112 0.000132 H -1.238993 -2.140007 -0.001637 H 1.238833 -2.140095 0.001444 H 1.249603 2.154042 -0.000995 H -1.249444 2.154129 0.001003 O -2.771779 0.075425 0.000482 H -3.130210 -0.829825 -0.003354 O 2.771777 0.075401 -0.000534 H 3.130209 -0.829844 0.004233

B3LYP/6-31+G**//B3LYP/6-31G* E(RB+HF-LYP) = -382.689260116

Thermal correction to Energy= 0.115178 Thermal correction to Gibbs Free Energy= 0.078032

Frequencies -- 158.3102 343.7367 345.3026 Frequencies -- 347.4334 372.3773 427.6881 Frequencies -- 450.2919 471.8415 526.5487 Frequencies -- 658.1706 703.5184 766.5114 Frequencies -- 805.2996 837.8276 868.8600 Frequencies -- 911.7762 942.0187 1029.5197 Frequencies -- 1121.7694 1193.7864 1200.9360 Frequencies -- 1212.6384 1286.9881 1313.1082 Frequencies -- 1372.8239 1384.9197 1510.6181 Frequencies -- 1560.8296 1665.1940 1681.7400 Frequencies -- 3174.0347 3186.7460 3202.0231 Frequencies -- 3216.0557 3684.1158 3686.5746

IR Inten -- 0.0443 0.7886 333.0233 IR Inten -- 0.2325 0.0089 0.0058 IR Inten -- 29.6825 0.3133 11.5140

238 IR Inten -- 2.4862 0.0003 81.5825 IR Inten -- 22.7962 58.5010 0.0182 IR Inten -- 0.2186 0.0189 0.5583 IR Inten -- 14.8883 1.7726 19.5751 IR Inten -- 539.7924 140.0549 1.6923 IR Inten -- 124.0461 12.9949 1.0816 IR Inten -- 340.2419 13.6231 0.2393 IR Inten -- 0.8583 6.8319 5.6234 IR Inten -- 3.7026 213.7217 126.4573

Hydroquinone neutral radical in acetonitrile

S2= 0.7742 Point group: C01

C -0.726734 -1.235760 -0.000343 C 0.646706 -1.218806 -0.000641 C 1.335935 0.016786 -0.000896 C 0.622018 1.240479 -0.000711 C -0.748773 1.233186 0.000101 C -1.502661 -0.008573 0.000523 H -1.276220 -2.172403 -0.000462 H 1.216700 -2.145992 -0.000523 H 1.188711 2.166958 -0.000263 H -1.315955 2.159336 0.000856 O -2.761404 -0.021166 0.000419 O 2.679874 0.098746 0.000155 H 3.080054 -0.792406 0.007600

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -382.060228089

Frequencies -- 138.5325 336.0908 376.1463 Frequencies -- 406.3621 461.0677 466.8755 Frequencies -- 468.7340 521.4960 642.0018 Frequencies -- 734.1879 782.6210 786.9114 Frequencies -- 833.5927 856.3661 956.2737 Frequencies -- 977.2009 990.8413 1112.8633 Frequencies -- 1176.2820 1199.0333 1281.9227 Frequencies -- 1337.8618 1378.1709 1465.3805 Frequencies -- 1484.6422 1546.1825 1564.7514 Frequencies -- 1643.9584 3182.3992 3207.5393 Frequencies -- 3218.9615 3222.0725 3640.0562

239 IR Inten -- 3.3159 2.0376 15.6971 IR Inten -- 20.8895 99.3855 34.0703 IR Inten -- 29.8279 5.6055 1.0686 IR Inten -- 1.8805 46.8794 3.5131 IR Inten -- 4.6277 78.6359 0.0590 IR Inten -- 0.2974 10.7444 33.4974 IR Inten -- 17.3204 223.5868 0.3544 IR Inten -- 159.4437 105.8206 40.1316 IR Inten -- 9.5946 203.0459 3.1616 IR Inten -- 232.6156 2.4712 1.4236 IR Inten -- 0.7092 0.3884 329.3540

240

APPENDIX B

SUPPORTING INFORMATION FOR CHAPTER 4

Support Information includes geometries, energies, S2 values, thermal corrections, frequencies, and IR intensities (all energies and frequencies are uncorrected) in gas phase

and acetonitrile.

241 Khellin ground state in gas phase.

Khellin 1 Point group: C01

Thermal correction to Energy= 0.253818 Thermal correction to Gibbs Free Energy= 0.191862

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -916.779158960

Frequencies -- 42.0248 50.7433 64.6130 Frequencies -- 93.7962 119.7749 136.5656 Frequencies -- 146.5530 154.5003 177.2986 Frequencies -- 185.6825 188.7639 204.2524 Frequencies -- 260.1776 263.4761 277.6066 Frequencies -- 296.4931 332.8950 341.0904 Frequencies -- 373.1633 399.3401 467.5358 Frequencies -- 515.9212 545.9399 561.8665 Frequencies -- 564.1007 590.7603 605.4064 Frequencies -- 642.1365 665.4689 709.2707 Frequencies -- 729.3811 773.7009 776.9484 Frequencies -- 810.6317 857.2651 867.7128 Frequencies -- 874.0027 896.6010 949.7511 Frequencies -- 1002.4904 1015.7288 1038.3620 Frequencies -- 1058.7521 1080.3595 1101.3187 Frequencies -- 1107.1263 1160.8616 1175.7968 Frequencies -- 1180.9647 1188.9394 1200.1775 Frequencies -- 1218.7391 1228.6683 1240.0055 Frequencies -- 1307.8463 1338.9359 1367.2992 Frequencies -- 1386.5914 1401.6872 1421.3411 Frequencies -- 1447.0509 1475.9024 1495.7230 Frequencies -- 1500.2699 1509.4777 1512.2780 Frequencies -- 1518.4914 1521.4982 1531.3218 Frequencies -- 1542.7275 1598.8798 1639.0558 Frequencies -- 1657.4290 1705.1897 1735.4021 Frequencies -- 3038.3929 3039.0985 3056.4783 Frequencies -- 3105.0401 3111.4631 3136.3984 Frequencies -- 3156.6504 3160.9868 3173.5465 Frequencies -- 3236.0531 3284.6466 3306.9252

242 IR Inten -- 2.5815 3.7925 0.2939 IR Inten -- 1.5035 0.8978 0.0379 IR Inten -- 2.2192 0.1574 0.4992 IR Inten -- 0.2279 3.7632 4.1196 IR Inten -- 7.2175 0.3214 0.7161 IR Inten -- 0.5138 14.9215 1.9468 IR Inten -- 2.3692 2.2539 2.4321 IR Inten -- 7.1307 0.7022 16.0683 IR Inten -- 4.5680 4.0777 4.9124 IR Inten -- 3.1746 1.4507 5.7163 IR Inten -- 3.3119 20.4175 11.7652 IR Inten -- 3.1622 11.1072 2.0061 IR Inten -- 21.9833 2.8930 15.9697 IR Inten -- 46.1285 38.0400 9.4664 IR Inten -- 2.7542 4.2367 145.4875 IR Inten -- 144.0128 57.1094 10.5337 IR Inten -- 0.8472 33.2212 21.0486 IR Inten -- 32.6194 39.0815 91.9421 IR Inten -- 40.2656 10.2838 40.5033 IR Inten -- 145.8418 289.4229 11.1609 IR Inten -- 44.5871 66.9669 23.2404 IR Inten -- 8.8257 10.8242 5.7055 IR Inten -- 6.3876 133.7023 14.5387 IR Inten -- 6.5305 19.6096 28.2626 IR Inten -- 65.4070 16.1991 458.1615 IR Inten -- 46.5451 80.3703 12.1067 IR Inten -- 31.6257 9.0576 35.7909 IR Inten -- 31.0645 8.9956 8.9059 IR Inten -- 2.6692 0.8966 1.2530

Khellin triplet excited state in gas phase

31*

S2 = 2.0161 Point group: C01

C -2.890465 1.105474 -0.173673 C -3.021674 -0.235719 -0.140231 O -1.943886 -1.061820 -0.089836 C -0.670834 -0.544939 -0.107826 243 C -0.420412 0.856850 -0.100427 C -1.591708 1.773550 -0.133026 C 0.336273 -1.521613 -0.146216 C 1.634857 -1.029780 -0.190421 C 1.944928 0.342622 -0.190467 C 0.926510 1.300927 -0.137417 O 2.772685 -1.776907 -0.239026 C 3.816250 -0.872710 -0.278156 C 3.386314 0.409529 -0.251207 C -4.301799 -1.008371 -0.151293 O 1.311515 2.607617 -0.195653 C 1.182121 3.380612 1.005489 O 0.061872 -2.860090 -0.215080 C -0.217036 -3.483338 1.042806 O -1.509118 3.002638 -0.127560 H -3.768594 1.739195 -0.216484 H 4.797848 -1.319456 -0.326251 H 3.993424 1.302024 -0.280190 H -4.334596 -1.683125 -1.014642 H -5.157993 -0.332055 -0.196045 H -4.385677 -1.627282 0.750009 H 1.640965 4.346067 0.782017 H 1.725532 2.900333 1.829851 H 0.131410 3.525910 1.261411 H -0.378770 -4.541355 0.825885 H -1.118774 -3.062695 1.502841 H 0.630728 -3.377621 1.731230

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -648.30212486

Frequencies -- 101.8089 106.8221 179.3231 Frequencies -- 222.5280 272.3133 316.6668 Frequencies -- 347.2371 371.8952 405.0046 Frequencies -- 420.5513 464.9602 482.9949 Frequencies -- 505.5953 537.4683 586.0745 Frequencies -- 592.3990 674.1514 710.9945 Frequencies -- 723.8358 735.3267 750.2720 Frequencies -- 766.4031 819.7848 837.8670 Frequencies -- 851.0255 870.7592 877.2626 Frequencies -- 889.4968 906.6158 1047.9279 Frequencies -- 1059.4048 1074.9827 1128.6123 Frequencies -- 1141.8491 1187.2566 1213.7878 Frequencies -- 1253.7331 1278.6475 1283.8122 Frequencies -- 1340.9664 1394.8662 1432.8390 Frequencies -- 1451.8602 1479.6800 1503.5884

244 Frequencies -- 1565.1092 1580.8667 1635.5756 Frequencies -- 3231.0217 3231.8557 3245.1894 Frequencies -- 3272.0946 3286.2976 3303.0035

IR Inten -- 4.2148 2.2024 10.0303 IR Inten -- 3.6619 38.4933 17.6137 IR Inten -- 12.7814 41.2872 40.7618 IR Inten -- 28.2807 53.6833 19.5613 IR Inten -- 22.0536 8.9441 111.7276 IR Inten -- 8.2066 433.0156 65.1019 IR Inten -- 9.6562 29.9501 95.3987 IR Inten -- 33.0792 36.7916 28.7821 IR Inten -- 0.1872 14.3686 30.9325 IR Inten -- 4.0393 7.8149 62.6217 IR Inten -- 239.1972 188.2223 259.4317 IR Inten -- 38.3783 17.0644 123.5940 IR Inten -- 12.8925 34.7542 29.1772 IR Inten -- 17.1886 3.0256 7.9229 IR Inten -- 57.2356 8.4005 164.9601 IR Inten -- 85.3203 4.7653 77.4690 IR Inten -- 2.9807 4.3851 0.1899 IR Inten -- 3.5400 15.2596 0.6973

Khellin radical anion in gas phase

1•−

S2 = 0.7632 Point group: C01

6 -2.874843000 1.117111000 -0.136581000 6 -3.046522000 -0.231466000 -0.138518000 8 -1.941811000 -1.072849000 -0.124144000 6 -0.674385000 -0.542701000 -0.144144000 6 -0.430439000 0.872839000 -0.135001000 6 -1.592200000 1.780045000 -0.121223000 6 0.335352000 -1.512486000 -0.169707000 6 1.657321000 -1.039655000 -0.184884000 6 1.967050000 0.321086000 -0.186208000 6 0.934688000 1.290818000 -0.163087000 245 8 2.793332000 -1.805160000 -0.212627000 6 3.847117000 -0.911977000 -0.235510000 6 3.405299000 0.377670000 -0.222841000 6 -4.320132000 -1.004369000 -0.148997000 8 1.355143000 2.609520000 -0.226213000 6 1.194077000 3.362216000 0.973130000 8 0.060341000 -2.871742000 -0.215641000 6 -0.308185000 -3.421256000 1.041658000 8 -1.511185000 3.048144000 -0.089884000 1 -3.749940000 1.762339000 -0.143201000 1 4.827962000 -1.362760000 -0.262066000 1 4.013023000 1.271743000 -0.242184000 1 -4.400342000 -1.663616000 -1.029145000 1 -5.173035000 -0.317917000 -0.159762000 1 -4.419708000 -1.657421000 0.734734000 1 1.694883000 4.323221000 0.800287000 1 1.679271000 2.857688000 1.824925000 1 0.130466000 3.527274000 1.166808000 1 -0.453952000 -4.496207000 0.884446000 1 -1.242615000 -2.981549000 1.412384000 1 0.482240000 -3.273352000 1.792327000

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -916.768206108

Frequencies -- 47.0647 60.6661 67.4033 Frequencies -- 88.9860 132.6479 144.3033 Frequencies -- 155.7323 165.4266 181.5875 Frequencies -- 192.7652 200.3324 208.1116 Frequencies -- 257.5096 263.7294 276.9517 Frequencies -- 291.9501 320.3475 329.8972 Frequencies -- 366.2543 393.0229 435.4141 Frequencies -- 459.2192 502.5761 532.4993 Frequencies -- 547.8145 569.2434 585.0577 Frequencies -- 595.3180 600.5703 640.5697 Frequencies -- 647.8939 671.1783 692.9986 Frequencies -- 790.7069 809.3645 854.5492 Frequencies -- 855.9397 893.7831 933.5635 Frequencies -- 987.2433 1011.6347 1015.0836 Frequencies -- 1036.0637 1066.0594 1091.6759 Frequencies -- 1094.6797 1148.5728 1156.6018 Frequencies -- 1177.7382 1181.4746 1185.8698 Frequencies -- 1196.7113 1222.5192 1232.2354 Frequencies -- 1240.9982 1306.4595 1332.4677 Frequencies -- 1350.1925 1355.1335 1397.3848 Frequencies -- 1432.3962 1444.8023 1472.8801

246 Frequencies -- 1489.2863 1491.1625 1500.2595 Frequencies -- 1511.6250 1516.0598 1534.7432 Frequencies -- 1537.5103 1558.0382 1563.1544 Frequencies -- 1586.7011 1619.2890 1673.2567 Frequencies -- 2969.3536 2982.2505 2992.6508 Frequencies -- 3009.4844 3069.9289 3075.4789 Frequencies -- 3104.6632 3114.6428 3128.3261 Frequencies -- 3185.1130 3259.5045 3286.2158

IR Inten -- 3.4753 0.0471 1.0990 IR Inten -- 0.8010 0.8827 0.5800 IR Inten -- 0.2595 0.2376 2.6974 IR Inten -- 1.5828 1.6469 1.0516 IR Inten -- 5.5772 0.6314 0.7019 IR Inten -- 0.1854 3.3421 1.5845 IR Inten -- 3.4053 6.8267 10.7408 IR Inten -- 14.9952 11.9226 18.0997 IR Inten -- 10.3755 1.4543 7.1382 IR Inten -- 4.5469 20.8779 14.6273 IR Inten -- 1.9283 3.5237 2.9314 IR Inten -- 63.6029 12.1807 27.3905 IR Inten -- 17.9747 9.7725 19.5302 IR Inten -- 39.6729 96.7976 40.3013 IR Inten -- 72.7150 2.3533 19.2888 IR Inten -- 161.6715 175.5349 122.6446 IR Inten -- 27.2794 3.9891 18.2672 IR Inten -- 36.6498 39.9530 13.9833 IR Inten -- 99.1475 31.8469 34.2017 IR Inten -- 146.4415 133.4153 6.9932 IR Inten -- 10.0425 88.0892 31.6285 IR Inten -- 3.4416 6.4034 38.8586 IR Inten -- 5.7602 90.5505 37.8926 IR Inten -- 1.5311 4.4093 272.4919 IR Inten -- 72.7441 6.5742 346.1368 IR Inten -- 426.3837 129.4190 80.8361 IR Inten -- 97.9541 118.8948 37.1162 IR Inten -- 69.1579 18.9790 8.3240 IR Inten -- 45.2154 8.8681 1.1081

247 Khellin radical cation in gas phase

1•+

S2 = 0.7596 Point group: C01

6 -2.753233000 1.291373000 -0.159637000 6 -2.979728000 -0.024875000 0.010521000 8 -1.924829000 -0.911833000 0.054193000 6 -0.642381000 -0.496308000 0.023383000 6 -0.303780000 0.869941000 -0.029698000 6 -1.407515000 1.833039000 -0.324255000 6 0.330797000 -1.569812000 0.014460000 6 1.658783000 -1.136698000 -0.090821000 6 2.057256000 0.198679000 -0.097520000 6 1.083156000 1.241953000 0.004109000 8 2.741658000 -1.952209000 -0.126999000 6 3.832033000 -1.137008000 -0.162858000 6 3.481875000 0.185843000 -0.134460000 6 -4.291571000 -0.720508000 0.139689000 8 1.610079000 2.436015000 0.148248000 6 0.989483000 3.591302000 0.774837000 8 0.128423000 -2.871312000 0.068893000 6 -1.147261000 -3.540312000 0.223840000 8 -1.205966000 2.973645000 -0.722337000 1 -3.583366000 1.982787000 -0.245175000 1 4.785365000 -1.642356000 -0.209387000 1 4.149070000 1.034715000 -0.151474000 1 -4.427567000 -1.447597000 -0.669379000 1 -5.107377000 0.003454000 0.098532000 1 -4.351029000 -1.262324000 1.090873000 1 1.825664000 4.121221000 1.231164000 1 0.274423000 3.268645000 1.532910000 1 0.494560000 4.189943000 0.014570000 1 -0.882306000 -4.594344000 0.288140000 1 -1.779093000 -3.356252000 -0.645823000 1 -1.640750000 -3.211992000 1.139531000

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -916.508808937

Frequencies -- 34.0979 65.6593 80.7274 Frequencies -- 108.4729 126.8402 148.6126

248 Frequencies -- 168.3603 174.6715 183.9473 Frequencies -- 189.3994 210.0753 227.5681 Frequencies -- 230.7795 257.9471 281.3929 Frequencies -- 300.7951 330.6220 353.4129 Frequencies -- 404.1175 412.4799 453.5236 Frequencies -- 463.5777 538.4874 544.9731 Frequencies -- 561.1023 584.3228 597.8308 Frequencies -- 630.7147 653.8575 667.0577 Frequencies -- 702.7981 758.3454 808.2109 Frequencies -- 819.6362 854.7551 885.1518 Frequencies -- 897.4242 901.2598 948.0399 Frequencies -- 950.4722 990.2679 1037.4031 Frequencies -- 1075.9043 1077.5511 1109.5005 Frequencies -- 1130.0390 1160.7812 1164.9721 Frequencies -- 1166.0952 1170.5986 1200.1963 Frequencies -- 1208.4894 1231.6172 1253.9102 Frequencies -- 1312.7091 1349.6440 1398.4301 Frequencies -- 1412.3375 1424.9002 1441.5179 Frequencies -- 1450.9212 1463.1456 1495.8386 Frequencies -- 1496.0128 1498.6883 1502.6836 Frequencies -- 1507.6999 1510.1413 1521.1486 Frequencies -- 1527.7384 1545.2752 1572.2791 Frequencies -- 1641.5138 1699.7878 1758.1078 Frequencies -- 3061.4278 3097.1480 3101.9158 Frequencies -- 3119.1357 3172.3663 3190.0074 Frequencies -- 3195.1097 3211.3376 3230.7013 Frequencies -- 3247.4960 3296.5657 3315.1706

IR Inten -- 0.6215 4.7118 6.7497 IR Inten -- 3.6716 0.4108 1.9678 IR Inten -- 0.6088 0.6908 1.4170 IR Inten -- 0.0965 2.5484 3.1460 IR Inten -- 3.0340 3.7877 1.9368 IR Inten -- 4.1073 4.1197 6.9990 IR Inten -- 14.7688 2.4868 1.2594 IR Inten -- 5.2143 7.8945 2.7964 IR Inten -- 0.4317 6.2709 4.8628 IR Inten -- 4.5633 1.5330 0.6972 IR Inten -- 2.5928 6.5542 34.6153 IR Inten -- 12.0564 20.0597 22.5857 IR Inten -- 7.2678 0.2580 11.3386 IR Inten -- 35.7091 41.0218 10.8373 IR Inten -- 17.3953 6.2254 52.4877 IR Inten -- 141.1329 25.0941 8.9941 IR Inten -- 2.6466 5.0872 1.7670

249 IR Inten -- 19.3684 66.3176 5.3467 IR Inten -- 31.3981 76.4273 50.3553 IR Inten -- 222.2841 146.2499 215.6484 IR Inten -- 76.3634 98.7833 32.6910 IR Inten -- 49.8670 15.5749 49.4124 IR Inten -- 69.4111 58.1098 18.1343 IR Inten -- 16.3708 221.7810 179.5000 IR Inten -- 89.6959 90.1944 333.4829 IR Inten -- 1.0450 12.3523 12.2991 IR Inten -- 2.2797 1.1326 7.6186 IR Inten -- 6.2129 4.9044 6.9638 IR Inten -- 2.8238 7.8081 8.2640

Khellin neutral radical in gas phase

1H•

S2 = 0.7723 Point group: C01

C -2.821766 1.267267 -0.118779 C -3.074167 -0.073954 -0.096204 O -2.031279 -0.986189 -0.111237 C -0.727606 -0.551234 -0.141563 C -0.405517 0.846295 -0.141536 C -1.506841 1.767231 -0.153049 C 0.243398 -1.550681 -0.164365 C 1.576209 -1.114547 -0.198717 C 1.955746 0.235340 -0.207285 C 0.955714 1.218957 -0.159360 O 2.674694 -1.922993 -0.249372 C 3.760682 -1.083101 -0.295293 C 3.397110 0.224531 -0.272964 C -4.399792 -0.751627 -0.063854 O 1.300348 2.572941 -0.157541 C 1.772764 3.053917 1.112829 O -0.061458 -2.884585 -0.222695 C -0.514898 -3.456849 1.007527 O -1.329358 3.117278 -0.204686 H -3.648905 1.968673 -0.121504 H 4.718695 -1.577903 -0.347087 H 4.060163 1.076399 -0.319203

250 H -4.532954 -1.407548 -0.934876 H -5.204349 -0.011475 -0.061250 H -4.506110 -1.381845 0.830224 H 2.067885 4.094051 0.956830 H 2.636191 2.472179 1.451610 H 0.978862 3.001529 1.867603 H -0.673446 -4.518501 0.805215 H -1.456298 -3.001780 1.333901 H 0.241393 -3.345827 1.795241 H -0.370927 3.271166 -0.336779

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -917.344855165

Frequencies -- 53.4241 57.6581 65.6239 Frequencies -- 91.7710 93.6922 150.7616 Frequencies -- 155.0708 157.7128 162.5575 Frequencies -- 166.4384 205.6367 208.2525 Frequencies -- 256.6749 259.7368 291.9874 Frequencies -- 312.4897 320.7346 348.2199 Frequencies -- 366.1999 393.7531 433.8336 Frequencies -- 471.6388 502.1552 529.5501 Frequencies -- 537.9994 555.8975 588.7809 Frequencies -- 606.3955 636.4578 656.3775 Frequencies -- 674.2979 690.5603 699.9580 Frequencies -- 752.7343 797.2438 838.7320 Frequencies -- 856.1905 875.2845 903.9133 Frequencies -- 927.2018 973.3206 1009.6562 Frequencies -- 1022.1193 1063.5148 1067.5721 Frequencies -- 1086.8755 1097.7092 1154.4429 Frequencies -- 1177.3039 1180.8976 1183.5099 Frequencies -- 1187.2363 1212.7859 1223.0044 Frequencies -- 1240.0710 1280.3044 1302.3510 Frequencies -- 1345.3895 1365.4881 1380.5709 Frequencies -- 1417.0362 1433.1565 1443.5900 Frequencies -- 1478.8513 1491.3225 1494.2485 Frequencies -- 1496.4241 1516.3290 1517.4253 Frequencies -- 1520.0779 1531.2967 1534.9056 Frequencies -- 1536.9722 1581.5390 1611.9730 Frequencies -- 1627.7363 1655.2033 3026.8758 Frequencies -- 3037.6696 3045.9381 3069.1842 Frequencies -- 3108.1851 3119.3781 3142.6428 Frequencies -- 3153.7383 3156.9744 3226.6756 Frequencies -- 3273.9474 3303.2895 3561.5865

IR Inten -- 1.4291 3.3431 0.9922

251 IR Inten -- 1.0426 2.7288 1.1986 IR Inten -- 0.0971 0.6159 0.8670 IR Inten -- 0.3777 0.2356 1.5231 IR Inten -- 0.1754 5.4251 2.0310 IR Inten -- 1.1783 1.9493 12.1064 IR Inten -- 5.7984 0.1885 0.9229 IR Inten -- 3.6575 6.3263 4.2439 IR Inten -- 3.6214 8.5367 5.0836 IR Inten -- 1.6460 1.4794 1.0384 IR Inten -- 14.4524 3.8172 83.9416 IR Inten -- 33.5736 6.5951 2.2131 IR Inten -- 8.9765 25.3954 19.2014 IR Inten -- 24.4054 47.3893 59.6709 IR Inten -- 5.0338 34.0111 3.1418 IR Inten -- 187.2806 44.7225 46.9388 IR Inten -- 12.9235 3.7647 3.1584 IR Inten -- 46.5048 26.8576 7.5387 IR Inten -- 100.6710 72.1510 95.2897 IR Inten -- 110.9597 74.1917 4.9104 IR Inten -- 99.7705 118.8885 8.3112 IR Inten -- 140.6874 1.3115 7.3646 IR Inten -- 12.9138 3.4085 11.5038 IR Inten -- 15.6268 16.0251 0.5334 IR Inten -- 52.1659 3.8457 47.9939 IR Inten -- 4.2658 39.6578 72.9604 IR Inten -- 59.8167 48.4475 21.3102 IR Inten -- 25.7796 23.1056 11.8374 IR Inten -- 32.8997 25.8809 6.0236 IR Inten -- 2.8684 0.2608 145.7356

Khellin ground state in acetonitrile

Khellin 1 Point group: C01

Thermal correction to Energy= 0.254101 Thermal correction to Gibbs Free Energy= 0.193041

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -916.783641772

252

Frequencies -- 45.9454 59.3890 83.9493 Frequencies -- 86.5178 128.4806 142.4095 Frequencies -- 151.3860 155.7252 183.5239 Frequencies -- 187.2890 207.7544 221.8547 Frequencies -- 251.3012 269.6984 276.7864 Frequencies -- 321.4282 342.6353 344.3174 Frequencies -- 390.0184 403.1781 470.9736 Frequencies -- 515.3394 551.1433 567.4048 Frequencies -- 568.8652 579.5396 604.9189 Frequencies -- 645.0172 674.0670 710.6334 Frequencies -- 751.8537 778.2842 792.2220 Frequencies -- 814.7131 860.9304 870.6308 Frequencies -- 874.8669 897.9742 949.2249 Frequencies -- 1003.7057 1012.7396 1039.8022 Frequencies -- 1058.7261 1077.7952 1096.6032 Frequencies -- 1105.6572 1160.0627 1178.2518 Frequencies -- 1179.2264 1192.5041 1200.2352 Frequencies -- 1218.8667 1229.6432 1239.3364 Frequencies -- 1310.3157 1341.4113 1373.0279 Frequencies -- 1388.0399 1403.2702 1429.8385 Frequencies -- 1446.0652 1477.8382 1493.9896 Frequencies -- 1494.7983 1504.1059 1509.1635 Frequencies -- 1513.4183 1520.7236 1529.7281 Frequencies -- 1535.7875 1600.4502 1642.3885 Frequencies -- 1665.1243 1697.7159 1711.5770 Frequencies -- 3048.0791 3049.6405 3058.7715 Frequencies -- 3115.1386 3123.1175 3136.7387 Frequencies -- 3163.7133 3165.6691 3168.7098 Frequencies -- 3234.4607 3281.8789 3303.9049

IR Inten -- 1.4007 4.8205 2.1513 IR Inten -- 0.7006 0.6750 0.2630 IR Inten -- 0.3670 2.0808 1.0433 IR Inten -- 1.1672 2.1987 9.9892 IR Inten -- 11.3312 3.5781 2.4214 IR Inten -- 7.4143 2.6774 13.3695 IR Inten -- 5.0638 6.4859 6.3300 IR Inten -- 9.0162 0.7196 21.0495 IR Inten -- 18.1216 6.8684 13.6767 IR Inten -- 7.0267 3.8449 9.6767 IR Inten -- 25.6242 17.6018 14.2576 IR Inten -- 9.2523 24.5681 36.8141 IR Inten -- 0.8197 4.7407 33.8963 IR Inten -- 78.2876 47.7053 19.1280

253 IR Inten -- 3.2256 7.3665 396.5878 IR Inten -- 106.8101 83.7929 14.7876 IR Inten -- 2.0988 50.8457 19.7312 IR Inten -- 46.8647 36.8412 154.7847 IR Inten -- 54.5177 13.7760 97.5990 IR Inten -- 270.8980 365.9238 44.1627 IR Inten -- 51.0302 102.1796 16.1185 IR Inten -- 20.2796 9.9652 16.2325 IR Inten -- 12.3562 196.6862 18.8214 IR Inten -- 7.0256 31.5094 56.1105 IR Inten -- 149.1834 1.6715 882.2754 IR Inten -- 61.7387 56.3864 4.4287 IR Inten -- 4.8508 30.8678 36.3029 IR Inten -- 27.2179 6.3163 15.8874 IR Inten -- 0.6097 8.3590 6.7014

Khellin triplet excited state in acetonitrile

31*

S2 = 2.0160 Point group: C01

C -2.890465 1.105474 -0.173673 C -3.021674 -0.235719 -0.140231 O -1.943886 -1.061820 -0.089836 C -0.670834 -0.544939 -0.107826 C -0.420412 0.856850 -0.100427 C -1.591708 1.773550 -0.133026 C 0.336273 -1.521613 -0.146216 C 1.634857 -1.029780 -0.190421 C 1.944928 0.342622 -0.190467 C 0.926510 1.300927 -0.137417 O 2.772685 -1.776907 -0.239026 C 3.816250 -0.872710 -0.278156 C 3.386314 0.409529 -0.251207 C -4.301799 -1.008371 -0.151293 O 1.311515 2.607617 -0.195653 C 1.182121 3.380612 1.005489

254 O 0.061872 -2.860090 -0.215080 C -0.217036 -3.483338 1.042806 O -1.509118 3.002638 -0.127560 H -3.768594 1.739195 -0.216484 H 4.797848 -1.319456 -0.326251 H 3.993424 1.302024 -0.280190 H -4.334596 -1.683125 -1.014642 H -5.157993 -0.332055 -0.196045 H -4.385677 -1.627282 0.750009 H 1.640965 4.346067 0.782017 H 1.725532 2.900333 1.829851 H 0.131410 3.525910 1.261411 H -0.378770 -4.541355 0.825885 H -1.118774 -3.062695 1.502841 H 0.630728 -3.377621 1.731230

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -916.661998024

Frequencies -- 86.1196 101.6154 178.8183 Frequencies -- 223.7433 267.6914 290.7187 Frequencies -- 348.6546 349.5281 389.1650 Frequencies -- 457.7135 510.2272 520.0457 Frequencies -- 527.6205 548.1990 589.4420 Frequencies -- 591.4783 621.3138 681.6378 Frequencies -- 708.2472 714.6728 733.7063 Frequencies -- 736.3104 803.9663 807.8044 Frequencies -- 849.1890 850.1241 881.2502 Frequencies -- 929.0703 941.9452 1014.7569 Frequencies -- 1042.5161 1131.2638 1138.5062 Frequencies -- 1166.4201 1200.4642 1223.8979 Frequencies -- 1239.5951 1276.2842 1338.0523 Frequencies -- 1364.9316 1389.7056 1424.1755 Frequencies -- 1461.7977 1470.6560 1531.5932 Frequencies -- 1593.5044 1625.6484 1674.7935 Frequencies -- 3219.1374 3254.6226 3256.3076 Frequencies -- 3256.7605 3269.0653 3307.7949

IR Inten -- 4.9981 5.8218 1.7758 IR Inten -- 4.0383 2.7548 0.6057 IR Inten -- 10.1647 2.9691 4.1633 IR Inten -- 0.6043 15.2350 21.6555 IR Inten -- 22.4086 22.9147 6.0352 IR Inten -- 24.8987 0.4058 36.5803 IR Inten -- 11.4808 0.3371 37.3241 IR Inten -- 2.4380 19.2212 55.6243

255 IR Inten -- 22.1316 77.8464 51.9860 IR Inten -- 2.1444 110.1542 73.8807 IR Inten -- 7.4769 7.1719 209.9720 IR Inten -- 169.2063 19.2801 4.8413 IR Inten -- 1.7443 120.7679 42.5587 IR Inten -- 96.9454 263.4615 77.0025 IR Inten -- 1.8003 892.4048 172.1400 IR Inten -- 10.8137 25.2670 835.8595 IR Inten -- 8.7348 67.4044 10.5341 IR Inten -- 12.5560 3.9891 85.7597

Khellin radical anion in acetonitrile

1•−

S2 = 0.7638 Point group: C01

6 -2.810872000 1.050497000 -0.112969000 6 -3.125991000 -0.216197000 -0.089034000 8 -1.875130000 -1.266169000 -0.078624000 6 -0.647485000 -0.684189000 -0.104850000 6 -0.489775000 0.884004000 -0.105535000 6 -1.635451000 1.550630000 -0.125436000 6 0.333510000 -1.499086000 -0.151748000 6 1.582449000 -0.982546000 -0.194300000 6 1.826564000 0.380822000 -0.188037000 6 0.801248000 1.248208000 -0.140023000 8 2.735665000 -1.670356000 -0.261417000 6 3.685613000 -0.658559000 -0.294453000 6 3.240289000 0.571206000 -0.254476000 6 -4.318690000 -0.895918000 -0.066918000 8 1.374751000 2.626886000 -0.193246000 6 1.408516000 3.356183000 1.035171000 8 0.287568000 -2.956181000 -0.236090000 6 0.015741000 -3.670834000 0.950079000 8 -1.803593000 3.198942000 -0.202372000 1 -3.662263000 1.749741000 -0.136905000 1 4.691769000 -1.036257000 -0.348502000 1 3.826464000 1.480598000 -0.271520000 1 -4.443621000 -1.560535000 -0.931159000 1 -5.162082000 -0.180934000 -0.073702000 1 -4.432210000 -1.531553000 0.825982000 1 2.002346000 4.267414000 0.847522000

256 1 1.948042000 2.767809000 1.810823000 1 0.411354000 3.637153000 1.359989000 1 0.077965000 -4.730975000 0.673302000 1 -0.976500000 -3.465123000 1.347113000 1 0.770660000 -3.467644000 1.726223000

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -916.843560366

Frequencies -- 47.0647 60.6661 67.4033 Frequencies -- 88.9860 132.6479 144.3033 Frequencies -- 155.7323 165.4266 181.5875 Frequencies -- 192.7652 200.3324 208.1116 Frequencies -- 257.5096 263.7294 276.9517 Frequencies -- 291.9501 320.3475 329.8972 Frequencies -- 366.2543 393.0229 435.4141 Frequencies -- 459.2192 502.5761 532.4993 Frequencies -- 547.8145 569.2434 585.0577 Frequencies -- 595.3180 600.5703 640.5697 Frequencies -- 647.8939 671.1783 692.9986 Frequencies -- 790.7069 809.3645 854.5492 Frequencies -- 855.9397 893.7831 933.5635 Frequencies -- 987.2433 1011.6347 1015.0836 Frequencies -- 1036.0637 1066.0594 1091.6759 Frequencies -- 1094.6797 1148.5728 1156.6018 Frequencies -- 1177.7382 1181.4746 1185.8698 Frequencies -- 1196.7113 1222.5192 1232.2354 Frequencies -- 1240.9982 1306.4595 1332.4677 Frequencies -- 1350.1925 1355.1335 1397.3848 Frequencies -- 1432.3962 1444.8023 1472.8801 Frequencies -- 1489.2863 1491.1625 1500.2595 Frequencies -- 1511.6250 1516.0598 1534.7432 Frequencies -- 1537.5103 1558.0382 1563.1544 Frequencies -- 1586.7011 1619.2890 1673.2567 Frequencies -- 2969.3536 2982.2505 2992.6508 Frequencies -- 3009.4844 3069.9289 3075.4789 Frequencies -- 3104.6632 3114.6428 3128.3261 Frequencies -- 3185.1130 3259.5045 3286.2158

IR Inten -- 3.4753 0.0471 1.0990 IR Inten -- 0.8010 0.8827 0.5800 IR Inten -- 0.2595 0.2376 2.6974 IR Inten -- 1.5828 1.6469 1.0516 IR Inten -- 5.5772 0.6314 0.7019 IR Inten -- 0.1854 3.3421 1.5845 IR Inten -- 3.4053 6.8267 10.7408

257 IR Inten -- 14.9952 11.9226 18.0997 IR Inten -- 10.3755 1.4543 7.1382 IR Inten -- 4.5469 20.8779 14.6273 IR Inten -- 1.9283 3.5237 2.9314 IR Inten -- 63.6029 12.1807 27.3905 IR Inten -- 17.9747 9.7725 19.5302 IR Inten -- 39.6729 96.7976 40.3013 IR Inten -- 72.7150 2.3533 19.2888 IR Inten -- 161.6715 175.5349 122.6446 IR Inten -- 27.2794 3.9891 18.2672 IR Inten -- 36.6498 39.9530 13.9833 IR Inten -- 99.1475 31.8469 34.2017 IR Inten -- 146.4415 133.4153 6.9932 IR Inten -- 10.0425 88.0892 31.6285 IR Inten -- 3.4416 6.4034 38.8586 IR Inten -- 5.7602 90.5505 37.8926 IR Inten -- 1.5311 4.4093 272.4919 IR Inten -- 72.7441 6.5742 346.1368 IR Inten -- 426.3837 129.4190 80.8361 IR Inten -- 97.9541 118.8948 37.1162 IR Inten -- 69.1579 18.9790 8.3240 IR Inten -- 45.2154 8.8681 1.1081

Khellin radical cation in acetonitrile

1•+

S2 = 0.7592 Point group: C01

6 -2.752759000 1.269827000 -0.170063000 6 -2.968064000 -0.047853000 0.007324000 8 -1.912616000 -0.924756000 0.049397000 6 -0.636487000 -0.500094000 0.017252000 6 -0.308754000 0.867265000 -0.041789000 6 -1.414709000 1.818053000 -0.338269000 6 0.344971000 -1.563816000 0.010189000 6 1.667688000 -1.121671000 -0.098970000 6 2.054908000 0.215499000 -0.106331000 6 1.072802000 1.246442000 -0.003389000

258 8 2.757157000 -1.928405000 -0.130701000 6 3.840751000 -1.102251000 -0.162845000 6 3.478654000 0.215638000 -0.136266000 6 -4.273213000 -0.748123000 0.146300000 8 1.582187000 2.448950000 0.147718000 6 0.935860000 3.556158000 0.821443000 8 0.148738000 -2.865215000 0.065750000 6 -1.128312000 -3.524029000 0.244337000 8 -1.222319000 2.962394000 -0.744357000 1 -3.592152000 1.950893000 -0.251951000 1 4.799996000 -1.598122000 -0.205627000 1 4.139839000 1.070010000 -0.148138000 1 -4.403254000 -1.485974000 -0.654185000 1 -5.093112000 -0.028719000 0.100754000 1 -4.322314000 -1.281030000 1.103270000 1 1.756476000 4.088449000 1.304133000 1 0.228622000 3.185115000 1.565301000 1 0.426830000 4.178314000 0.089970000 1 -0.868922000 -4.579138000 0.320472000 1 -1.768332000 -3.349057000 -0.621347000 1 -1.608867000 -3.180758000 1.161364000

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -916.588383194

Frequencies -- -137.5714 67.6700 71.1256 Frequencies -- 106.8025 127.1141 142.0159 Frequencies -- 169.0418 179.0931 181.9771 Frequencies -- 191.2128 205.4623 230.2436 Frequencies -- 245.4765 260.1802 281.3841 Frequencies -- 300.8017 334.6089 354.2075 Frequencies -- 405.4181 413.8917 455.7686 Frequencies -- 467.2066 539.6556 548.5010 Frequencies -- 565.3102 585.9845 600.2098 Frequencies -- 634.6142 657.9069 673.8863 Frequencies -- 705.0050 762.8633 802.8485 Frequencies -- 823.9174 860.5115 877.5830 Frequencies -- 898.3178 899.5930 952.1599 Frequencies -- 959.3723 995.7975 1040.7462 Frequencies -- 1074.6272 1077.7101 1110.4878 Frequencies -- 1129.4950 1165.1638 1166.3624 Frequencies -- 1167.1286 1175.2975 1202.8321 Frequencies -- 1210.5533 1235.1116 1259.6247 Frequencies -- 1315.1954 1357.8367 1401.5865 Frequencies -- 1410.4174 1426.9477 1441.5834 Frequencies -- 1450.7312 1464.1876 1490.5052

259 Frequencies -- 1495.3754 1497.7728 1499.1506 Frequencies -- 1504.5871 1509.0507 1517.4499 Frequencies -- 1526.3141 1545.5915 1576.0796 Frequencies -- 1644.5697 1697.7398 1735.0495 Frequencies -- 3060.1200 3096.0441 3097.2136 Frequencies -- 3118.8241 3170.4563 3188.0610 Frequencies -- 3191.3944 3206.1677 3225.8426 Frequencies -- 3242.0943 3287.0778 3305.2606

IR Inten -- 5.1984 7.7389 1.8522 IR Inten -- 5.2628 2.4600 5.1957 IR Inten -- 1.2867 2.1929 0.9701 IR Inten -- 0.2595 3.4186 10.5459 IR Inten -- 0.1279 6.1238 2.2338 IR Inten -- 5.3660 4.9046 11.3875 IR Inten -- 19.0834 3.4647 1.5715 IR Inten -- 8.8224 13.8433 3.6771 IR Inten -- 0.5144 9.4630 7.7401 IR Inten -- 7.9120 0.3504 0.9515 IR Inten -- 3.0635 10.8364 45.0437 IR Inten -- 15.4078 30.8169 32.8601 IR Inten -- 17.1227 0.9433 9.8082 IR Inten -- 78.0808 58.0080 27.7861 IR Inten -- 29.2837 9.7664 99.0757 IR Inten -- 284.3794 13.6025 3.9496 IR Inten -- 8.4426 38.6347 1.7189 IR Inten -- 21.2726 111.2018 7.4631 IR Inten -- 55.4052 133.6808 49.6301 IR Inten -- 658.1451 97.8378 167.5134 IR Inten -- 372.8677 121.7760 14.1896 IR Inten -- 46.8499 40.9306 48.4537 IR Inten -- 81.7645 137.5418 20.4554 IR Inten -- 20.3520 387.4808 239.7942 IR Inten -- 147.9903 114.0497 649.3652 IR Inten -- 0.8071 8.2057 10.3867 IR Inten -- 0.7292 1.5039 5.9768 IR Inten -- 3.4935 10.2293 5.5887 IR Inten -- 11.4685 24.0490 37.6840

260 H9

Visnagin ground state in gas phase H10 C13 H8

O3 O4

C5 H4 Visnagin 2 H1 C9 C1 C4 C11 C8 Point group: C01

C2 C3 C10 H6 C7 H3 O1 C12 C6 O2 H7 H5 H2

Thermal correction to Energy= 0.218611 Thermal correction to Gibbs Free Energy= 0.163961

B3LYP/6-31+G**//B3LYP/6-31G* E(RB+HF-LYP) = -802.254223615

Frequencies -- 51.1301 80.7688 112.3810 Frequencies -- 135.6868 142.3455 175.5066 Frequencies -- 186.3464 190.0161 211.3330 Frequencies -- 265.7946 293.4746 304.5757 Frequencies -- 335.4478 346.4442 386.8188 Frequencies -- 399.5738 509.0723 542.4234 Frequencies -- 561.5472 576.4735 591.0770 Frequencies -- 607.4331 640.9652 674.0858 Frequencies -- 697.7807 737.3218 768.9901 Frequencies -- 773.9862 790.2510 839.8892 Frequencies -- 866.1278 868.2148 873.6794 Frequencies -- 922.4742 971.3591 988.8942 Frequencies -- 1034.2200 1055.1563 1080.3400 Frequencies -- 1102.3948 1124.5346 1169.8432 Frequencies -- 1171.9371 1177.5283 1201.8292 Frequencies -- 1217.4928 1230.5332 1294.9198 Frequencies -- 1324.1575 1369.8906 1379.6859 Frequencies -- 1404.4266 1443.2011 1458.4847 Frequencies -- 1476.4178 1500.2229 1508.6703 Frequencies -- 1512.8225 1516.2668 1543.5930 Frequencies -- 1596.3999 1630.0417 1666.8396 Frequencies -- 1705.2215 1735.0940 3041.6112 Frequencies -- 3056.5778 3111.3642 3139.1106 Frequencies -- 3161.2675 3176.7347 3236.3878 Frequencies -- 3248.3703 3285.6269 3307.6324

IR Inten -- 3.3196 1.6436 1.9360 IR Inten -- 0.2799 0.2315 0.7119 IR Inten -- 2.2438 0.3335 2.9062

261 IR Inten -- 4.2193 1.5849 7.6618 IR Inten -- 0.4047 5.3879 3.8749 IR Inten -- 2.8865 2.0830 4.9646 IR Inten -- 0.6529 20.1256 2.5324 IR Inten -- 3.3888 1.5443 6.0668 IR Inten -- 1.5760 7.9111 1.5172 IR Inten -- 30.5832 1.2334 28.8675 IR Inten -- 15.6597 7.6883 19.2853 IR Inten -- 11.8968 15.8143 19.9593 IR Inten -- 7.4831 6.7576 4.2654 IR Inten -- 40.7950 151.1760 13.7753 IR Inten -- 35.6466 20.0448 74.8306 IR Inten -- 19.7170 48.2594 22.7846 IR Inten -- 11.8456 37.5975 95.6599 IR Inten -- 230.4147 28.8604 36.9625 IR Inten -- 52.7070 8.3948 36.5418 IR Inten -- 8.6658 88.4205 6.9888 IR Inten -- 31.6366 32.6367 129.2839 IR Inten -- 27.4654 469.1203 71.9917 IR Inten -- 12.7035 9.3681 33.9540 IR Inten -- 8.7767 7.2949 2.7930 IR Inten -- 0.1467 1.0149 1.2378

H9 Visnagin triplet excited state in gas phase H10 C13 H8

O4 O3 H4 C9 C5 C11 3 * H1 C4 C8 2 C1 C10 2 H3 S = 2.0193 C7 C3 C2 O2 Point group: C01 H6 O1 C6 C12

H7 H5 H2

C -2.895293 0.700808 -0.105779 C -3.076730 -0.647093 0.045506 O -1.998507 -1.515154 0.111926 C -0.713894 -1.032243 0.032013 C -0.467499 0.364366 -0.118466 C -1.594989 1.250923 -0.197665 C 0.315535 -1.955089 0.112322 C 1.612241 -1.439994 0.025624 C 1.919215 -0.077765 -0.129725 C 0.852616 0.835722 -0.193870 O 2.760460 -2.179514 0.062446

262 C 3.797529 -1.287124 -0.074841 C 3.357885 -0.008925 -0.195699 C -4.375389 -1.370130 0.145078 O -1.399673 2.560290 -0.331795 O 1.047808 2.189586 -0.376708 C 1.452101 2.909183 0.796243 H -3.759899 1.351919 -0.157073 H 0.110880 -3.012441 0.227483 H 4.782950 -1.727683 -0.070616 H 3.970790 0.870575 -0.330681 H -4.487812 -2.101414 -0.667145 H -5.209245 -0.665051 0.092740 H -4.449881 -1.926345 1.089650 H 2.414811 2.537679 1.167183 H 1.550016 3.952957 0.492628 H 0.696713 2.822293 1.584422

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -802.137827405

Thermal correction to Energy= 0.215353 Thermal correction to Gibbs Free Energy= 0.158869

Frequencies -- 61.6591 77.9454 110.4362 Frequencies -- 135.1013 152.8429 154.3039 Frequencies -- 161.7592 196.0118 204.3286 Frequencies -- 267.8989 277.3147 292.4922 Frequencies -- 313.7579 341.5055 362.5125 Frequencies -- 392.7866 414.2363 483.2414 Frequencies -- 508.5287 521.8413 557.6580 Frequencies -- 589.6598 608.6433 632.5500 Frequencies -- 670.3418 679.7366 711.5854 Frequencies -- 752.4143 765.1096 827.0969 Frequencies -- 833.2857 840.1572 873.4552 Frequencies -- 914.0577 945.0259 971.0290 Frequencies -- 1020.6559 1062.7710 1064.0085 Frequencies -- 1094.2589 1116.2556 1149.7580 Frequencies -- 1176.7681 1179.5518 1195.2261 Frequencies -- 1213.2303 1230.0560 1269.6263 Frequencies -- 1302.3955 1339.4765 1364.0141 Frequencies -- 1385.3735 1405.3758 1439.2493 Frequencies -- 1448.2353 1485.5661 1493.4554 Frequencies -- 1508.3569 1514.3557 1516.3599 Frequencies -- 1525.3070 1570.2670 1594.0024 Frequencies -- 1625.7334 1640.9252 3027.6936 Frequencies -- 3046.0492 3069.7304 3116.3634

263 Frequencies -- 3142.2457 3166.5916 3234.0684 Frequencies -- 3245.1930 3275.2715 3304.2225

IR Inten -- 3.1117 1.8945 1.4616 IR Inten -- 1.6536 0.7611 0.9622 IR Inten -- 0.2947 7.0126 0.6402 IR Inten -- 5.9568 1.0589 3.3257 IR Inten -- 2.8020 4.2998 1.3754 IR Inten -- 1.8992 2.5542 5.3935 IR Inten -- 0.1109 5.4190 4.5769 IR Inten -- 4.0489 2.1133 2.4863 IR Inten -- 0.9530 6.8091 8.3498 IR Inten -- 31.2453 7.6322 17.2948 IR Inten -- 21.9380 5.3198 21.5770 IR Inten -- 9.1490 28.4901 27.3929 IR Inten -- 5.3186 6.6146 6.1895 IR Inten -- 51.5207 152.0967 3.7854 IR Inten -- 16.0591 0.8703 28.9258 IR Inten -- 8.5206 24.3763 117.6560 IR Inten -- 89.6569 38.1244 62.6369 IR Inten -- 2.6317 43.2009 66.6978 IR Inten -- 25.2735 39.1572 6.5539 IR Inten -- 11.8025 9.1057 3.4142 IR Inten -- 4.1840 17.1774 11.7101 IR Inten -- 29.7564 34.5108 80.6269 IR Inten -- 53.0310 20.8179 17.4209 IR Inten -- 11.7180 24.9438 6.1284 IR Inten -- 0.9130 2.5674 0.2597

H9 Visnagin radical anion in gas phase H10 C13 H8

O3 O4

H4 •− C5 2 C9 H1 C4 C11 C1 C8 S2= 0.7628 C10 C3 H3 Point group: C01 C2 C7 H6 O1 C6 O2 C12

H7 H5 H2

C -2.917232 0.590636 -0.115651 C -3.044417 -0.755442 0.023852 O -1.916387 -1.554264 0.115711 C -0.661617 -0.994229 0.040166

264 C -0.466786 0.420894 -0.102450 C -1.654071 1.289700 -0.178274 C 0.369126 -1.931309 0.114810 C 1.671138 -1.423253 0.031180 C 1.950531 -0.063706 -0.111815 C 0.887224 0.872661 -0.182375 O 2.830390 -2.157116 0.072318 C 3.862364 -1.245276 -0.051385 C 3.385481 0.027373 -0.166919 C -4.295445 -1.562052 0.101228 O -1.613578 2.554917 -0.282350 O 1.266355 2.189834 -0.386924 C 1.086905 3.058951 0.727723 H -3.811915 1.204807 -0.182070 H 0.146782 -2.986509 0.220578 H 4.854563 -1.671278 -0.040572 H 3.970194 0.929683 -0.282444 H -4.361075 -2.308328 -0.708125 H -5.168328 -0.905299 0.028008 H -4.370677 -2.125399 1.046378 H 1.593409 2.663706 1.623691 H 1.553869 4.012672 0.450446 H 0.019732 3.209293 0.913519

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -802.242600427

Thermal correction to Energy= 0.213793 Thermal correction to Gibbs Free Energy= 0.157893

Frequencies -- 49.0669 77.4400 117.1629 Frequencies -- 140.5676 152.1901 177.5048 Frequencies -- 192.3601 198.5361 212.1965 Frequencies -- 269.7257 288.4641 293.4861 Frequencies -- 321.2026 328.0329 379.0238 Frequencies -- 394.1159 454.8645 492.3885 Frequencies -- 530.4319 555.5088 564.7218 Frequencies -- 587.4503 588.5659 605.3710 Frequencies -- 624.5215 674.5481 690.7109 Frequencies -- 709.3568 736.9480 762.9350 Frequencies -- 807.6503 854.3697 864.1668 Frequencies -- 915.8495 949.7875 971.7904 Frequencies -- 1014.5787 1032.3639 1065.6011 Frequencies -- 1089.8753 1104.6383 1139.8345 Frequencies -- 1173.5645 1181.8624 1185.7092 Frequencies -- 1204.7273 1220.3252 1233.4910

265 Frequencies -- 1309.1454 1312.9638 1336.4832 Frequencies -- 1354.3365 1406.9933 1434.5591 Frequencies -- 1459.2000 1477.1911 1489.7188 Frequencies -- 1501.0168 1515.8663 1536.3955 Frequencies -- 1557.0304 1559.5914 1591.8591 Frequencies -- 1608.0578 1673.5301 2972.0551 Frequencies -- 2982.2286 2993.2111 3068.6147 Frequencies -- 3115.1781 3128.2496 3185.3073 Frequencies -- 3226.2180 3257.9255 3284.8086

IR Inten -- 3.2968 0.7016 0.7695 IR Inten -- 0.2839 0.2011 2.9149 IR Inten -- 1.0078 0.7816 1.8305 IR Inten -- 2.6904 1.2335 0.1866 IR Inten -- 1.4502 2.9536 4.9419 IR Inten -- 7.4272 0.9666 46.4145 IR Inten -- 7.6096 10.2719 5.3444 IR Inten -- 21.2870 11.3735 1.1078 IR Inten -- 6.4868 44.1383 0.5036 IR Inten -- 0.7047 28.5785 7.3153 IR Inten -- 11.7862 11.8340 39.2128 IR Inten -- 3.9223 51.8006 21.8939 IR Inten -- 73.8558 79.5732 2.6486 IR Inten -- 36.3725 157.9811 56.0467 IR Inten -- 10.8940 43.5987 76.6567 IR Inten -- 53.2525 112.7291 50.4853 IR Inten -- 62.2817 198.2351 32.6352 IR Inten -- 45.2864 21.6821 37.8306 IR Inten -- 72.1509 6.7608 2.2872 IR Inten -- 43.5148 79.7917 70.2973 IR Inten -- 14.1814 243.7791 101.7688 IR Inten -- 21.8384 377.0163 483.4803 IR Inten -- 116.8025 71.2425 115.3900 IR Inten -- 18.9227 8.6395 46.3643 IR Inten -- 12.3126 9.8551 1.5329

266 Visnagin radical cation in gas phase

2•+ S2= 0.7625 Point group: C01

C -2.924273 0.478299 -0.125830 C -2.963982 -0.855514 0.072894 O -1.794581 -1.583888 0.115597 C -0.589421 -0.997350 0.055723 C -0.442273 0.404855 -0.031751 C -1.670044 1.200851 -0.326829 C 0.488018 -1.934963 0.068828 C 1.736422 -1.385923 -0.027234 C 1.985118 0.004333 -0.069424 C 0.885897 0.932457 -0.008635 O 2.925290 -2.063585 -0.049653 C 3.897518 -1.126277 -0.103975 C 3.386276 0.159060 -0.106636 C -4.160826 -1.726280 0.237700 O -1.639692 2.347217 -0.758996 O 1.278390 2.179314 0.102201 C 0.514132 3.280537 0.669027 H -3.843972 1.045177 -0.211301 H 0.291327 -2.998405 0.134079 H 4.910258 -1.502828 -0.137595 H 3.956456 1.076331 -0.142128 H -4.198952 -2.482101 -0.554933 H -5.072989 -1.128083 0.199937 H -4.121567 -2.254341 1.197500 H 1.278862 3.968472 1.030042 H -0.108105 3.724862 -0.103898 H -0.101934 2.913954 1.491956

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -801.974547577

Frequencies -- 51.7078 67.5104 110.7689 Frequencies -- 134.0046 146.6379 162.3455 Frequencies -- 182.8057 193.6607 209.4729 Frequencies -- 253.5411 266.6199 306.1358 Frequencies -- 319.6365 355.2519 394.9014

267 Frequencies -- 412.8924 479.8582 538.7560 Frequencies -- 555.0608 565.5116 574.5820 Frequencies -- 618.5595 639.1778 655.0603 Frequencies -- 685.3475 728.2403 764.1073 Frequencies -- 776.5675 818.5257 860.4872 Frequencies -- 875.7236 879.3108 911.1536 Frequencies -- 918.1883 950.8502 976.8304 Frequencies -- 1033.2106 1076.1301 1077.9622 Frequencies -- 1104.9635 1138.4190 1164.2424 Frequencies -- 1169.7561 1179.7578 1201.1979 Frequencies -- 1225.4587 1238.5390 1292.6082 Frequencies -- 1348.5524 1354.3375 1402.7577 Frequencies -- 1419.3957 1441.7306 1451.1974 Frequencies -- 1466.9666 1489.3494 1492.6882 Frequencies -- 1493.8806 1497.8108 1502.7913 Frequencies -- 1536.9394 1595.6103 1635.5749 Frequencies -- 1692.3135 1730.8683 3062.2634 Frequencies -- 3098.9461 3121.4282 3170.9661 Frequencies -- 3192.4394 3225.9914 3243.8389 Frequencies -- 3248.5366 3281.6545 3296.4297

IR Inten -- 1.2995 4.6534 6.8157 IR Inten -- 0.3159 1.8878 4.4980 IR Inten -- 0.9875 6.6963 1.8325 IR Inten -- 6.4653 2.5914 6.5454 IR Inten -- 2.8301 14.1294 7.0625 IR Inten -- 9.6553 2.2589 5.1002 IR Inten -- 14.7878 0.8369 14.9097 IR Inten -- 2.3581 4.9459 3.5855 IR Inten -- 7.8842 9.8712 10.6278 IR Inten -- 15.6605 40.4859 73.1702 IR Inten -- 19.8953 45.5968 2.1393 IR Inten -- 17.2241 35.5930 44.3844 IR Inten -- 9.9084 4.7176 8.7517 IR Inten -- 4.3835 47.9228 4.1633 IR Inten -- 14.2508 83.8637 15.1933 IR Inten -- 38.1729 139.3579 8.2156 IR Inten -- 48.2102 77.6826 343.8367 IR Inten -- 88.0227 26.4794 10.5239 IR Inten -- 719.7306 14.4679 74.1038 IR Inten -- 123.8004 27.8778 75.2268 IR Inten -- 187.6067 62.3152 83.8125 IR Inten -- 262.6846 598.3554 0.2176 IR Inten -- 8.5852 0.8650 1.3272 IR Inten -- 5.0245 12.1017 7.9285

268 IR Inten -- 41.9954 29.5407 62.2931

Visnagin neutral radical in gas phase

• 2H H10

H9 C13 2 H11 S = 0.772876 H8 O3 O4 Point group: C01

C5 H4 H1 C9

C1 C4 C11 C8

C10 C2 C3 C -2.899792 0.583856 -0.105915 H6 C7 H3 O1 C -3.039779 -0.769139 0.040461 C12 C6 O2 H5 H7 O -1.923592 -1.574261 0.120369 H2 C -0.657070 -1.032004 0.039793 C -0.450986 0.382776 -0.109824 C -1.636211 1.194762 -0.182452 C 0.373518 -1.954622 0.113532 C 1.664632 -1.439805 0.024701 C 1.943402 -0.075326 -0.125569 C 0.884804 0.847286 -0.190115 O 2.823568 -2.162056 0.059292 C 3.845116 -1.246720 -0.075977 C 3.380950 0.021962 -0.192469 C -4.304982 -1.549093 0.132494 O -1.505828 2.553969 -0.314796 O 1.193788 2.172836 -0.384067 C 1.300916 2.950728 0.808934 H -3.800004 1.191455 -0.163570 H 0.162632 -3.011101 0.224633 H 4.838184 -1.669950 -0.072004 H 3.970515 0.917928 -0.320955 H -4.363687 -2.104555 1.078717 H -5.170243 -0.883429 0.069094 H -4.377367 -2.289056 -0.676540 H -2.395537 2.937939 -0.357762 H 0.332203 3.036484 1.312762 H 1.633190 3.943702 0.496060 H 2.039521 2.518699 1.497615

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -802.8231159\S2=0.772876

269 Frequencies -- 49.6339 75.8896 114.9266 Frequencies -- 141.4528 151.7685 154.6196 Frequencies -- 160.2718 198.6030 206.6392 Frequencies -- 273.3377 283.8420 293.3415 Frequencies -- 301.9167 321.2370 336.8991 Frequencies -- 365.2587 395.9020 447.2517 Frequencies -- 498.2783 524.0099 530.7660 Frequencies -- 552.6979 589.3463 604.6275 Frequencies -- 644.6230 680.7446 688.6105 Frequencies -- 729.0085 759.3987 768.2617 Frequencies -- 813.4144 832.3745 849.2646 Frequencies -- 871.7998 921.7930 952.2898 Frequencies -- 976.5189 1024.7067 1058.4851 Frequencies -- 1064.8580 1084.6550 1117.0231 Frequencies -- 1138.1293 1175.1800 1182.7341 Frequencies -- 1187.2239 1214.7918 1222.5933 Frequencies -- 1257.4535 1309.0002 1337.9768 Frequencies -- 1350.2533 1370.2250 1426.5110 Frequencies -- 1432.8161 1445.0449 1453.1994 Frequencies -- 1490.9438 1492.8932 1513.5537 Frequencies -- 1516.8214 1522.8981 1532.4919 Frequencies -- 1579.0179 1609.5105 1635.7306 Frequencies -- 1654.1250 3026.5779 3031.2075 Frequencies -- 3068.0065 3105.3890 3138.0089 Frequencies -- 3147.1769 3182.2921 3245.1004 Frequencies -- 3278.9263 3303.8384 3746.2704

IR Inten -- 0.5528 3.4664 2.3418 IR Inten -- 0.6124 0.6462 0.4291 IR Inten -- 0.2780 0.2976 3.3167 IR Inten -- 3.5631 7.6380 8.5026 IR Inten -- 71.5497 14.7689 12.5208 IR Inten -- 1.5482 1.0776 0.3259 IR Inten -- 6.5618 5.4590 6.2884 IR Inten -- 6.4893 3.3227 2.2213 IR Inten -- 2.5988 8.3997 2.8362 IR Inten -- 12.1762 23.9863 2.9481 IR Inten -- 14.7261 25.2612 5.3535 IR Inten -- 29.4191 18.8213 30.0611 IR Inten -- 18.8904 8.0224 18.1778 IR Inten -- 3.1213 38.4043 183.3961 IR Inten -- 36.4725 32.8837 4.8925 IR Inten -- 17.2308 44.3978 10.9322 IR Inten -- 150.8345 122.0923 40.1594 IR Inten -- 52.0439 77.1228 15.8141

270 IR Inten -- 81.0743 22.8238 35.0517 IR Inten -- 44.3239 6.2417 30.6797 IR Inten -- 3.7552 11.4356 8.3944 IR Inten -- 30.1939 5.4512 22.3275 IR Inten -- 89.3744 84.1051 59.3540 IR Inten -- 21.3506 28.3174 12.3369 IR Inten -- 36.4609 19.1205 0.6390 IR Inten -- 2.0642 1.1435 43.6189

Visnagin ground state in acetonitrile H9

H10 C13 H8

O3 O4

Visnagin 2 C5 H1 C9 H4 C1 Point group: C01 C4 C8 C11

C2 H6 C3 C10 C7 C12 O1 H3 C6 O2 C -2.913925 0.594705 -0.144613 H7 H5 H2 C -3.015408 -0.739952 0.030539 O -1.919366 -1.532299 0.135589 C -0.657288 -0.995523 0.056786 C -0.446294 0.404893 -0.084382 C -1.633624 1.283683 -0.214863 C 0.366312 -1.938717 0.119586 C 1.647363 -1.429162 0.021459 C 1.935805 -0.057214 -0.115968 C 0.892269 0.870703 -0.163407 O 2.803054 -2.149791 0.050256 C 3.830873 -1.232700 -0.073462 C 3.374632 0.035817 -0.176229 C -4.278137 -1.528771 0.130130 O -1.572807 2.508292 -0.376049 O 1.237943 2.177576 -0.346660 C 1.081145 3.045300 0.784758 H -3.810730 1.197292 -0.231738 H 0.149073 -2.994419 0.228350 H 4.822552 -1.660700 -0.069982 H 3.969131 0.931167 -0.284153 H -4.320726 -2.287148 -0.660508 H -5.147928 -0.874748 0.041069 H -4.326530 -2.055376 1.090633 H 1.645688 2.659852 1.642681 H 1.499814 4.006795 0.479601 H 0.026714 3.168709 1.036941

271

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -802.276508424 Thermal correction to Energy= 0.217799 Thermal correction to Gibbs Free Energy= 0.165519

Frequencies -- -56.6887 74.1270 119.1205 Frequencies -- 135.4356 139.9526 166.1614 Frequencies -- 183.7256 205.7433 228.5370 Frequencies -- 255.5447 289.1146 302.6124 Frequencies -- 336.2952 371.2855 381.8542 Frequencies -- 400.7379 505.4791 540.8481 Frequencies -- 571.1739 575.9501 603.7218 Frequencies -- 642.4592 652.8738 677.8843 Frequencies -- 697.5361 742.3295 763.4919 Frequencies -- 789.4255 816.2578 841.5209 Frequencies -- 855.1188 869.4729 899.1446 Frequencies -- 919.7476 974.0199 991.2204 Frequencies -- 1035.3673 1052.8617 1078.2101 Frequencies -- 1102.6003 1119.2692 1168.4331 Frequencies -- 1174.2438 1175.7675 1205.5265 Frequencies -- 1217.9865 1230.9992 1297.8940 Frequencies -- 1323.8779 1370.3798 1381.9675 Frequencies -- 1404.6372 1441.1543 1455.4352 Frequencies -- 1478.2324 1494.0418 1504.6679 Frequencies -- 1507.3078 1514.4697 1536.8540 Frequencies -- 1592.5716 1626.5086 1667.0406 Frequencies -- 1697.1206 1712.5800 3050.1593 Frequencies -- 3058.9136 3114.9509 3140.0876 Frequencies -- 3165.3696 3173.0886 3235.5894 Frequencies -- 3246.7348 3282.6634 3303.7308

IR Inten -- 2.3363 9.4812 0.6863 IR Inten -- 0.2950 0.3024 2.8840 IR Inten -- 3.1303 9.6752 0.1666 IR Inten -- 7.2468 9.1337 5.4584 IR Inten -- 1.3698 8.2117 6.8888 IR Inten -- 4.7233 3.3906 6.7326 IR Inten -- 6.0284 36.4915 3.6485 IR Inten -- 1.6513 15.9145 21.4595 IR Inten -- 2.3032 2.8025 3.0137 IR Inten -- 6.1423 34.0193 38.7333 IR Inten -- 21.4287 27.0190 10.1929 IR Inten -- 26.3012 23.5914 31.2450 IR Inten -- 14.8910 14.1408 13.6346 IR Inten -- 88.4788 229.1596 29.0469

272 IR Inten -- 74.4402 22.0620 96.8620 IR Inten -- 25.4298 70.1020 32.9545 IR Inten -- 16.0285 73.4613 173.8419 IR Inten -- 313.8916 30.2054 61.6486 IR Inten -- 84.2827 11.2115 4.7617 IR Inten -- 52.6115 140.2688 6.6556 IR Inten -- 58.3100 41.1300 221.6152 IR Inten -- 13.6001 860.2122 69.5147 IR Inten -- 5.4836 7.0114 35.1398 IR Inten -- 6.4848 13.0300 0.4006 IR Inten -- 5.8342 9.0304 5.6216

H9

Visnagin triplet excited state in acetonitrile H10 C13 H8

O3 O4

H1 C5 H4 3 * C9 2 C1 C4 2 C11 S = 2.0243 C8

C2 Point group: C01 H6 C3 C10 C7 H3 C12 O1 C6 O2 H7 H5

H2 C -2.894971 0.719887 -0.088321 C -3.086289 -0.627694 0.045758 O -2.014246 -1.506112 0.099016 C -0.726315 -1.032681 0.023412 C -0.472096 0.362195 -0.117031 C -1.590010 1.258767 -0.179374 C 0.299207 -1.959638 0.099878 C 1.597849 -1.448294 0.021881 C 1.912551 -0.086904 -0.125586 C 0.848790 0.828174 -0.193877 O 2.742893 -2.191905 0.061308 C 3.785651 -1.302342 -0.064395 C 3.351325 -0.022829 -0.182288 C -4.389511 -1.338602 0.144702 O -1.376833 2.566833 -0.304816 O 1.038020 2.181525 -0.383465 C 1.534281 2.893399 0.760222 H -3.755905 1.377205 -0.126032 H 0.092010 -3.017368 0.211025 H 4.770295 -1.745760 -0.053671 H 3.972187 0.853428 -0.304133 H -4.513684 -2.060906 -0.673803 H -5.216535 -0.625096 0.103292

273 H -4.465373 -1.902946 1.084242 H 2.523633 2.522147 1.049261 H 1.608066 3.939767 0.459160 H 0.843858 2.796177 1.604430

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -802.166226878

Frequencies -- 55.4513 60.6952 102.7541 Frequencies -- 119.0484 142.0416 148.3340 Frequencies -- 156.6945 204.1111 205.1256 Frequencies -- 265.6452 280.9457 293.5608 Frequencies -- 312.7738 327.9215 361.2267 Frequencies -- 399.7268 409.7681 483.3097 Frequencies -- 508.1596 526.2063 558.3775 Frequencies -- 573.7429 610.1572 631.6504 Frequencies -- 667.1720 678.5536 704.3559 Frequencies -- 750.1428 777.6976 823.5418 Frequencies -- 833.9121 848.6978 873.0523 Frequencies -- 912.0292 952.5170 971.2892 Frequencies -- 1021.5429 1062.0811 1062.6587 Frequencies -- 1096.2591 1116.3116 1152.3429 Frequencies -- 1175.2546 1177.3627 1199.4928 Frequencies -- 1213.6241 1231.0327 1271.0806 Frequencies -- 1300.1504 1341.2047 1364.3243 Frequencies -- 1385.7591 1407.6436 1438.5473 Frequencies -- 1447.8291 1485.6124 1489.2547 Frequencies -- 1506.0972 1510.6376 1512.2393 Frequencies -- 1519.7734 1570.5644 1595.3686 Frequencies -- 1628.7011 1644.9136 3030.4918 Frequencies -- 3054.6095 3074.1718 3127.2005 Frequencies -- 3147.5550 3171.4329 3234.6099 Frequencies -- 3242.5251 3273.5509 3301.7101

IR Inten -- 4.0201 5.5850 2.5925 IR Inten -- 1.9546 0.3487 2.1745 IR Inten -- 0.0356 0.7932 15.8399 IR Inten -- 5.5838 6.5955 4.2930 IR Inten -- 11.5252 7.8508 1.6608 IR Inten -- 6.6238 4.7725 11.1221 IR Inten -- 4.9834 2.6230 3.0292 IR Inten -- 6.5624 2.3577 4.8083 IR Inten -- 2.2268 9.5820 8.8046 IR Inten -- 50.2290 19.2696 28.9985 IR Inten -- 31.6283 4.0519 48.9144 IR Inten -- 16.7024 49.5186 39.3216

274 IR Inten -- 8.3550 12.2137 15.5291 IR Inten -- 107.7739 206.1502 7.5749 IR Inten -- 33.5131 4.2356 45.6229 IR Inten -- 18.2005 39.6628 163.8609 IR Inten -- 168.3798 54.1574 102.3003 IR Inten -- 13.7409 105.6187 114.0892 IR Inten -- 44.7183 65.8389 9.8474 IR Inten -- 12.3909 25.2954 1.1432 IR Inten -- 8.6667 26.6800 18.0361 IR Inten -- 72.0539 36.0275 78.8696 IR Inten -- 49.7016 17.2151 17.1813 IR Inten -- 9.1686 23.9430 2.0408 IR Inten -- 5.7442 4.1567 12.2908

H9 Visnagin radical anion in acetonitrile H10 C13 H8 O3 O4

C5 H4 H1 C9

C1 C4 •− C11 2 C8

C2 C3 C10 2 H6 C7 H3 S = 0.7660 O1 C12 C6 O2

Point group: C01 H7 H5 H2 C -2.958037 0.695102 -0.109423 C -3.145415 -0.606585 0.054954 O -2.037563 -1.438725 0.141011 C -0.748907 -0.925333 0.048257 C -0.486896 0.486293 -0.106950 C -1.691155 1.321690 -0.200282 C 0.231259 -1.904712 0.114132 C 1.557796 -1.472280 0.010143 C 1.910730 -0.142553 -0.135745 C 0.935603 0.854379 -0.193215 O 2.682279 -2.255584 0.044960 C 3.756105 -1.393599 -0.084445 C 3.346397 -0.109736 -0.199729 C -4.454035 -1.294331 0.156938 O -1.730447 2.531865 -0.352576 O 1.583519 2.074964 -0.365536 C 1.766243 2.897527 0.790121 H -3.828409 1.345345 -0.183670 H -0.043789 -2.943009 0.230598 H 4.728467 -1.859294 -0.074465 275 H 3.977798 0.762665 -0.313954 H -4.588713 -2.039629 -0.637599 H -5.264389 -0.560366 0.077579 H -4.563398 -1.823544 1.111582 H 2.272243 2.359112 1.596219 H 2.405620 3.729318 0.459724 H 0.804135 3.294064 1.122579

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -802.338734141

Frequencies -- 49.0669 77.4400 117.1629 Frequencies -- 140.5676 152.1901 177.5048 Frequencies -- 192.3601 198.5361 212.1965 Frequencies -- 269.7257 288.4641 293.4861 Frequencies -- 321.2026 328.0329 379.0238 Frequencies -- 394.1159 454.8645 492.3885 Frequencies -- 530.4319 555.5088 564.7218 Frequencies -- 587.4503 588.5659 605.3710 Frequencies -- 624.5215 674.5481 690.7109 Frequencies -- 709.3568 736.9480 762.9350 Frequencies -- 807.6503 854.3697 864.1668 Frequencies -- 915.8495 949.7875 971.7904 Frequencies -- 1014.5787 1032.3639 1065.6011 Frequencies -- 1089.8753 1104.6383 1139.8345 Frequencies -- 1173.5645 1181.8624 1185.7092 Frequencies -- 1204.7273 1220.3252 1233.4910 Frequencies -- 1309.1454 1312.9638 1336.4832 Frequencies -- 1354.3365 1406.9933 1434.5591 Frequencies -- 1459.2000 1477.1911 1489.7188 Frequencies -- 1501.0168 1515.8663 1536.3955 Frequencies -- 1557.0304 1559.5914 1591.8591 Frequencies -- 1608.0578 1673.5301 2972.0551 Frequencies -- 2982.2286 2993.2111 3068.6147 Frequencies -- 3115.1781 3128.2496 3185.3073 Frequencies -- 3226.2180 3257.9255 3284.8086

IR Inten -- 3.2968 0.7016 0.7695 IR Inten -- 0.2839 0.2011 2.9149 IR Inten -- 1.0078 0.7816 1.8305 IR Inten -- 2.6904 1.2335 0.1866 IR Inten -- 1.4502 2.9536 4.9419 IR Inten -- 7.4272 0.9666 46.4145 IR Inten -- 7.6096 10.2719 5.3444 IR Inten -- 21.2870 11.3735 1.1078 IR Inten -- 6.4868 44.1383 0.5036

276 IR Inten -- 0.7047 28.5785 7.3153 IR Inten -- 11.7862 11.8340 39.2128 IR Inten -- 3.9223 51.8006 21.8939 IR Inten -- 73.8558 79.5732 2.6486 IR Inten -- 36.3725 157.9811 56.0467 IR Inten -- 10.8940 43.5987 76.6567 IR Inten -- 53.2525 112.7291 50.4853 IR Inten -- 62.2817 198.2351 32.6352 IR Inten -- 45.2864 21.6821 37.8306 IR Inten -- 72.1509 6.7608 2.2872 IR Inten -- 43.5148 79.7917 70.2973 IR Inten -- 14.1814 243.7791 101.7688 IR Inten -- 21.8384 377.0163 483.4803 IR Inten -- 116.8025 71.2425 115.3900 IR Inten -- 18.9227 8.6395 46.3643 IR Inten -- 12.3126 9.8551 1.5329

Visnagin radical cation in acetonitrile H8 H9 C13 H10

O3 O4 2•+ C5 H4 H1 C9

C1 C4 C11 S2= 0.7606 C8

C2 Point group: C C3 C10 01 H6 C7 H3 O1 C12 C6 O2 C -2.917446 0.472554 -0.129345 H7 H5 C -2.951633 -0.859971 0.074606 H2 O -1.788175 -1.586352 0.119143 C -0.585246 -0.996522 0.055514 C -0.443306 0.405231 -0.040528 C -1.668024 1.195066 -0.332498 C 0.492840 -1.930709 0.071430 C 1.737805 -1.380285 -0.030643 C 1.982339 0.010183 -0.074950 C 0.883068 0.932582 -0.014309 O 2.929462 -2.053126 -0.049415 C 3.896374 -1.111493 -0.102827 C 3.379839 0.171378 -0.108648 C -4.148057 -1.727598 0.241139 O -1.644775 2.344348 -0.770520 O 1.269643 2.180879 0.102514 C 0.493417 3.254780 0.688149

277 H -3.842056 1.032033 -0.212806 H 0.297057 -2.994765 0.140773 H 4.912772 -1.481256 -0.132597 H 3.948679 1.089981 -0.142352 H -4.181580 -2.488970 -0.546818 H -5.059709 -1.128833 0.196745 H -4.109450 -2.249393 1.204524 H 1.246291 3.938435 1.080858 H -0.120882 3.720927 -0.077862 H -0.132184 2.864660 1.493221

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -802.066938999

Frequencies -- -53.4466 37.6994 95.4442 Frequencies -- 123.9090 149.6557 158.1722 Frequencies -- 169.4942 186.4411 205.7570 Frequencies -- 250.9544 261.7601 312.1239 Frequencies -- 318.4082 345.1632 396.3038 Frequencies -- 412.4978 479.6329 533.6370 Frequencies -- 554.5877 558.9638 577.1886 Frequencies -- 607.2538 641.2914 658.3010 Frequencies -- 672.9682 738.4788 762.1925 Frequencies -- 780.4208 818.3828 861.5814 Frequencies -- 871.7843 877.7906 911.0175 Frequencies -- 921.4006 951.2485 979.4061 Frequencies -- 1033.5578 1074.7951 1076.7684 Frequencies -- 1104.2699 1134.9468 1164.0476 Frequencies -- 1169.4793 1174.0213 1200.4591 Frequencies -- 1222.5239 1237.7013 1292.2036 Frequencies -- 1348.3127 1355.4798 1401.4011 Frequencies -- 1414.9354 1440.7079 1448.3534 Frequencies -- 1464.2447 1489.2212 1492.5630 Frequencies -- 1494.1193 1497.8066 1502.9786 Frequencies -- 1537.8853 1590.9986 1642.4878 Frequencies -- 1692.3848 1730.1206 3062.1618 Frequencies -- 3097.9636 3121.1587 3171.2738 Frequencies -- 3191.4849 3225.8828 3244.0263 Frequencies -- 3249.5391 3281.7034 3296.5175

IR Inten -- 3.0071 3.3702 6.8125 IR Inten -- 5.9635 1.6168 0.1513 IR Inten -- 6.1472 8.8086 0.9043 IR Inten -- 7.1092 2.6730 5.0263 IR Inten -- 5.3216 11.5341 7.1544 IR Inten -- 13.1774 1.9596 3.7364

278 IR Inten -- 0.4481 10.1630 19.1047 IR Inten -- 1.5498 4.9584 4.1338 IR Inten -- 10.8098 6.3702 13.0781 IR Inten -- 13.8982 40.0968 79.5289 IR Inten -- 26.6691 34.2836 1.9488 IR Inten -- 21.6520 35.6938 53.0682 IR Inten -- 12.4449 0.4231 8.1012 IR Inten -- 8.8226 69.8764 3.7467 IR Inten -- 16.4616 135.7536 11.6390 IR Inten -- 45.2069 123.8607 5.7975 IR Inten -- 29.2011 92.9813 288.0337 IR Inten -- 90.3894 59.0530 40.8699 IR Inten -- 697.5772 14.6955 143.2071 IR Inten -- 99.7525 28.3617 63.0999 IR Inten -- 189.8336 58.9116 107.7506 IR Inten -- 247.0394 581.0008 0.2157 IR Inten -- 8.8103 0.8495 1.2739 IR Inten -- 5.4166 13.5993 6.8639 IR Inten -- 42.0908 32.0547 64.8860

Visnagin neutral radical in acetonitrile

H10 2H• H9 H8 C13 H11 O3

O4

2 H1 S = 0.7728 C5 C1 C9 H4 Point group: C01 C4 C8 C11 H6 C2 C3 C12 O1 C -2.901093 0.576158 -0.099161 C7 C10 H5 H7 C6 H3 C -3.036599 -0.775128 0.044567 O2 O -1.916382 -1.579919 0.111863 H2 C -0.653230 -1.034929 0.029811 C -0.451880 0.381110 -0.115928 C -1.638149 1.189859 -0.184785 C 0.380090 -1.954803 0.098952 C 1.670215 -1.436336 0.017163 C 1.946341 -0.070902 -0.122475 C 0.884430 0.847423 -0.193969 O 2.831574 -2.155601 0.056273 C 3.852753 -1.235720 -0.060677 C 3.383997 0.031163 -0.172505 C -4.298034 -1.556500 0.143206 O -1.511612 2.545011 -0.318784 279 O 1.192566 2.173871 -0.390680 C 1.267989 2.958470 0.802404 H -3.800469 1.184586 -0.149135 H 0.172690 -3.012748 0.207018 H 4.848473 -1.653802 -0.045319 H 3.976542 0.928677 -0.277602 H -4.349580 -2.115814 1.087582 H -5.163325 -0.890614 0.089871 H -4.377701 -2.293052 -0.668284 H -2.402440 2.940526 -0.317182 H 0.288127 3.039515 1.282917 H 1.601876 3.952726 0.494897 H 1.995650 2.533906 1.506234

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -802.831620989

Frequencies -- 55.6888 69.1829 118.1551 Frequencies -- 142.3224 152.0429 154.6991 Frequencies -- 160.8955 197.3857 208.9189 Frequencies -- 269.7955 282.9860 295.0202 Frequencies -- 314.1854 331.5913 337.6873 Frequencies -- 366.5025 395.5601 448.2703 Frequencies -- 497.7800 525.0480 532.8235 Frequencies -- 552.7656 588.9702 603.6991 Frequencies -- 643.3304 679.4461 687.3399 Frequencies -- 720.2805 758.1863 768.4207 Frequencies -- 826.7476 828.1050 853.7876 Frequencies -- 870.8545 920.7448 953.2030 Frequencies -- 975.6791 1025.2390 1057.4813 Frequencies -- 1063.9764 1083.8121 1110.7661 Frequencies -- 1140.1625 1172.4686 1182.3307 Frequencies -- 1191.3929 1214.6447 1222.8535 Frequencies -- 1257.5397 1305.7740 1336.8754 Frequencies -- 1352.0026 1367.8691 1427.6047 Frequencies -- 1432.7609 1444.9311 1450.5550 Frequencies -- 1489.1623 1489.6286 1511.4050 Frequencies -- 1512.6561 1517.8042 1529.0816 Frequencies -- 1578.8202 1610.6371 1634.7187 Frequencies -- 1654.7423 3028.9135 3038.2563 Frequencies -- 3071.1752 3116.4370 3145.3248 Frequencies -- 3150.6705 3196.1934 3241.7790 Frequencies -- 3276.2564 3300.6773 3669.3322

IR Inten -- 1.2606 5.1528 6.2248 IR Inten -- 0.5583 0.6381 0.6681

280 IR Inten -- 1.1769 0.2093 2.6697 IR Inten -- 3.5303 7.2802 7.6466 IR Inten -- 27.4634 13.9750 117.2563 IR Inten -- 0.3193 1.6315 0.7771 IR Inten -- 10.6928 8.7108 8.2710 IR Inten -- 8.4813 4.3695 3.2971 IR Inten -- 2.2801 16.1069 3.4203 IR Inten -- 10.2537 40.8536 6.7008 IR Inten -- 7.8648 51.0548 5.0611 IR Inten -- 58.7988 36.5961 48.6041 IR Inten -- 30.9357 9.8143 32.1544 IR Inten -- 4.5111 56.8225 304.1946 IR Inten -- 56.5059 61.1956 3.8647 IR Inten -- 30.9128 74.1111 31.9983 IR Inten -- 213.7066 254.7903 46.9096 IR Inten -- 72.3967 97.7801 148.4196 IR Inten -- 29.1937 42.5232 54.4382 IR Inten -- 9.0692 66.1442 35.4880 IR Inten -- 12.0301 23.8457 10.6379 IR Inten -- 53.7585 11.6022 30.8941 IR Inten -- 155.0765 79.5151 66.3558 IR Inten -- 20.9514 35.2391 10.0782 IR Inten -- 29.9172 1.2764 3.8767 IR Inten -- 5.8309 8.0201 245.2349

Chloranil ground state in gas phase O1

Cl4 Cl2 C1 C6 C2

C5 C3

Point group: C01 C4 Cl1 Cl3

Thermal correction to Energy= 0.058127 O2 Thermal correction to Gibbs Free Energy= 0.008127

B3LYP/6-31+G**//B3LYP/6-31G* E(RB+HF-LYP) = -2219.78811953

Frequencies -- 52.7222 62.3346 86.5732 Frequencies -- 179.4737 198.5299 204.5109 Frequencies -- 212.7954 265.2992 307.1588 Frequencies -- 324.8508 339.4363 379.7674 Frequencies -- 431.6565 467.3422 488.7187 Frequencies -- 555.5356 730.5993 731.0341 Frequencies -- 736.7860 770.1053 850.5434 Frequencies -- 909.5059 994.6985 1112.4012 Frequencies -- 1232.3243 1247.5313 1609.0396

281 Frequencies -- 1647.9901 1775.6483 1779.4905

IR Inten -- 1.6991 0.0000 0.0000 IR Inten -- 5.8345 0.0000 0.0004 IR Inten -- 0.0990 0.0000 0.0000 IR Inten -- 0.0000 0.0000 5.0761 IR Inten -- 0.0000 4.1435 0.0000 IR Inten -- 0.0000 0.0497 18.5889 IR Inten -- 200.7218 0.0001 0.0000 IR Inten -- 22.1753 0.0000 378.5608 IR Inten -- 104.8769 0.0001 232.0711 IR Inten -- 0.0001 0.0001 301.9106

Chloranil triplet excited state in gas phase

O2

S2= 2.0193 Cl3C4 Cl1 C3 C5 Point group: C01

C2 C6 C -0.002556 1.501685 0.000226 C1 C 1.232544 0.686883 -0.000045 Cl2 Cl4 C 1.232545 -0.686880 -0.000012 O1 C -0.002553 -1.501684 -0.000095 C -1.232690 -0.736562 -0.000146 C -1.232692 0.736559 0.000036 O 0.006546 2.738995 0.000455 O 0.006552 -2.738995 -0.000023 Cl -2.694799 -1.596733 0.000076 Cl 2.692672 1.597604 -0.000187 Cl 2.692676 -1.597600 0.000087 Cl -2.694806 1.596728 -0.000167

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -2219.74291211

Frequencies -- 51.8826 67.3982 83.9946 Frequencies -- 175.1579 208.5895 213.9794 Frequencies -- 220.1673 278.4804 323.5207 Frequencies -- 325.2974 330.9439 346.2148 Frequencies -- 359.7436 460.1509 485.7605 Frequencies -- 549.5887 674.0047 719.9878 Frequencies -- 728.0566 749.4281 875.4044 Frequencies -- 938.4087 1047.3732 1166.3446 Frequencies -- 1205.5677 1225.6816 1346.4831

282 Frequencies -- 1502.0867 1587.1167 1598.1276

IR Inten -- 32.8369 4.0431 26.6252 IR Inten -- 8.6580 0.1979 0.3377 IR Inten -- 0.1802 2.3783 12.9770 IR Inten -- 0.6145 0.1824 1.8861 IR Inten -- 0.7086 2.0624 10.6360 IR Inten -- 15.1776 14.4223 18.5102 IR Inten -- 0.2099 364.4989 2.1242 IR Inten -- 154.8457 3.6221 346.9080 IR Inten -- 851.0336 0.0819 18.9830 IR Inten -- 422.7638 269.0723 3.4236

Chloranil radical anion in gas phase

O2

Cl1 Cl3 C4 2 S = 0.7805 C5 C3 Point group: C01 C6 C2

C1 C 0.000002 1.484861 0.000021 Cl4 Cl2 C 1.225873 0.686697 0.000002 O1 C 1.225868 -0.686700 -0.000056 C -0.000010 -1.484855 0.000036 C -1.225859 -0.686698 0.000044 C -1.225856 0.686709 -0.000055 O 0.000002 2.732205 0.000081 O -0.000029 -2.732196 0.000128 Cl -2.717704 -1.607723 0.000141 Cl 2.717713 1.607716 0.000169 Cl 2.717696 -1.607735 -0.000213 Cl -2.717697 1.607733 -0.000192

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -2219.85226040

Thermal correction to Energy= 0.056570 Thermal correction to Gibbs free energy= 0.006465

Frequencies -- 68.9144 76.9991 111.4427 Frequencies -- 185.5480 201.2226 205.5389 Frequencies -- 214.0023 276.8139 319.0400 Frequencies -- 327.7845 329.2273 360.1300 Frequencies -- 382.2099 444.6471 498.0853 Frequencies -- 542.8758 699.0436 704.4111

283 Frequencies -- 723.1662 729.6317 824.2606 Frequencies -- 903.2820 1003.3707 1130.6468 Frequencies -- 1136.6603 1333.0692 1483.6424 Frequencies -- 1566.6868 1588.4218 1633.1852

IR Inten -- 0.0000 2.8611 0.0000 IR Inten -- 5.7347 0.0000 1.0702 IR Inten -- 0.4768 0.0000 0.0000 IR Inten -- 0.0000 0.0000 0.6052 IR Inten -- 0.0000 0.4321 0.0000 IR Inten -- 0.0000 153.0843 13.3297 IR Inten -- 0.0000 0.0000 0.0000 IR Inten -- 149.1926 0.0000 96.9955 IR Inten -- 180.3867 0.0000 0.1418 IR Inten -- 0.0000 229.6628 0.0000

Chloranil ground state in acetonitrile

O1

Cl4 Cl2 C1 Point group: C01 C6 C2

C 0.000000 -1.458787 0.000196 C5 C3 C 1.279688 -0.675496 -0.000061 C4 C 1.279689 0.675494 -0.000254 Cl1 Cl3

C 0.000000 1.458788 0.000064 O2 C -1.279685 0.675496 -0.000024 C -1.279686 -0.675495 -0.000258 O 0.000003 -2.671646 0.000654 O 0.000012 2.671646 0.000529 Cl -2.719597 1.618407 0.000207 Cl 2.719593 -1.618415 0.000143 Cl 2.719590 1.618414 -0.000359 Cl -2.719595 -1.618406 -0.000428

B3LYP/6-31+G**//B3LYP/6-31G* E(RB+HF-LYP) = -2219.81255437 Thermal correction to Energy= 0.058123 Thermal correction to Gibbs Free Energy= 0.008137

Frequencies -- 53.1979 62.2429 86.9652 Frequencies -- 179.7259 198.6044 204.4632 Frequencies -- 212.8712 265.2989 307.0928 Frequencies -- 324.8702 339.3779 379.7085 Frequencies -- 431.7956 467.3998 488.6769

284 Frequencies -- 555.5243 730.6185 731.1989 Frequencies -- 737.0524 770.2336 850.6614 Frequencies -- 909.4204 994.7734 1112.4295 Frequencies -- 1232.0024 1247.2101 1608.9020 Frequencies -- 1647.8838 1774.9115 1778.7735

IR Inten -- 1.6770 0.0000 0.0000 IR Inten -- 5.8501 0.0000 0.0004 IR Inten -- 0.0994 0.0000 0.0000 IR Inten -- 0.0000 0.0000 5.0662 IR Inten -- 0.0000 4.1391 0.0000 IR Inten -- 0.0000 0.0043 18.6409 IR Inten -- 200.7738 0.0000 0.0000 IR Inten -- 21.9540 0.0000 378.7398 IR Inten -- 104.9622 0.0000 232.1438 IR Inten -- 0.0000 0.0000 302.0886

Chloranil triplet excited state in acetonitrile

O1

Cl2 C1 Cl4 2 S = 2.0108 C2 C6 Point group: C01

C3 C5

C 0.002252 -1.498458 0.001707 Cl3 C4 Cl1 C -1.227460 -0.686650 0.001852 C -1.227118 0.686781 -0.003845 O2 C 0.002720 1.498506 -0.005885 C 1.232133 0.734016 -0.000585 C 1.231821 -0.734185 -0.002697 O -0.006871 -2.737761 0.003941 O -0.006395 2.737834 -0.007939 Cl 2.691306 1.590062 0.015510 Cl -2.690814 -1.591305 0.009065 Cl -2.690121 1.591804 -0.006559 Cl 2.690808 -1.590599 -0.012799

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -2219.74196884

Frequencies -- 51.8826 67.3982 83.9946 Frequencies -- 175.1579 208.5895 213.9794 Frequencies -- 220.1673 278.4804 323.5207 Frequencies -- 325.2974 330.9439 346.2148 Frequencies -- 359.7436 460.1509 485.7605

285 Frequencies -- 549.5887 674.0047 719.9878 Frequencies -- 728.0566 749.4281 875.4044 Frequencies -- 938.4087 1047.3732 1166.3446 Frequencies -- 1205.5677 1225.6816 1346.4831 Frequencies -- 1502.0867 1587.1167 1598.1276

IR Inten -- 32.8369 4.0431 26.6252 IR Inten -- 8.6580 0.1979 0.3377 IR Inten -- 0.1802 2.3783 12.9770 IR Inten -- 0.6145 0.1824 1.8861 IR Inten -- 0.7086 2.0624 10.6360 IR Inten -- 15.1776 14.4223 18.5102 IR Inten -- 0.2099 364.4989 2.1242 IR Inten -- 154.8457 3.6221 346.9080 IR Inten -- 851.0336 0.0819 18.9830 IR Inten -- 422.7638 269.0723 3.4236

Chloranil radical anion in acetonitrile

O1 2 Cl4 Cl2 S = 0.7607 C1 Point group: C01 C6 C2

C 0.000002 -1.479913 0.000017 C5 C3 C 1.224971 -0.686257 0.000182 C4 C 1.224969 0.686267 0.000014 Cl1 Cl3 C -0.000005 1.479923 0.000051 O2 C -1.224973 0.686263 0.000032 C -1.224966 -0.686262 -0.000146 O 0.000005 -2.728955 0.000002 O -0.000003 2.728967 -0.000033 Cl -2.713226 1.601568 -0.000042 Cl 2.713213 -1.601573 -0.000075 Cl 2.713220 1.601572 0.000031 Cl -2.713207 -1.601579 0.000048

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -2219.97426218

Frequencies -- 67.2105 77.7127 113.0950 Frequencies -- 161.4938 191.5061 203.4291 Frequencies -- 215.8387 275.1184 318.3489 Frequencies -- 329.2397 331.1897 362.7768 Frequencies -- 388.7028 470.1119 500.0832

286 Frequencies -- 553.5934 703.5490 704.0714 Frequencies -- 729.8355 743.5277 841.6986 Frequencies -- 913.9750 1013.9916 1147.9649 Frequencies -- 1150.1496 1349.7254 1486.5245 Frequencies -- 1567.2878 1588.0574 1635.5336

IR Inten -- 0.3987 3.7756 0.1334 IR Inten -- 4.3172 5.9764 0.0253 IR Inten -- 0.1242 0.2314 0.0769 IR Inten -- 0.0512 0.0058 2.6997 IR Inten -- 1.5137 0.0006 0.0080 IR Inten -- 1.7019 223.8172 20.5141 IR Inten -- 3.1431 0.5407 3.1553 IR Inten -- 223.0598 0.0699 141.8998 IR Inten -- 301.1586 0.1189 1.1138 IR Inten -- 0.1062 513.8371 0.0119

Hydroquinone ground state in gas phase

H1 H2 Hydroquinone 3 C1 C2 H5 H6 Point group: C01 O1C6 C3 O2 C -0.698922 -1.195977 -0.000042 C 0.698891 -1.195946 -0.000057 C5 C4 C 1.401276 0.009804 -0.000047 C 0.695025 1.218605 -0.000007 H4 H3 C -0.694985 1.218579 -0.000025 C -1.401254 0.009789 0.000024 H -1.236271 -2.142705 -0.000154 H 1.236342 -2.142624 -0.000540 H 1.251368 2.150649 -0.000150 H -1.251441 2.150562 -0.000137 O -2.772779 0.077646 0.000010 H -3.129864 -0.823525 0.000696 O 2.772764 0.077615 0.000020 H 3.129798 -0.823570 0.000965

B3LYP/6-31+G**//B3LYP/6-31G* E(RB+HF-LYP) = -382.677825046

Thermal correction to Energy= 0.115393 Thermal correction to Gibbs Free Energy= 0.078077

287 Frequencies -- 157.8846 313.3430 318.8278 Frequencies -- 342.8971 369.8861 425.9007 Frequencies -- 447.5125 470.6471 524.1105 Frequencies -- 659.3587 702.0511 766.7346 Frequencies -- 791.2204 841.2519 868.8012 Frequencies -- 884.8287 947.3381 1028.6974 Frequencies -- 1124.1636 1196.7615 1201.1320 Frequencies -- 1213.1236 1288.2453 1314.9177 Frequencies -- 1373.3993 1384.3182 1513.2830 Frequencies -- 1566.4812 1665.6866 1685.7599 Frequencies -- 3163.8624 3180.4470 3208.4738 Frequencies -- 3222.6345 3756.4308 3757.4157

IR Inten -- 0.2762 0.0047 243.7006 IR Inten -- 0.0004 0.0000 0.0000 IR Inten -- 22.6187 0.3464 9.6185 IR Inten -- 2.1557 0.0000 47.9655 IR Inten -- 21.4946 39.0315 0.2215 IR Inten -- 0.0000 0.0000 0.0000 IR Inten -- 10.3988 1.6966 8.6475 IR Inten -- 318.3994 130.0337 0.0930 IR Inten -- 112.9138 9.2984 0.0275 IR Inten -- 212.7343 13.0275 0.0718 IR Inten -- 22.9911 17.2547 5.8667 IR Inten -- 5.9318 45.5462 29.0436

Hydroquinone neutral radical in gas phase H2 H1

C2 C1 H5 • Semiquinone 3 O1 O2 C3 C6

2 S = 0.7772 C4 C5 Point group: C01 H3 H4

C 0.728615 -1.236715 0.000217 C -0.646597 -1.216156 -0.000442 C -1.333538 0.018592 -0.000449 C -0.623071 1.242009 -0.000444 C 0.749303 1.234256 0.000230 C 1.505194 -0.008329 0.000141 H 1.280918 -2.171191 0.001016 H -1.216473 -2.144517 -0.000668 H -1.192625 2.166518 -0.000574

288 H 1.320038 2.157706 0.001120 O 2.760726 -0.021863 -0.000104 O -2.686601 0.095445 0.000441 H -3.064302 -0.799113 0.000884

B3LYP/6-31+G**//B3LYP/6-31G* E(UB+HF-LYP) = -382.036377882

Frequencies -- 135.9857 324.1307 369.3482 Frequencies -- 385.7941 433.9608 460.1438 Frequencies -- 465.9923 517.3601 632.1200 Frequencies -- 725.2173 779.5287 784.7043 Frequencies -- 828.0247 853.9957 944.2093 Frequencies -- 970.8260 990.0069 1110.1376 Frequencies -- 1172.6024 1195.1054 1276.4238 Frequencies -- 1327.0090 1372.9354 1458.9378 Frequencies -- 1477.8844 1529.4363 1565.8810 Frequencies -- 1638.4350 3163.8128 3207.7953 Frequencies -- 3222.3755 3225.1682 3738.6632

IR Inten -- 2.3904 4.3928 10.3234 IR Inten -- 9.1230 114.3370 5.1461 IR Inten -- 0.7926 4.5988 1.0180 IR Inten -- 1.6037 26.5360 4.2467 IR Inten -- 3.8198 60.1346 0.1895 IR Inten -- 0.0336 5.1526 21.4726 IR Inten -- 13.7297 123.2362 1.3147 IR Inten -- 91.6048 73.5395 22.8295 IR Inten -- 2.6365 64.1443 11.1189 IR Inten -- 157.0966 16.7638 3.9800 IR Inten -- 4.4080 2.4577 72.5885

Hydroquinone ground state in acetonitrile

Hydroquinone 3 H1 H2

Point group: C01 C1 C2 H5 H6

C -0.698591 -1.195458 -0.000527 O1C6 C3 O2 C 0.698523 -1.195504 0.000492

C 1.401425 0.011057 -0.000155 C5 C4 C 0.695712 1.219788 -0.000519 C -0.695644 1.219836 0.000531 H4 H3 C -1.401422 0.011112 0.000132

289 H -1.238993 -2.140007 -0.001637 H 1.238833 -2.140095 0.001444 H 1.249603 2.154042 -0.000995 H -1.249444 2.154129 0.001003 O -2.771779 0.075425 0.000482 H -3.130210 -0.829825 -0.003354 O 2.771777 0.075401 -0.000534 H 3.130209 -0.829844 0.004233

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -382.689260116

Thermal correction to Energy= 0.115178 Thermal correction to Gibbs Free Energy= 0.078032

Frequencies -- 158.3102 343.7367 345.3026 Frequencies -- 347.4334 372.3773 427.6881 Frequencies -- 450.2919 471.8415 526.5487 Frequencies -- 658.1706 703.5184 766.5114 Frequencies -- 805.2996 837.8276 868.8600 Frequencies -- 911.7762 942.0187 1029.5197 Frequencies -- 1121.7694 1193.7864 1200.9360 Frequencies -- 1212.6384 1286.9881 1313.1082 Frequencies -- 1372.8239 1384.9197 1510.6181 Frequencies -- 1560.8296 1665.1940 1681.7400 Frequencies -- 3174.0347 3186.7460 3202.0231 Frequencies -- 3216.0557 3684.1158 3686.5746

IR Inten -- 0.0443 0.7886 333.0233 IR Inten -- 0.2325 0.0089 0.0058 IR Inten -- 29.6825 0.3133 11.5140 IR Inten -- 2.4862 0.0003 81.5825 IR Inten -- 22.7962 58.5010 0.0182 IR Inten -- 0.2186 0.0189 0.5583 IR Inten -- 14.8883 1.7726 19.5751 IR Inten -- 539.7924 140.0549 1.6923 IR Inten -- 124.0461 12.9949 1.0816 IR Inten -- 340.2419 13.6231 0.2393 IR Inten -- 0.8583 6.8319 5.6234 IR Inten -- 3.7026 213.7217 126.4573

290

Hydroquinone neutral radical in acetonitrile

Semiquinone 3•

S2= 0.7742 Point group: C01

C -0.726734 -1.235760 -0.000343 C 0.646706 -1.218806 -0.000641 C 1.335935 0.016786 -0.000896 C 0.622018 1.240479 -0.000711 C -0.748773 1.233186 0.000101 C -1.502661 -0.008573 0.000523 H -1.276220 -2.172403 -0.000462 H 1.216700 -2.145992 -0.000523 H 1.188711 2.166958 -0.000263 H -1.315955 2.159336 0.000856 O -2.761404 -0.021166 0.000419 O 2.679874 0.098746 0.000155 H 3.080054 -0.792406 0.007600

B3LYP/6-31+G**//B3LYP/6-31G* E (UB+HF-LYP) = -382.060228089

Frequencies -- 138.5325 336.0908 376.1463 Frequencies -- 406.3621 461.0677 466.8755 Frequencies -- 468.7340 521.4960 642.0018 Frequencies -- 734.1879 782.6210 786.9114 Frequencies -- 833.5927 856.3661 956.2737 Frequencies -- 977.2009 990.8413 1112.8633 Frequencies -- 1176.2820 1199.0333 1281.9227 Frequencies -- 1337.8618 1378.1709 1465.3805 Frequencies -- 1484.6422 1546.1825 1564.7514 Frequencies -- 1643.9584 3182.3992 3207.5393 Frequencies -- 3218.9615 3222.0725 3640.0562

IR Inten -- 3.3159 2.0376 15.6971 IR Inten -- 20.8895 99.3855 34.0703 IR Inten -- 29.8279 5.6055 1.0686 IR Inten -- 1.8805 46.8794 3.5131 IR Inten -- 4.6277 78.6359 0.0590 IR Inten -- 0.2974 10.7444 33.4974 IR Inten -- 17.3204 223.5868 0.3544 IR Inten -- 159.4437 105.8206 40.1316

291 IR Inten -- 9.5946 203.0459 3.1616 IR Inten -- 232.6156 2.4712 1.4236 IR Inten -- 0.7092 0.3884 329.3540

292

APPENDIX C

SUPPORTING INFORMATION FOR CHAPTER 5

Support information includes geometries, energies, S2 values, thermal corrections, frequencies, IR intensities, energetic gaps of electronic states and oscillation factors (all energies and frequencies are uncorrected.) in gas phase and acetonitrile.

293

Lumichrome ground state (LC) in gas phase

Point group: C01

6 -3.787358000 -0.870337000 0.000171000 6 -1.343198000 -0.701529000 -0.000523000 6 -1.364977000 0.693926000 -0.000313000 6 -2.659846000 1.388782000 0.000424000 6 0.937359000 0.697721000 -0.000770000 6 0.939919000 -0.749454000 -0.000509000 6 2.189490000 -1.434936000 0.000058000 1 2.150798000 -2.520819000 0.000580000 6 3.435362000 -0.766246000 0.000136000 6 3.432344000 0.625517000 -0.000843000 6 2.171663000 1.339466000 -0.001136000 1 2.174956000 2.425378000 -0.001525000 8 -4.789850000 -1.561216000 0.000434000 8 -2.841342000 2.592010000 0.000927000 7 -2.501845000 -1.422873000 -0.000608000 7 -3.774300000 0.508033000 0.000553000 7 -0.193912000 -1.467421000 -0.000584000 7 -0.216041000 1.427714000 -0.000635000 1 -4.683290000 0.956589000 0.001236000 1 -2.437560000 -2.434719000 -0.000630000 6 4.719314000 -1.560072000 0.001196000 1 5.330792000 -1.345270000 -0.884766000 1 5.338867000 -1.329970000 0.877513000 1 4.517012000 -2.634773000 0.011276000 6 4.711319000 1.415336000 0.000380000 1 5.315147000 1.194405000 0.891172000 1 5.336735000 1.164437000 -0.866876000 1 4.520429000 2.491181000 -0.019568000

294 Thermal correction to Energy= 0.227197 Thermal correction to Enthalpy= 0.228141 Thermal correction to Gibbs Free energy= 0.171786 B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -832.825095642

Frequencies -- 54.7514 67.0395 122.9416 Frequencies -- 138.9099 143.3637 158.0303 Frequencies -- 169.7990 194.5322 253.7280 Frequencies -- 288.2595 302.6079 318.0391 Frequencies -- 325.4230 393.0532 401.7715 Frequencies -- 437.3201 461.3997 475.6421 Frequencies -- 505.6385 525.3757 580.1594 Frequencies -- 599.5680 608.2276 636.7202 Frequencies -- 648.4021 669.2155 683.7424 Frequencies -- 708.8370 740.5878 748.1327 Frequencies -- 773.9408 798.0790 808.6687 Frequencies -- 841.6893 892.9077 897.9840 Frequencies -- 914.2130 1020.5811 1033.4522 Frequencies -- 1047.3074 1065.3980 1084.2402 Frequencies -- 1136.2396 1150.1033 1214.7732 Frequencies -- 1251.7064 1282.0508 1290.6217 Frequencies -- 1296.0871 1350.4366 1388.3111 Frequencies -- 1409.3659 1419.3665 1441.0908 Frequencies -- 1449.9346 1452.8216 1482.8605 Frequencies -- 1502.1735 1505.2483 1512.9995 Frequencies -- 1522.2318 1534.2541 1543.3186 Frequencies -- 1603.3037 1624.8972 1686.6524 Frequencies -- 1821.5386 1843.0894 3041.8352 Frequencies -- 3044.7118 3090.2974 3092.6142 Frequencies -- 3136.3478 3138.0293 3206.5449

IR Inten -- 0.2150 0.0057 0.3982 IR Inten -- 2.5648 0.0099 1.6120 IR Inten -- 0.0706 0.1226 0.0374 IR Inten -- 2.5762 0.1601 0.0001 IR Inten -- 1.8508 0.7919 27.1391 IR Inten -- 8.5678 8.2943 24.3916 IR Inten -- 1.7663 9.1458 11.4265 IR Inten -- 21.5853 0.5793 34.5669 IR Inten -- 4.5897 59.8586 6.0914 IR Inten -- 32.7055 90.6120 6.9866 IR Inten -- 1.6055 2.8805 0.4450 IR Inten -- 1.7233 13.7954 21.1922 IR Inten -- 0.9843 14.0733 25.7579 IR Inten -- 0.5698 7.6432 0.0032

295 IR Inten -- 19.4348 0.1334 0.3902 IR Inten -- 69.8748 32.2907 59.5284 IR Inten -- 1.7789 180.4489 261.3226 IR Inten -- 16.4327 97.9872 3.2923 IR Inten -- 29.2173 4.3344 47.0511 IR Inten -- 79.0515 0.0253 33.4206 IR Inten -- 17.6175 41.3166 14.3277 IR Inten -- 51.2203 364.5377 11.7799 IR Inten -- 370.1235 900.4966 7.4093 IR Inten -- 51.1214 7.8625 23.6865 IR Inten -- 25.8266 3.7869 8.9326 IR Inten -- 4.5254 94.9259 73.6088

Lumichrome triplet excited state (3LC*) in gas phase

S2 = 2.0144 Point group: C01

Thermal correction to Energy= 0.223623 Thermal correction to Enthalpy= 0.224567 Thermal correction to Gibbs Free Energy= 0.165115

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -832.723444093

Frequencies -- 52.6554 62.3169 69.8568 Frequencies -- 116.9158 131.6468 143.7187 Frequencies -- 155.3122 175.9013 210.7824 Frequencies -- 279.2658 279.8458 287.0374 Frequencies -- 311.1302 331.8745 398.5470 Frequencies -- 400.1434 432.8495 433.3359 Frequencies -- 473.4288 515.0723 575.5778 Frequencies -- 595.1987 599.9383 619.5700 Frequencies -- 643.3128 644.2812 664.5387 Frequencies -- 687.1525 728.9808 733.0012 Frequencies -- 737.8914 745.3784 782.0892 Frequencies -- 829.3629 855.4579 866.3914 Frequencies -- 892.9624 996.2518 1011.1073 Frequencies -- 1016.0577 1033.9763 1072.0820 Frequencies -- 1091.9769 1138.2218 1141.6047

296 Frequencies -- 1206.6456 1222.2321 1247.4627 Frequencies -- 1256.3542 1310.3451 1317.9536 Frequencies -- 1382.6761 1403.8212 1411.5242 Frequencies -- 1423.1245 1438.7665 1451.1124 Frequencies -- 1473.7267 1503.0766 1507.1798 Frequencies -- 1515.7898 1520.3242 1525.1098 Frequencies -- 1536.6874 1552.3603 1574.0524 Frequencies -- 1801.7729 1828.3629 3035.1622 Frequencies -- 3040.3716 3079.0131 3088.3072 Frequencies -- 3133.7630 3142.8214 3205.4792 Frequencies -- 3213.4815 3600.6610 3606.5544

IR Inten -- 12.0534 0.2173 4.3609 IR Inten -- 14.2139 3.6381 4.0571 IR Inten -- 27.4643 29.1671 6.5693 IR Inten -- 11.7561 0.0190 0.0348 IR Inten -- 9.0629 65.8213 16.0002 IR Inten -- 79.8975 9.8176 54.0957 IR Inten -- 14.9676 16.4139 0.2451 IR Inten -- 7.4045 0.0775 20.9753 IR Inten -- 3.0107 8.1359 1.0630 IR Inten -- 44.5023 6.5219 0.1468 IR Inten -- 188.7741 13.3946 147.2436 IR Inten -- 9.1459 18.0041 24.2239 IR Inten -- 95.0727 10.1504 46.3194 IR Inten -- 493.7979 25.2269 17.8914 IR Inten -- 133.2171 14.3246 0.7057 IR Inten -- 69.8938 1.9978 28.0218 IR Inten -- 29.9891 16.8591 7.1992 IR Inten -- 87.4926 284.0668 139.5381 IR Inten -- 517.8980 822.3794 14.1359 IR Inten -- 33.3748 16.9957 9.7284 IR Inten -- 13.7147 12.4275 4.5357 IR Inten -- 4.4946 118.5519 95.5485

Excited State 1: ?Spin -?Sym 0.7294 eV 1699.90 nm f=0.0000 Excited State 2: ?Spin -?Sym 1.0282 eV 1205.78 nm f=0.0168 Excited State 3: ?Spin -?Sym 1.4876 eV 833.44 nm f=0.0087 Excited State 4: ?Spin -?Sym 1.5987 eV 775.50 nm f=0.0002 Excited State 5: ?Spin -?Sym 1.9891 eV 623.32 nm f=0.0054 Excited State 6: ?Spin -?Sym 2.0995 eV 590.55 nm f=0.0023 Excited State 7: ?Spin -?Sym 2.2387 eV 553.82 nm f=0.0002 Excited State 8: ?Spin -?Sym 2.5060 eV 494.74 nm f=0.0238 Excited State 9: ?Spin -?Sym 2.6105 eV 474.95 nm f=0.0001 Excited State 10: ?Spin -?Sym 3.0583 eV 405.40 nm f=0.1106

297 Lumichrome ground state (LC) in acetonitrile

Point group: C01

Thermal correction to Energy= 0.227025 Thermal correction to Enthalpy= 0.227969 Thermal correction to Gibbs Free Energy= 0.171281

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -832.837264652

Frequencies -- 44.6332 51.9090 121.1497 Frequencies -- 142.9754 147.9330 158.4237 Frequencies -- 168.9134 199.7033 253.3482 Frequencies -- 289.5807 303.8524 321.6045 Frequencies -- 326.9378 393.0617 401.0353 Frequencies -- 437.8064 462.8909 476.4029 Frequencies -- 506.8066 527.8541 580.9728 Frequencies -- 587.2513 608.8046 642.9955 Frequencies -- 649.8315 677.9662 687.3722 Frequencies -- 712.4184 735.6600 748.1737 Frequencies -- 777.1079 799.5545 811.3904 Frequencies -- 843.4053 894.6980 897.4967 Frequencies -- 912.3729 1027.2219 1035.4261 Frequencies -- 1049.2761 1061.4374 1093.8539 Frequencies -- 1144.4780 1154.1013 1218.5768 Frequencies -- 1257.3701 1286.2803 1295.8826 Frequencies -- 1300.5319 1352.3069 1390.7248 Frequencies -- 1412.5320 1423.4021 1440.5780 Frequencies -- 1448.8197 1451.2749 1485.9651 Frequencies -- 1500.1444 1500.6590 1510.8936 Frequencies -- 1516.9012 1533.3822 1542.3714 Frequencies -- 1604.1062 1620.5509 1686.8664 Frequencies -- 1794.3520 1819.1384 3045.0602 Frequencies -- 3047.4947 3095.3356 3096.7197

298 Frequencies -- 3138.5774 3141.3958 3206.6382 Frequencies -- 3208.3843 3551.4130 3554.8993

IR Inten -- 0.3179 0.2389 0.7625 IR Inten -- 2.4468 1.3798 2.7784 IR Inten -- 0.0864 0.1219 0.0771 IR Inten -- 4.7693 0.4093 0.0135 IR Inten -- 2.4777 2.8232 45.1517 IR Inten -- 12.8964 13.0093 41.4271 IR Inten -- 3.3035 15.1423 22.1962 IR Inten -- 51.6922 0.6640 118.0566 IR Inten -- 9.5844 67.1264 7.7150 IR Inten -- 24.9809 67.9448 13.7692 IR Inten -- 1.4828 5.5424 0.7193 IR Inten -- 2.5498 24.5992 29.7247 IR Inten -- 0.2823 27.6503 48.1051 IR Inten -- 1.7410 12.7145 0.0811 IR Inten -- 29.5267 0.2986 0.6567 IR Inten -- 131.2480 15.2431 127.4584 IR Inten -- 43.4263 361.9153 423.8538 IR Inten -- 18.3478 152.1592 4.2161 IR Inten -- 2.6758 68.4818 72.2231 IR Inten -- 64.6963 46.7509 66.0103 IR Inten -- 20.9200 129.2178 14.8748 IR Inten -- 212.1677 508.0241 18.7849 IR Inten -- 828.8505 1136.1043 3.3072 IR Inten -- 28.1716 3.7644 19.2687 IR Inten -- 20.8182 8.0729 0.5199 IR Inten -- 1.7542 266.6223 208.8746

Lumichrome triplet excited state (3LC*) in acetonitrile

S2 = 2.0202 Point group: C01

Thermal correction to Energy= 0.223730 Thermal correction to Enthalpy= 0.224567

299 Thermal correction to Gibbs Free Energy= 0.166045

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -832.752280547

Frequencies -- 59.0825 67.7575 83.4050 Frequencies -- 123.8566 139.7959 152.0824 Frequencies -- 156.9063 180.8223 233.8982 Frequencies -- 281.1311 287.2507 300.0089 Frequencies -- 313.6444 354.2498 398.3182 Frequencies -- 401.3262 434.1686 436.4157 Frequencies -- 473.6959 519.9827 576.9065 Frequencies -- 596.5601 609.4994 615.8496 Frequencies -- 645.7819 657.1111 673.0611 Frequencies -- 695.3171 726.5836 732.8376 Frequencies -- 744.3215 759.4748 785.6010 Frequencies -- 832.2916 864.3227 874.7388 Frequencies -- 896.2356 1002.7588 1016.0649 Frequencies -- 1027.3568 1032.9807 1074.1983 Frequencies -- 1107.1339 1145.8805 1154.2717 Frequencies -- 1208.9701 1232.1760 1251.2969 Frequencies -- 1263.9269 1315.4844 1322.1262 Frequencies -- 1385.0273 1404.3679 1415.6347 Frequencies -- 1427.6285 1435.4063 1448.3406 Frequencies -- 1475.1129 1497.0288 1505.6002 Frequencies -- 1514.5089 1515.5528 1520.6169 Frequencies -- 1537.3602 1558.5940 1581.3100 Frequencies -- 1762.4287 1806.0599 3036.9688 Frequencies -- 3043.7766 3082.1560 3093.7143 Frequencies -- 3139.3447 3144.6996 3192.6265 Frequencies -- 3208.8790 3540.4501 3561.5748

IR Inten -- 0.1454 0.1611 0.4417 IR Inten -- 0.4458 5.1739 0.0040 IR Inten -- 1.8157 0.1716 2.0724 IR Inten -- 6.8454 14.5914 12.6595 IR Inten -- 5.3054 2.6235 25.3755 IR Inten -- 0.4196 3.7162 10.2429 IR Inten -- 58.7514 30.9662 2.6516 IR Inten -- 20.5797 0.1732 4.1208 IR Inten -- 154.0901 18.8402 90.2640 IR Inten -- 36.6743 38.9443 24.2981 IR Inten -- 21.2612 5.3419 0.2267 IR Inten -- 15.4865 7.5092 20.7960 IR Inten -- 2.9201 13.9351 2.9772 IR Inten -- 42.3888 12.0448 87.9075

300 IR Inten -- 359.6403 20.0832 317.7574 IR Inten -- 56.2590 24.1529 99.6056 IR Inten -- 195.3041 27.7602 34.8226 IR Inten -- 1206.0152 19.1118 54.0865 IR Inten -- 171.7138 13.7047 4.9232 IR Inten -- 152.0274 3.3651 57.8410 IR Inten -- 15.0167 20.1498 30.2657 IR Inten -- 202.8301 589.3790 157.3840 IR Inten -- 955.0167 1434.0207 0.7872 IR Inten -- 17.7905 7.1936 7.8058 IR Inten -- 12.1246 13.3853 1.2105 IR Inten -- 0.8927 364.9258 279.6873

Lumichrome N-oxide ground state (LCO) in gas phase

Point group: C01

6 -3.769642000 -1.042450000 0.000192000 6 -1.304472000 -0.891756000 -0.000150000 6 -1.373566000 0.533357000 -0.000186000 6 -2.674991000 1.233816000 0.000006000 6 1.012021000 0.509201000 -0.000169000 6 0.963518000 -0.904959000 -0.000228000 6 2.200141000 -1.591966000 -0.000207000 1 2.162256000 -2.676990000 -0.000348000 6 3.410038000 -0.923428000 0.000012000 6 3.430505000 0.509957000 0.000137000 6 2.234228000 1.201910000 0.000025000 1 2.206152000 2.284913000 0.000097000 8 -4.784164000 -1.711764000 0.000189000 8 -2.867504000 2.432898000 -0.000212000 7 -2.497853000 -1.590828000 -0.000056000 7 -3.765495000 0.346084000 0.000542000

301 7 -0.202783000 -1.609939000 -0.000238000 1 -4.678527000 0.786331000 0.000311000 1 -2.436878000 -2.601581000 -0.000153000 6 4.702460000 -1.701219000 0.000124000 1 5.313401000 -1.464253000 -0.880052000 1 5.313141000 -1.464427000 0.880526000 1 4.515056000 -2.778290000 -0.000012000 6 4.739794000 1.259453000 0.000309000 1 5.347041000 1.013486000 0.880929000 1 5.346879000 1.014035000 -0.880435000 1 4.572359000 2.339911000 0.000582000 8 -0.153692000 2.491570000 -0.000087000 7 -0.196471000 1.239502000 -0.000215000

Frequencies -- 47.0194 66.0555 81.5119 Frequencies -- 119.0732 136.8398 152.1511 Frequencies -- 156.7465 178.9762 212.1395 Frequencies -- 281.0071 287.5684 288.3303 Frequencies -- 312.9335 336.6395 396.6864 Frequencies -- 401.2063 433.7105 434.4370 Frequencies -- 473.7173 519.8921 577.1197 Frequencies -- 597.8234 603.9167 615.2716 Frequencies -- 644.2033 645.1459 672.4162 Frequencies -- 674.5725 726.6252 731.2644 Frequencies -- 739.1891 746.7663 785.0432 Frequencies -- 831.6717 863.6705 874.0942 Frequencies -- 895.3504 1003.6950 1015.4168 Frequencies -- 1026.0054 1031.4616 1072.5711 Frequencies -- 1105.7202 1144.3085 1151.8636 Frequencies -- 1209.3560 1231.4841 1250.8252 Frequencies -- 1262.3096 1313.3626 1321.0861 Frequencies -- 1384.9891 1404.2523 1415.5239 Frequencies -- 1427.1325 1434.9680 1448.4879 Frequencies -- 1473.8399 1496.5148 1504.5187 Frequencies -- 1514.0577 1514.3127 1520.9920 Frequencies -- 1537.1875 1549.7167 1578.4922 Frequencies -- 1763.1688 1806.4506 3036.9103 Frequencies -- 3044.9571 3081.8950 3095.3340 Frequencies -- 3138.7116 3145.3649 3205.9439 Frequencies -- 3209.6663 3539.9219 3560.6014

IR Inten -- 1.4200 0.1703 0.7035 IR Inten -- 1.5155 0.2488 2.4985 IR Inten -- 2.4930 1.0478 1.1831 IR Inten -- 4.7025 1.1751 17.4770

302 IR Inten -- 18.9949 0.4813 6.7251 IR Inten -- 25.2361 6.3508 3.0334 IR Inten -- 47.5903 35.9914 4.7330 IR Inten -- 24.9681 2.9774 0.2943 IR Inten -- 152.5996 34.8158 27.0841 IR Inten -- 91.8387 34.8784 22.9601 IR Inten -- 20.5559 9.8851 0.2836 IR Inten -- 12.1826 2.5422 24.0651 IR Inten -- 4.9755 13.7049 3.0992 IR Inten -- 44.4248 10.3247 3.1516 IR Inten -- 448.3829 7.0010 336.3126 IR Inten -- 42.4203 22.9425 104.2627 IR Inten -- 196.4752 31.9996 27.6938 IR Inten -- 1186.8852 28.4051 58.9127 IR Inten -- 156.2663 20.0229 1.0240 IR Inten -- 164.7802 2.2553 57.3035 IR Inten -- 16.5397 20.0694 30.6570 IR Inten -- 207.3663 583.5731 156.1006 IR Inten -- 955.3034 1433.0058 0.8150 IR Inten -- 17.9848 8.6749 7.0068 IR Inten -- 11.8827 12.9463 1.1373 IR Inten -- 0.9183 365.4582 279.5671

Lumichrome N-oxide triplet excited state (3LCO*) in gas phase

S2 = 2.0153 Point group: C01

Thermal correction to Energy= 0.232037 Thermal correction to Enthalpy= 0.232982 Thermal correction to Gibbs Free Energy= 0.174449

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = = -907.409407026

303 6 3.760555000 -1.040561000 -0.001727000 6 1.305734000 -0.894189000 -0.001302000 6 1.371968000 0.530134000 0.001840000 6 2.670193000 1.226782000 0.001394000 6 -1.010396000 0.512109000 -0.006409000 6 -0.962978000 -0.903650000 -0.001464000 6 -2.197678000 -1.591313000 0.003302000 1 -2.162531000 -2.676637000 0.007986000 6 -3.406627000 -0.922557000 0.003667000 6 -3.427147000 0.511162000 -0.005607000 6 -2.232648000 1.205300000 -0.015459000 1 -2.215496000 2.291730000 -0.022656000 8 4.784075000 -1.702248000 -0.004886000 8 2.861724000 2.430263000 -0.002710000 7 2.498403000 -1.593826000 -0.004571000 7 3.758877000 0.347162000 0.005163000 7 0.202584000 -1.608018000 0.000861000 1 4.674942000 0.787109000 0.000950000 1 2.439334000 -2.609391000 -0.009604000 6 -4.697788000 -1.697078000 0.010573000 1 -5.308345000 -1.449481000 0.888138000 1 -5.308050000 -1.465772000 -0.871501000 1 -4.512667000 -2.774565000 0.020643000 6 -4.737109000 1.253825000 -0.008634000 1 -5.344358000 0.997291000 -0.886193000 1 -5.341423000 1.008991000 0.874119000 1 -4.574182000 2.334813000 -0.016432000 8 0.159586000 2.491530000 0.019012000 7 0.196312000 1.234648000 0.004571000

Frequencies -- 51.5930 55.1170 96.5564 Frequencies -- 135.3735 139.9033 148.0581 Frequencies -- 165.2575 194.4236 210.2815 Frequencies -- 271.6585 291.2132 297.6276 Frequencies -- 306.0577 326.2558 381.4933 Frequencies -- 387.3981 404.6667 424.1591 Frequencies -- 457.8883 521.6191 539.9950 Frequencies -- 565.4643 582.7408 618.1360 Frequencies -- 625.1607 642.7470 645.0903 Frequencies -- 656.6069 684.3478 694.2965 Frequencies -- 725.8986 743.5759 745.0118 Frequencies -- 780.2788 799.6703 809.1007 Frequencies -- 895.0258 903.9928 923.4143 Frequencies -- 1031.3642 1044.6973 1053.7091 Frequencies -- 1062.8969 1083.6808 1120.9392

304 Frequencies -- 1159.4824 1212.1121 1238.3496 Frequencies -- 1246.9314 1284.8855 1297.8480 Frequencies -- 1316.7309 1399.0527 1409.7621 Frequencies -- 1417.9893 1428.4974 1441.4209 Frequencies -- 1449.4712 1463.0092 1492.7014 Frequencies -- 1498.8560 1501.1815 1513.8545 Frequencies -- 1517.1782 1523.7182 1541.9521 Frequencies -- 1595.6193 1622.4347 1682.1009 Frequencies -- 1781.2017 1819.0524 3044.4880 Frequencies -- 3047.6248 3093.4485 3097.5975 Frequencies -- 3140.5519 3142.1935 3175.2296 Frequencies -- 3211.5913 3529.3308 3558.9497

IR Inten -- 0.3872 0.0905 1.8818 IR Inten -- 3.0827 0.0748 0.2303 IR Inten -- 2.8152 0.0339 4.1134 IR Inten -- 5.2911 7.7405 1.2378 IR Inten -- 0.6208 2.3331 6.1483 IR Inten -- 6.4174 43.9893 13.4135 IR Inten -- 1.7283 21.4342 31.1927 IR Inten -- 5.4959 29.3591 79.1626 IR Inten -- 51.0246 19.3819 162.0092 IR Inten -- 3.8679 0.5225 7.2570 IR Inten -- 72.7986 6.2586 3.6609 IR Inten -- 21.6728 5.5459 0.6161 IR Inten -- 26.6062 4.9057 8.1850 IR Inten -- 42.3849 3.4973 3.4922 IR Inten -- 14.7218 0.0166 37.4159 IR Inten -- 12.2256 26.1678 189.6220 IR Inten -- 113.9665 12.9905 37.4883 IR Inten -- 38.9146 14.6491 99.4551 IR Inten -- 648.2843 66.0232 2.4636 IR Inten -- 2.0489 192.6121 156.3815 IR Inten -- 43.2033 0.2561 153.0522 IR Inten -- 20.8522 153.4966 186.0518 IR Inten -- 679.0699 433.4536 5.6058 IR Inten -- 764.4108 1206.7055 11.3219 IR Inten -- 22.1278 12.3762 11.8586 IR Inten -- 25.6339 3.6094 109.7860 IR Inten -- 0.2594 321.7203 248.0355

Excited State 1: ?Spin -?Sym 1.7011 eV 728.85 nm f=0.0046 Excited State 2: ?Spin -?Sym 1.9221 eV 645.04 nm f=0.0008 Excited State 3: ?Spin -?Sym 2.0782 eV 596.59 nm f=0.0036 Excited State 4: ?Spin -?Sym 2.3059 eV 537.67 nm f=0.0036

305 Excited State 5: ?Spin -?Sym 2.4435 eV 507.41 nm f=0.0219 Excited State 6: ?Spin -?Sym 2.4588 eV 504.25 nm f=0.0076 Excited State 7: ?Spin -?Sym 2.5110 eV 493.76 nm f=0.0052 Excited State 8: ?Spin -?Sym 2.6168 eV 473.81 nm f=0.0039 Excited State 9: ?Spin -?Sym 2.6975 eV 459.63 nm f=0.0129 Excited State 10: ?Spin -?Sym 2.7229 eV 455.34 nm f=0.0024

Lumichrome N-oxide ground state (LCO) in acetonitrile

Point group: C01

Thermal correction to Energy= 0.232547 Thermal correction to Enthalpy= 0.233491 Thermal correction to Gibbs Free Energy= 0.174861

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -907.987289245

6 -3.766111000 -1.045704000 0.051354000 6 -1.304030000 -0.887873000 -0.046600000 6 -1.374208000 0.538167000 -0.039337000 6 -2.678371000 1.233766000 -0.018029000 6 1.008785000 0.508410000 0.004610000 6 0.962496000 -0.903936000 -0.041657000 6 2.198572000 -1.590526000 -0.046092000 1 2.160960000 -2.674798000 -0.081450000 6 3.407855000 -0.922578000 -0.002853000 6 3.428473000 0.509567000 0.053234000 6 2.230035000 1.199402000 0.058588000 1 2.200677000 2.281930000 0.091613000 8 -4.778928000 -1.717401000 0.101493000 8 -2.874658000 2.432381000 -0.051782000 7 -2.496122000 -1.589491000 -0.034009000

306 7 -3.763171000 0.343250000 0.073809000 7 -0.204026000 -1.607204000 -0.069519000 1 -4.675530000 0.779874000 0.120911000 1 -2.428691000 -2.599967000 -0.025279000 6 4.699163000 -1.701724000 -0.013332000 1 5.312079000 -1.450741000 -0.893216000 1 5.310613000 -1.478185000 0.873955000 1 4.506797000 -2.781164000 -0.031439000 6 4.741140000 1.253839000 0.092464000 1 5.378746000 0.919865000 0.925221000 1 5.318186000 1.093949000 -0.833638000 1 4.577630000 2.331628000 0.199484000 8 -0.141789000 2.497611000 -0.073634000 7 -0.196860000 1.243733000 -0.037265000

Frequencies -- 52.7953 56.5544 95.0140 Frequencies -- 130.5124 138.6792 144.3561 Frequencies -- 163.1019 190.0714 209.7514 Frequencies -- 268.2247 289.0336 293.0653 Frequencies -- 305.1705 323.3448 379.7314 Frequencies -- 388.0881 401.2257 422.2787 Frequencies -- 462.3740 520.3167 538.4559 Frequencies -- 565.1316 596.3372 617.4083 Frequencies -- 627.9766 638.7463 654.1264 Frequencies -- 661.9869 683.4436 694.6587 Frequencies -- 732.9190 744.0075 745.1899 Frequencies -- 775.1964 797.4067 806.5804 Frequencies -- 902.4754 915.5727 920.3505 Frequencies -- 1027.2568 1038.3824 1049.7284 Frequencies -- 1065.5463 1084.0195 1111.0338 Frequencies -- 1155.5091 1204.3400 1233.3983 Frequencies -- 1238.7166 1281.1682 1290.6459 Frequencies -- 1311.3217 1392.2529 1405.5526 Frequencies -- 1414.8023 1424.0313 1442.2655 Frequencies -- 1453.3688 1472.2120 1492.4866 Frequencies -- 1502.7019 1505.5110 1515.5552 Frequencies -- 1522.1306 1526.1297 1544.3343 Frequencies -- 1600.5830 1624.3124 1682.7762 Frequencies -- 1806.6514 1846.4463 3042.0902 Frequencies -- 3045.7856 3090.0056 3094.5190 Frequencies -- 3137.5610 3139.2275 3212.4678 Frequencies -- 3243.5010 3608.1386 3618.5749

IR Inten -- 0.2444 0.0011 0.4610 IR Inten -- 2.2166 0.0075 0.0288

307 IR Inten -- 1.2877 0.0641 1.2313 IR Inten -- 2.1503 2.1429 0.7017 IR Inten -- 0.0815 2.5850 1.6283 IR Inten -- 3.3711 30.4765 9.6099 IR Inten -- 0.8687 12.2835 14.2793 IR Inten -- 1.7519 9.4646 41.2991 IR Inten -- 16.9925 0.4525 1.5291 IR Inten -- 118.7356 0.7522 6.0955 IR Inten -- 75.1468 11.3845 4.3230 IR Inten -- 9.8267 3.1369 0.3094 IR Inten -- 16.7682 2.4943 2.2524 IR Inten -- 26.1971 4.6929 0.1688 IR Inten -- 8.2026 0.0005 18.3317 IR Inten -- 1.5730 2.3286 130.7304 IR Inten -- 5.3433 3.7050 20.2554 IR Inten -- 23.9354 3.4709 17.0369 IR Inten -- 391.1906 34.3246 3.2398 IR Inten -- 0.1417 83.4081 101.2573 IR Inten -- 11.8455 0.0027 117.1345 IR Inten -- 17.9496 31.4848 98.8670 IR Inten -- 471.6902 245.3199 1.3831 IR Inten -- 349.3237 906.1604 16.4653 IR Inten -- 38.2825 14.0299 16.2203 IR Inten -- 23.4222 4.4509 5.0012 IR Inten -- 3.1597 103.8322 83.3988

Lumichrome N-oxide triplet excited state (3LCO*) in acetonitrile

S2 = 2.0162 Point group: C01

Thermal correction to Energy= 0.229484 Thermal correction to Enthalpy= 0.230428 Thermal correction to Gibbs Free Energy= 0.168185

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -907.935598143

308

Frequencies -- 20.4179 36.7019 93.9543 Frequencies -- 119.4697 135.6529 147.2235 Frequencies -- 162.3380 166.3942 194.7672 Frequencies -- 200.3067 275.7551 283.1428 Frequencies -- 287.1145 317.7589 334.2521 Frequencies -- 363.2918 401.2106 407.2963 Frequencies -- 421.3593 454.8458 515.6277 Frequencies -- 532.4578 553.5739 592.2344 Frequencies -- 608.5314 616.8137 635.2921 Frequencies -- 639.3362 650.8476 660.8854 Frequencies -- 703.7844 722.6089 738.5130 Frequencies -- 740.1062 789.5654 796.0075 Frequencies -- 897.8862 905.4785 918.2918 Frequencies -- 1022.3684 1038.0270 1043.0505 Frequencies -- 1051.3702 1083.0708 1104.1907 Frequencies -- 1138.6337 1195.4652 1208.9888 Frequencies -- 1244.1568 1256.8016 1269.9595 Frequencies -- 1315.0095 1328.8707 1387.1855 Frequencies -- 1391.2059 1411.7206 1425.9148 Frequencies -- 1432.1314 1442.2650 1449.8694 Frequencies -- 1497.8754 1499.1738 1508.8866 Frequencies -- 1515.7816 1519.1570 1525.3736 Frequencies -- 1566.2389 1587.1952 1623.9687 Frequencies -- 1754.6403 1813.4479 3040.3097 Frequencies -- 3046.0303 3086.5379 3096.7205 Frequencies -- 3137.5454 3140.4719 3148.1367 Frequencies -- 3210.7991 3518.8814 3561.9918

IR Inten -- 1.3608 1.3544 1.4713 IR Inten -- 2.3205 3.0841 2.1378 IR Inten -- 5.2516 0.9571 0.5782 IR Inten -- 1.2035 0.0920 4.5368 IR Inten -- 1.8359 0.8798 2.2653 IR Inten -- 11.2463 37.0031 10.6868 IR Inten -- 14.0171 1.6933 4.0014 IR Inten -- 14.3872 29.0896 38.3369 IR Inten -- 68.4622 83.2508 58.1459 IR Inten -- 51.4356 2.8500 30.5549 IR Inten -- 40.6653 14.9043 29.8535 IR Inten -- 0.3752 24.3216 10.3649 IR Inten -- 12.2935 26.5635 7.4710 IR Inten -- 36.1438 25.7684 6.5018 IR Inten -- 11.0632 2.3358 43.6398 IR Inten -- 114.6190 4.1612 59.8431

309 IR Inten -- 27.9872 251.6473 40.9871 IR Inten -- 2.6147 60.3251 7.9004 IR Inten -- 14.7019 68.9039 276.2523 IR Inten -- 18.6351 75.7959 0.4781 IR Inten -- 151.6146 3.5945 48.3163 IR Inten -- 19.6879 257.7079 59.3135 IR Inten -- 163.6940 101.3301 406.8160 IR Inten -- 837.6372 1458.4933 2.8639 IR Inten -- 21.6422 13.0221 10.1083 IR Inten -- 28.8888 156.8918 2.6828 IR Inten -- 0.0021 384.1700 257.8766

Lumichrome di-N-oxide ground state (LCO2) in gas phase

Point group: C01

Thermal correction to Energy= 0.237266 Thermal correction to Enthalpy= 0.238210 Thermal correction to Gibbs Free Energy= 0.177632

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -983.141969774

Frequencies -- 47.6828 59.9222 92.3302 Frequencies -- 128.5721 139.9384 142.5793 Frequencies -- 150.1720 160.8717 191.9992 Frequencies -- 248.1431 267.4729 268.2322 Frequencies -- 288.0824 320.0227 362.4849 Frequencies -- 363.1355 386.5732 403.8860 Frequencies -- 422.8825 425.8650 462.7911 Frequencies -- 497.2918 534.6772 548.4245 Frequencies -- 571.5113 617.5279 637.3528 Frequencies -- 642.7602 644.1734 667.9923 Frequencies -- 669.1730 685.0506 713.7885 Frequencies -- 733.8576 749.2390 751.9093 Frequencies -- 772.0462 832.6101 902.0675

310 Frequencies -- 908.7333 918.5444 1015.1060 Frequencies -- 1032.5948 1048.3307 1065.7601 Frequencies -- 1084.0708 1098.5613 1121.9683 Frequencies -- 1193.4892 1200.3706 1231.0028 Frequencies -- 1249.6720 1262.5362 1280.7398 Frequencies -- 1374.2383 1384.5991 1394.4784 Frequencies -- 1422.9551 1424.9282 1439.3858 Frequencies -- 1447.9525 1453.8091 1496.5151 Frequencies -- 1505.2270 1506.0178 1521.8030 Frequencies -- 1524.9434 1532.3896 1562.3467 Frequencies -- 1596.9688 1649.3280 1674.3910 Frequencies -- 1813.3767 1851.0773 3044.7272 Frequencies -- 3047.0949 3093.7234 3095.7855 Frequencies -- 3140.9586 3143.1031 3244.7769 Frequencies -- 3247.4144 3540.1807 3605.3104

IR Inten -- 0.7599 0.0004 0.0574 IR Inten -- 4.9191 0.1781 0.3617 IR Inten -- 1.2830 0.8616 1.4188 IR Inten -- 0.6262 3.1259 1.6719 IR Inten -- 2.2550 1.2484 1.8657 IR Inten -- 4.8956 2.9874 16.4728 IR Inten -- 0.0676 41.8876 2.1175 IR Inten -- 2.8485 6.0721 7.1075 IR Inten -- 1.2927 22.6882 6.5296 IR Inten -- 0.1173 1.2511 1.4218 IR Inten -- 8.8078 117.5098 5.1938 IR Inten -- 97.0869 8.6878 4.0646 IR Inten -- 12.7091 0.3650 9.4216 IR Inten -- 16.6411 1.3130 13.9013 IR Inten -- 12.5141 2.5187 9.0064 IR Inten -- 0.0006 14.2648 15.1033 IR Inten -- 41.3150 9.2773 160.4310 IR Inten -- 18.5891 34.1741 3.8468 IR Inten -- 7.0813 96.5576 294.4436 IR Inten -- 15.7295 39.4668 64.0664 IR Inten -- 84.5148 1.6327 36.7053 IR Inten -- 0.0141 113.4368 18.9804 IR Inten -- 14.1259 28.5836 4.7297 IR Inten -- 635.7831 11.1770 20.9398 IR Inten -- 335.6122 966.4908 8.2648 IR Inten -- 38.3354 12.2218 14.8798 IR Inten -- 18.2496 6.1981 2.1350 IR Inten -- 3.4126 96.5580 106.5531

311

3 Lumichrome di-N-oxide triplet excited state ( LCO2*) in gas phase

S2 = 2.0103 Point group: C01

Thermal correction to Energy= 0.234802 Thermal correction to Enthalpy= 0.235746 hermal correction to Gibbs Free Energy= 0.174850

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -983.093925524

6 -3.806477000 -0.872457000 0.000280000 6 -1.386290000 -0.663982000 -0.000811000 6 -1.395931000 0.706035000 -0.000466000 6 -2.688486000 1.404284000 0.002370000 6 1.060093000 0.673014000 -0.000418000 6 1.049323000 -0.731425000 -0.000127000 6 2.240097000 -1.447189000 0.000851000 6 3.473749000 -0.784642000 0.001273000 6 3.492208000 0.626223000 0.000752000 6 2.283887000 1.335705000 0.000007000 8 -4.810055000 -1.555640000 0.000023000 8 -2.891208000 2.602142000 0.005480000 7 -2.521339000 -1.415073000 -0.000253000 7 -3.788964000 0.509630000 0.001189000 7 -0.197409000 -1.410038000 -0.001558000 6 4.754311000 -1.583044000 0.002046000 6 4.797589000 1.382771000 0.000865000 7 -0.153140000 1.403758000 -0.002170000 8 -0.269899000 -2.691659000 -0.002315000 8 -0.116316000 2.685744000 -0.007161000 1 2.187456000 -2.529783000 0.000940000 1 2.271594000 2.418897000 -0.000560000 1 -2.409370000 -2.424154000 -0.000960000 1 -4.696935000 0.960793000 0.002623000 1 5.371405000 -1.358601000 -0.877370000 1 5.368841000 -1.360920000 0.883869000 1 4.549528000 -2.657246000 0.000326000 1 5.403715000 1.138813000 0.882750000

312 1 5.406135000 1.134889000 -0.878237000 1 4.628982000 2.462913000 -0.001780000

Frequencies -- -3.8009 49.0743 82.0050 Frequencies -- 117.8786 127.0589 128.5940 Frequencies -- 153.6131 156.6431 165.8024 Frequencies -- 215.8172 233.3729 264.6800 Frequencies -- 280.5764 314.0099 319.8385 Frequencies -- 356.8526 361.0886 380.2669 Frequencies -- 404.6729 409.1608 425.9458 Frequencies -- 471.7845 475.9765 535.1929 Frequencies -- 552.8529 570.0253 608.8973 Frequencies -- 611.7803 631.6730 632.0190 Frequencies -- 662.9055 674.5165 688.4395 Frequencies -- 718.0090 738.8577 745.4542 Frequencies -- 768.5008 815.0329 892.6901 Frequencies -- 904.2444 908.6239 1019.2005 Frequencies -- 1031.6528 1042.9664 1058.8515 Frequencies -- 1075.4854 1082.3406 1113.1268 Frequencies -- 1184.9631 1198.5421 1217.4477 Frequencies -- 1248.3885 1273.6828 1280.9787 Frequencies -- 1309.3891 1372.9438 1398.0857 Frequencies -- 1404.4843 1415.5022 1421.7099 Frequencies -- 1443.2915 1454.2904 1459.3328 Frequencies -- 1506.6865 1519.2452 1522.5251 Frequencies -- 1522.9426 1530.2214 1539.6159 Frequencies -- 1625.5850 1640.0987 1673.9763 Frequencies -- 1798.7147 1851.1294 3042.0653 Frequencies -- 3042.9328 3089.1469 3091.2535 Frequencies -- 3134.7453 3139.1316 3236.0063 Frequencies -- 3243.7909 3579.4713 3605.8877

IR Inten -- 0.5536 0.1451 0.1049 IR Inten -- 3.3139 1.0477 1.0476 IR Inten -- 0.0043 1.7112 0.8054 IR Inten -- 0.5039 1.2867 2.2537 IR Inten -- 1.5796 0.5625 0.5234 IR Inten -- 0.8151 2.0142 10.7097 IR Inten -- 16.8116 1.5262 39.5425 IR Inten -- 0.8526 2.2032 3.0281 IR Inten -- 5.6868 9.0685 0.0506 IR Inten -- 22.1644 18.7381 3.6689 IR Inten -- 0.6508 96.6385 0.1596 IR Inten -- 56.1687 50.8450 6.3564 IR Inten -- 2.0590 3.8176 0.0928

313 IR Inten -- 19.4184 3.1601 23.1083 IR Inten -- 4.5771 0.2476 8.0853 IR Inten -- 5.0840 0.0008 19.4864 IR Inten -- 22.6738 7.2506 11.1239 IR Inten -- 3.8621 4.6927 0.8071 IR Inten -- 40.3637 7.9063 75.7000 IR Inten -- 44.0673 55.2793 15.6112 IR Inten -- 2.3592 0.3409 9.5838 IR Inten -- 0.0276 80.3304 17.2386 IR Inten -- 7.0097 403.0179 11.2186 IR Inten -- 43.6976 57.4508 45.0206 IR Inten -- 402.2175 947.5053 16.4254 IR Inten -- 41.0528 30.3697 0.7668 IR Inten -- 17.2340 10.1543 0.2561 IR Inten -- 0.4305 116.9522 96.5987

Excited State 1: ?Spin -?Sym 1.4125 eV 877.74 nm f=0.0000 Excited State 2: ?Spin -?Sym 1.6130 eV 768.67 nm f=0.0010 Excited State 3: ?Spin -?Sym 2.0320 eV 610.15 nm f=0.0069 Excited State 4: ?Spin -?Sym 2.1768 eV 569.57 nm f=0.0138 Excited State 5: ?Spin -?Sym 2.2196 eV 558.59 nm f=0.0000 Excited State 6: ?Spin -?Sym 2.4255 eV 511.17 nm f=0.0519 Excited State 7: ?Spin -?Sym 2.5377 eV 488.57 nm f=0.0000 Excited State 8: ?Spin -?Sym 2.8874 eV 429.39 nm f=0.0012 Excited State 9: ?Spin -?Sym 3.0830 eV 402.16 nm f=0.0671 Excited State 10: ?Spin -?Sym 3.3522 eV 369.86 nm f=0.0000

Lumichrome di-N-oxide ground state (LCO2) in acetonitrile

Point group: C01

Thermal correction to Energy= 0.235986 Thermal correction to Enthalpy= 0.236931 Thermal correction to Gibbs Free Energy= 0.178184

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -983.155476903

314

Frequencies -- -94.7950 56.0564 72.9194 Frequencies -- 121.1242 133.0224 141.9886 Frequencies -- 155.5344 157.0324 191.5538 Frequencies -- 228.4083 265.1107 269.7980 Frequencies -- 288.5243 319.7996 353.2862 Frequencies -- 369.6877 385.7936 400.1877 Frequencies -- 420.7836 425.5871 465.0930 Frequencies -- 498.3397 541.4590 548.2917 Frequencies -- 571.8276 605.1286 616.0407 Frequencies -- 634.8769 644.8238 656.0083 Frequencies -- 668.6321 670.2517 724.7810 Frequencies -- 731.7629 750.3704 754.5356 Frequencies -- 771.4542 842.0948 899.3769 Frequencies -- 903.2463 913.9472 1018.3675 Frequencies -- 1032.6031 1044.9991 1053.6720 Frequencies -- 1077.1027 1110.9219 1123.6113 Frequencies -- 1192.2256 1198.9858 1225.9996 Frequencies -- 1251.6274 1261.4991 1279.7950 Frequencies -- 1374.5659 1380.8317 1390.5638 Frequencies -- 1422.3832 1425.1675 1438.2958 Frequencies -- 1444.7102 1449.4899 1494.0586 Frequencies -- 1500.3835 1505.5906 1515.8930 Frequencies -- 1520.4022 1530.2134 1562.0403 Frequencies -- 1586.8748 1649.3712 1688.0122 Frequencies -- 1806.7492 1837.7006 3047.5430 Frequencies -- 3049.5337 3097.7582 3100.0929 Frequencies -- 3142.9824 3144.9958 3243.8032 Frequencies -- 3246.5585 3521.9494 3586.1308

IR Inten -- 0.6393 0.2970 0.3049 IR Inten -- 0.3192 8.8058 0.4364 IR Inten -- 0.7129 1.2429 1.7512 IR Inten -- 2.4020 5.1245 4.6734 IR Inten -- 3.9006 1.8170 1.5451 IR Inten -- 9.0432 6.9376 25.8272 IR Inten -- 63.6332 12.4292 2.9760 IR Inten -- 4.3786 15.5209 16.8568 IR Inten -- 1.5154 38.6526 34.3836 IR Inten -- 174.6721 6.0108 40.7887 IR Inten -- 3.1305 2.5569 53.3973 IR Inten -- 18.2821 17.6171 5.1577 IR Inten -- 26.8309 1.5232 19.2935 IR Inten -- 21.8830 2.3807 26.9267 IR Inten -- 28.8039 2.1641 17.0958

315 IR Inten -- 0.9927 44.3304 24.8027 IR Inten -- 128.5409 1.6013 315.7858 IR Inten -- 49.6111 49.9089 7.5422 IR Inten -- 10.5809 612.4872 153.7064 IR Inten -- 100.5342 23.3392 126.9078 IR Inten -- 163.9704 3.0178 37.8361 IR Inten -- 0.0095 222.1755 22.1675 IR Inten -- 34.2439 49.6297 5.1294 IR Inten -- 1047.5283 18.2216 27.6735 IR Inten -- 761.0740 1253.8527 5.8797 IR Inten -- 15.1587 8.6835 8.2733 IR Inten -- 18.4016 5.9573 10.7673 IR Inten -- 5.8999 240.0953 263.4609

3 Lumichrome di-N-oxide triplet excited state ( LCO2*) in acetonitrile

S2 = 2.0103 Point group: C01

Thermal correction to Energy= 0.235760

Thermal correction to Enthalpy= 0.236704 Thermal correction to Gibbs Free Energy= 0.178002

B3LYP/6-31+G**//B3LYP/6-31G* E (RB+HF-LYP) = -982.544384677

6 -3.759677000 -0.863996000 0.001311000 6 -1.337580000 -0.696046000 -0.003060000 6 -1.349842000 0.712374000 -0.002589000 6 -2.655444000 1.406089000 0.003965000 6 1.025139000 0.667059000 -0.004670000 6 1.006081000 -0.742496000 -0.003013000 6 2.214376000 -1.455115000 0.001540000 6 3.426372000 -0.787524000 0.003223000 6 3.448910000 0.643922000 0.000345000 6 2.256639000 1.343442000 -0.003961000

316 8 -4.782537000 -1.522002000 0.002298000 8 -2.839241000 2.608248000 0.009880000 7 -2.496279000 -1.420371000 -0.002138000 7 -3.745381000 0.525576000 0.003871000 7 -0.202864000 -1.427480000 -0.004218000 6 4.714021000 -1.566092000 0.008037000 6 4.760251000 1.383765000 0.001763000 7 -0.170735000 1.406818000 -0.005404000 8 -0.266876000 -2.721156000 -0.004866000 8 -0.117723000 2.670053000 -0.007823000 1 2.159711000 -2.537350000 0.003721000 1 2.237116000 2.426726000 -0.005556000 1 -2.378940000 -2.432858000 -0.002128000 1 -4.659642000 0.970606000 0.010825000 1 5.328110000 -1.326864000 -0.869192000 1 5.320638000 -1.328416000 0.890901000 1 4.525256000 -2.642693000 0.006506000 1 5.360675000 1.134307000 0.885628000 1 5.367412000 1.125879000 -0.875023000 1 4.602000000 2.465421000 -0.003729000

Frequencies -- -413.7825 70.4860 70.9629 Frequencies -- 88.5442 134.4876 145.9021 Frequencies -- 150.0551 163.4205 189.7273 Frequencies -- 264.9952 267.8072 273.5418 Frequencies -- 290.6597 309.4740 355.7298 Frequencies -- 366.2056 387.8247 403.7852 Frequencies -- 425.8439 431.4849 457.3759 Frequencies -- 494.9968 507.5929 548.1844 Frequencies -- 585.9553 607.5676 617.3464 Frequencies -- 634.6403 645.6505 659.1049 Frequencies -- 672.7657 681.6034 706.0267 Frequencies -- 726.9292 751.6211 753.3057 Frequencies -- 771.9976 827.3419 898.2457 Frequencies -- 906.2646 920.5930 1020.0365 Frequencies -- 1035.0823 1050.8545 1063.4164 Frequencies -- 1074.7092 1086.5061 1125.4429 Frequencies -- 1192.3087 1203.2308 1235.7098 Frequencies -- 1250.6426 1261.8559 1279.3741 Frequencies -- 1375.0184 1382.4239 1388.3804 Frequencies -- 1425.9707 1430.8170 1436.1279 Frequencies -- 1442.9641 1450.5454 1488.8301 Frequencies -- 1500.0937 1506.2486 1516.2939 Frequencies -- 1519.8566 1521.6795 1565.8370 Frequencies -- 1592.9740 1652.0209 1673.1237

317 Frequencies -- 1791.6629 1824.8498 3047.5367 Frequencies -- 3049.3976 3098.3512 3099.6238 Frequencies -- 3142.7972 3144.9667 3238.0084 Frequencies -- 3239.6564 3507.8655 3551.7418

IR Inten -- 3.5443 0.1269 2.4586 IR Inten -- 0.0790 10.7221 0.0894 IR Inten -- 1.3808 1.2092 0.6370 IR Inten -- 1.8149 3.9341 8.8317 IR Inten -- 3.1103 0.6323 6.2118 IR Inten -- 8.8093 12.5489 30.5574 IR Inten -- 63.4832 9.6330 6.2485 IR Inten -- 2.9436 1.8079 26.2389 IR Inten -- 1.6473 38.1226 54.6008 IR Inten -- 12.9534 11.3760 168.3499 IR Inten -- 2.0400 8.6125 9.6896 IR Inten -- 75.9542 33.3971 4.4993 IR Inten -- 10.5675 5.9286 11.6174 IR Inten -- 11.0282 18.7154 22.8979 IR Inten -- 23.9044 2.5017 16.9501 IR Inten -- 68.7049 0.3291 20.1039 IR Inten -- 40.0997 60.4774 198.9951 IR Inten -- 74.1044 87.9304 61.2338 IR Inten -- 437.4336 276.7432 36.4675 IR Inten -- 166.4712 65.9902 107.1292 IR Inten -- 27.8293 2.8791 45.2750 IR Inten -- 0.0301 287.4579 21.9801 IR Inten -- 73.2510 11.5977 9.3232 IR Inten -- 1008.9097 30.5919 32.2811 IR Inten -- 730.8334 1314.9643 3.7212 IR Inten -- 18.0508 10.0479 8.7013 IR Inten -- 18.2180 6.6170 42.7355 IR Inten -- 4.1214 247.2730 264.8843

318

APPENDIX D

SUPPORTING INFORMATION FOR CHAPTER 6

Supporting Information includes the structures of RBTA, RBTB, pyridine N- oxide and isoquinoline N-oxide. The UV-vis spectra of lumichrome N-oxide and lumichrome di N-oxide in various solvents and the fluorescence data of LCO and LCO2 and the standards used to determine the quantum yield are also included. The transient

UV-vis absorption spectra produced upon 355 nm LFP of RBTA and RBTB in acetonitrile. H- NMR and C-NMR of lumichrome, lumichrome N-oxide and lumichrome di N-oxide can also be found in this section.

319

O

N

O N

PNO IQNO

RBTA

Figure D.1. Structures of riboflavin tetraacetate (RBTA), riboflavin tetrabenzoate

(RBTB), pyridine N-oxide (PNO) and isoquinoline N-oxide (IQNO).

320 acetonitrile 3.0 water methanol 2.5 1, 2 dichloroethane

2.0

1.5 Absorbance

1.0

0.5

200 300 400 500 600 Wavelength, nm

Figure D.2. Absorption spectra of LCO in acetonitrile, methanol, water and 1,2 dichloroethane.

3.0 UV-Vis spectra of LCO2 in acetonitrile 2.5 1,2 dichloroethane methanol 2.0 water

1.5 Absorbance Absorbance

1.0

0.5

200 300 400 500 600 Wavelength, nm

Figure D.3. Absorption spectra of LCO2 in acetonitrile, methanol, 1,2 dichloroethane and water.

321 60 0.0056 50 0.0085 0.0105 0.0134 40 0.0171

6

x10 30

20

10

0 450 500 550 600 650

Figure D.4. Fluorescence spectra of LCO in acetonitrile.

λ LCO in acetonitrile ex at 390 nm 5 integration from 405 to 650 nm

a= 3.6704e+06 ± 1.78e+08 b= 3.2486e+11 ± 1.52e+10 4

9 x1 0

3

2

6 8 10 12 14 16 -3 x1 0

Figure D.5. Fluorescence intensities of LCO versus absorbance at 390 nm in acetonitrile.

322 0.0213 40 0.0188 0.0118 0.0101 30 0.0070

6 0.0047 x10 20

10

0 500 550 600 650 700 750 nm

Figure D.6. Fluorescence spectra of LCO2 in acetonitrile.

λ LCO2 in acetonitrile ex at 475 nm 4 integration from 500 to 750 nm

a = -5.2466e+08 ± 2.49e+08 b = 2.4301e+11 ± 1.82e+10 3

9 x1 0 2

1

6 8 10 12 14 16 18 20 -3 x10

Figure D.7. Fluorescence intensities of LCO2 versus absorbance at 475 nm in acetonitrile.

323

290

380 0.1

0.0

-0.1 Upon 355 nm LFP (under argon) RBTB in CH3CN (a = 0.24) RBTA inCH3CN (a = 0.5)

-0.2 300 350 400 450 500 nm

Figure D.8. Transient absorption spectra produced upon 355 nm LFP of ___ RBTA and ___

RBTB in acetonitrile.

324 8.579 8.571 7.913 7.807 7.803 7.800 7.792 7.788 7.785 7.777 7.773 7.769 7.706 7.400 7.397 7.391 7.388 7.385 7.382 7.376 7.373 3.365 3.329 2.507 2.503 2.500 2.496 2.493 2.486 2.462

LC

Current Data Parameters NAME LC EXPNO 1 PROCNO 1

F2 - Acquisition Parameters Date_ 20060219 Time 16.13 INSTRUM spect PROBHD 5 mm Multinucl PULPROG zg30 TD 65536 SOLVENT DMSO NS 48 DS 2 SWH 10330.578 Hz FIDRES 0.157632 Hz AQ 3.1719923 sec RG 256 DW 48.400 usec DE 6.00 usec TE 300.2 K D1 1.00000000 sec MCREST 0.00000000 sec 7.80 ppm 7.40 7.38 ppm 2.52 2.50 2.48 ppm MCWRK 0.01500000 sec ======CHANNEL f1 ======NUC1 1H P1 14.80 usec PL1 -1.00 dB SFO1 500.0230878 MHz

F2 - Processing parameters SI 32768 SF 500.0200036 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.40

14 13 12 11 10 9 8 7 6 5 4 3 2 1 ppm 3.21 3.34 1.00 0.98 6.04 1.01 2.33 1.01 4.98

Figure D.9. H-NMR spectrum of lumichrome in DMSO.

325 8.193 8.004 3.304 2.763 2.635 2.532 2.500 2.473 2.361 1.908 0.000

LCO 8.188 8.000 3.343 2.530 2.507 2.503 2.500 2.496 2.493 2.471

Current Data Parameters NAME LCO EXPNO 1 PROCNO 1 F2 - Acquisition Parameters Date_ 20050812 Time 9.14 INSTRUM spect PROBHD 5 mm Multinucl PULPROG zg30 TD 65536 SOLVENT DMSO NS 229 DS 2 SWH 10330.578 Hz FIDRES 0.157632 Hz AQ 3.1719923 sec RG 1149.4 DW 48.400 usec DE 6.00 usec TE 300.2 K D1 3.00000000 sec 2.8 2.6 2.4 ppm MCREST 0.00000000 sec MCWRK 0.01500000 sec ======CHANNEL f1 ======NUC1 1H Current Data Parameters P1 14.80 usec LCO PL1 -1.00 dB NAME LCO SFO1 500.0230878 MHz EXPNO 1 F2 - Processing parameters PROCNO 1 SI 32768 SF 500.0200033 MHz WDW EM SSB 0 F2 - Acquisition Parameters LB 0.30 Hz Date_ 20060218 GB 0 PC 1.00 Time 19.54 INSTRUM spect PROBHD 5 mm Multinucl PULPROG zg30 TD 65536 SOLVENT DMSO 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm NS 108 DS 2 SWH 10330.578 Hz 1.00 0.95 0.99 0.95 7.29 3.33 2.84

19.08 FIDRES 0.157632 Hz AQ 3.1719923 sec RG 1024 DW 48.400 usec DE 6.00 usec TE 300.2 K D1 1.00000000 sec MCREST 0.00000000 sec MCWRK 0.01500000 sec ======CHANNEL f1 ======NUC1 1H P1 14.80 usec PL1 -1.00 dB SFO1 500.0230878 MHz

2.55 2.50 ppm F2 - Processing parameters SI 32768 SF 500.0200036 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.00

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm 3.03 3.10 0.99 1.00

Figure D.10. H-NMR spectrum of lumichrome N-oxide in DMSO. 326 160.21 148.54 144.40 140.39 138.62 138.19 134.40 131.32 129.76 116.27 40.09 40.00 39.93 39.84 39.76 39.67 39.59 39.50 39.33 39.17 39.00 20.31 19.39

Current Data Parameters NAME LCO EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20060218 Time 20.10 INSTRUM spect PROBHD 5 mm Multinucl PULPROG zgpg30 LCO TD 65536 SOLVENT DMSO NS 20431 DS 4 SWH 30030.029 Hz FIDRES 0.458222 Hz AQ 1.0912244 sec RG 2048 DW 16.650 usec DE 6.00 usec TE 300.2 K D1 2.00000000 sec d11 0.03000000 sec DELTA 1.89999998 sec MCREST 0.00000000 sec MCWRK 0.01500000 sec

======CHANNEL f1 ======NUC1 13C P1 13.00 usec PL1 3.00 dB SFO1 125.7427020 MHz

======CHANNEL f2 ======CPDPRG2 waltz16 NUC2 1H PCPD2 100.00 usec PL2 -1.00 dB PL12 18.80 dB PL13 120.00 dB SFO2 500.0220001 MHz

F2 - Processing parameters SI 32768 SF 125.7301952 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.00

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Figure D.11. C-NMR spectrum of lumichrome N-oxide in DMSO.

327 8.234 8.211 3.386 2.536 2.511 2.507 2.504 2.500 2.479 2.437

LCO2 Current Data Parameters NAME 021306 EXPNO 1 PROCNO 1

F2 - Acquisition Parameters Date_ 20060213 Time 12.05 INSTRUM spect PROBHD 5 mm Multinucl PULPROG zg30 TD 65536 SOLVENT DMSO NS 17 DS 2 SWH 10330.578 Hz FIDRES 0.157632 Hz AQ 3.1719923 sec 2.54 2.52 2.50 2.48 ppm RG 812.7 DW 48.400 usec DE 6.00 usec TE 297.2 K D1 1.00000000 sec MCREST 0.00000000 sec MCWRK 0.01500000 sec

======CHANNEL f1 ======NUC1 1H P1 14.80 usec PL1 -1.00 dB SFO1 500.0230878 MHz

F2 - Processing parameters SI 32768 SF 500.0200000 MHz WDW EM SSB 0 LB 0.30 Hz GB 0 PC 1.40

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ppm 3.07 2.70 0.67 1.00 1.66

Figure D.12. H-NMR spectrum of lumichrome di N-oxide in DMSO.

328 155.56 147.72 145.27 140.52 139.87 134.64 134.12 121.85 119.17 117.67 40.09 40.00 39.93 39.84 39.76 39.67 39.59 39.50 39.33 39.17 39.00 19.98 19.58

Current Data Parameters NAME LCO2 EXPNO 2 PROCNO 1 F2 - Acquisition Parameters Date_ 20060219 LCO2 Time 16.37 INSTRUM spect PROBHD 5 mm Multinucl PULPROG zgpg30 TD 65536 SOLVENT DMSO NS 19759 DS 4 SWH 30030.029 Hz FIDRES 0.458222 Hz AQ 1.0912244 sec RG 3251 DW 16.650 usec DE 6.00 usec TE 300.2 K D1 2.00000000 sec d11 0.03000000 sec DELTA 1.89999998 sec MCREST 0.00000000 sec MCWRK 0.01500000 sec

======CHANNEL f1 ======NUC1 13C P1 13.00 usec PL1 3.00 dB SFO1 125.7427020 MHz

======CHANNEL f2 ======CPDPRG2 waltz16 NUC2 1H PCPD2 100.00 usec PL2 -1.00 dB PL12 18.80 dB PL13 120.00 dB SFO2 500.0220001 MHz

F2 - Processing parameters SI 32768 SF 125.7301943 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.00

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Figure D.13. C-NMR spectrum of lumichrome di N-oxide in DMSO.

329