Al-Mrabeh 11.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Al-Mrabeh 11.Pdf Aphid-Borne Viruses of Potato: Investigations into Virus/Host/Vector Interactions, Serological Detection Using Recombinant Antibodies and Control Strategies By Ahmad Al-Mrabeh A thesis submitted in partial fulfillment of the requirements of the University of Newcastle School of Biology For the degree of Doctor of Philosophy (PhD) September 2010 The project was carried out at the Scottish Crop Research Institute (SCRI) i ACKNOWLEDGEMENTS At the end of this research journey, first and foremost I would like to present extreme respect to Prof. L.Torrance, my supervisor, who hosted me in her laboratory at SCRI, and introduced me to the world of plant virology. Secondly, Dr. B. Fenton and Dr. A. Ziegler are very much appreciated for contributing in my supervision at different stages of this project. Thirdly, I would like to express my sincere respect and gratitude to Mr. G. Cowan who has never hesitated to provide any kind of help. I am also indebted to my supervisors at Newcastle (Prof. A. Gatehouse, and Dr. E. Hack) for their helpful advice during the process of my project, and for agreement that I will do my research at SCRI. In addition, I am thankful to Dr. K. Emami who supervised me at laboratory at the early stage of my PhD at Newcastle, Dr. J. Jones (SCRI) for helping in Q-Bot filter printing, Dr. K. MacKenzie (BioSS) for helping in statistical analysis, and Mr. P. Smith (IT, SCRI) for proof reading the thesis. General thanks to all member of staff and student colleagues at SCRI and Newcastle University who I have met, it is important to acknowledge that without their help and support, it was difficult to complete this work. I would like to extend my thanks to my supervisors at Syria namely: Dr. M. Halloum, Dr. I. Ismail and Dr. M. Ahmad, for their ceaseless support and encouragement before and during this study. I am deeply grateful to scientists from the plant virus community who contributed towards my work particularly Prof. H. Barker, Dr. S. Blanc and Dr. J.J. Lopez-Moya. Last but not least, I would like to thank my wife Abeer, my son Myso for their patience and understanding all this period. And special thanks to my parents and friends from Syria for their support and encouragement during the whole period of study particularly S. Omran at Newcastle University who has been always a source of inspiration and enthusiasm. Ahmad ii DECLARATIONS I, Ahmad Al-Mrabeh, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I can confirm that this has been indicated in the thesis. Ahmad Al-Mrabeh ************************************** This is to certify that this copy of the thesis was checked and approved by the examiners. Dr Anne Borland iii CONTENTS FRONT PAGE I ACKNOWLEDGEMENTS II DECLARATION III TABLE OF CCONTENTS IV ABSTRACT XII LIST OF FIGURES XIII LIST OF TABLES XVIII LIST OF ABBREVIATIONS XXI LIST OF VIRUSES AND ACRONYMS XXV 1. CHAPTER1: LITRATURE REVIEW 1 1.1. Background 1 1.2. Viruses which naturally infect potato 2 1.3. Brief description of the most important aphid-borne potato viruses 5 1.3.1. Potato leafroll virus (PLRV) 5 1.3.2. Potato virus Y (PVY) 6 1.3.3. Potato virus A (PVA) 8 1.3.4. Potato virus V (PVV) 8 1.3.5. Potato virus S (PVS) 8 1.3.6. Potato virus M (PVM) 9 iv 1.4. PVY characteristics 9 1.4.1 Emergence of PVY as the main potato virus 9 1.4.2. Host range of PVY 10 1.4.3. Genetic diversity and PVY strains 10 1.4.4. Indicator plants for differentiation and propagation of PVY 11 1.5. Transmission of potato viruses by aphids 12 1.5.1 Virus – vector relationship 12 1.5.2. Mechanism of non-persistent virus transmission 13 1.5.2.1. Background 13 1.5.2.2. Helper component (HC-Pro) 14 1.5.2.2.1. Discovery and proporties of HC-Pro 14 1.5.2.2.2. HC-Pro function in virus transmission 15 1.5.2.3. Coat protein (CP) 16 1.5.2.4. Hypotheses for molecular mechanisms of potyvirus transmission 18 1.6. Aphid species transmitting potato viruses 19 1.7. Controlling the spread of aphid transmitted viruses on potato crop 25 1.7.1. Seed classification schemes 25 1.7.1.1.British Seed classification schemes 25 1.7.1.2.Aphid monitoring and forecasting 26 1.7.1.3.Interpreting aphid monitoring data 28 1.7.1.3.1. Relative efficiency factor (REF) 28 1.7.1.3.2. How REF is assigned? 30 1.7.1.3.3. Bait plant system 30 1.7.1.3.4. Aphid thresholds 31 1.7.1.3.5. Post-harvest testing/ ELISA 32 1.7.2. Breeding for virus and vector resistance 32 1.7.3. Chemical strategies for controlling potato viruses 35 1.7.3.1. Mineral oils 35 1.7.3.1.1. Mode of action of mineral oil 35 1.7.3.1.2. Mixing oils with Pyrethroids 36 1.7.3.2. Synthetic insecticides 36 1.7.3.2.1. Old classes of insecticides 37 v 1.7.3.2.2. New classes of insecticides 37 1.7.4. Non-chemical control strategies 38 1.7.4.1. Isolation of seed potato fields 38 1.7.4.2. Removing weeds and groundkeepers 38 1.7.4.3. Haulm destruction 39 1.7.4.4. Border Crops 40 1.7.4.5. Host masking and reflective mulching 41 1.7.4.6. Using natural products 41 1.8. Project’s aims 42 2. CHAPTER 2: GENERAL MATERIALS AND METHODS 44 2.1. Virus and aphid cultures 44 2.2. Virus transmission by aphids 45 2.3.Virus detection 45 2.3.1. General buffers for virus detection 46 2.3.2. ELISA 47 2.3.3. RT-PCR conditions for potyvirus detection 49 2.3.3.1.cDNA synthesis 49 2.3.3.2.PCR conditions 49 2.3.4. Nested RT-PCR 49 2.3.4.1.RNA extraction from aphids 49 2.3.4.2.RNA extraction from plants 50 2.3.4.3.First round – RT-PCR 50 2.3.4.4.Second round PCR 50 2.3.5. Electron microscopy (EM) negative staining 51 2.3.6. SDS-PAGE 51 2.3.6.1.Resolving gel 51 2.3.6.2.Stacking gel 52 2.3.6.3.Sample loading 52 2.3.6.4.Coomassie Blue gel staining 52 2.3.7. Western blot analysis 52 vi 2.3.8. Dot blot assay 53 2.4.Molecular biology methods 53 2.4.1. Nucleic acid methods 53 2.4.1.1.General media, buffers, and reagents 53 2.4.1.2.Agarose gel electrophoresis of DNA 55 2.4.1.3.DNA extraction from agarose gel 55 2.4.1.4.DNA recovery from PCR product and after enzyme digestion 56 2.4.1.5.DNA and RNA quantification 56 2.4.1.6.DNA ligation 56 2.4.1.7.Chemical transformation of E. coli 57 2.4.1.8.Transformation by electroporation 57 2.4.1.9.Colony pick PCR 58 2.4.1.10. PCR primers 58 2.4.1.11. DNA sequencing, editing, and alignment 60 2.4.1.12. Site-Directed Mutagenesis 60 2.4.2. Proteomic methods 61 2.4.2.1.General buffers and recipes 61 2.4.2.2.Protein expression and purification buffers 62 2.4.2.3.PVY purification 63 2.4.2.4.Virus quantification 64 2.4.2.5.Recombinant protein expression and induction 64 2.4.2.6.Bradford protein assay 64 2.4.2.7.Protein dialysis 64 2.4.2.8.Ni-NTA resin protein purification system 65 2.5. Statistical analysis 65 3. CHAPTER 3: POTYVIRUS AND APHID PROTEINS INTERACTION 66 3.1. Introduction 66 3.2. Materials and Methods 68 3.2.1. Expressed colony screening 68 3.2.1.1. Q-Bot Filter printing 68 3.2.1.2.Filter processing and overlay assay conditions 72 vii 3.2.2. Cloning aphid proteins into the pQE-30 72 3.2.3. Aphid cuticle proteins expression and purification 72 3.2.3.1.Whole cell extract 73 3.2.3.2.Periplasmic extract (PE) 73 3.2.3.3. Cleared lysate under native conditions 73 3.2.3.4.Cleared lysate under denaturing conditions 74 3.2.3.5. Inclusion body (IB) method 74 3.2.3.6.Native CUPs extraction 74 3.2.4. HC-Pro protein expression and purification 75 3.2.4.1.HC-Pro expression in E. coli 75 3.2.4.2.HC-Pro expression in plant 76 3.2.4.2.1. PVY-HC-Pro in PVX system 76 3.2.4.2.2. TuMV HC-Pro 77 3.2.4.2.3. TEV HC-Pro 77 3.2.5. Overlay assay conditions for Western blot 78 3.3. Experimental Results 79 3.3.1. Clones interacting with the full-length HC-Pro expressed in E. coli 79 3.3.2. Clones interacting with the N-terminus of HC-Pro expressed in E. coli 79 3.3.3. Expression of cloned cDNA inserts into PQE 85 3.3.4. Interaction between aphid proteins and antisera to CUPs 88 3.3.5. Interaction between P72F protein and PVX expressed HC-Pro 89 3.3.6. Experiments to study binding to HC-Pro of other potyviruses 91 3.3.7.
Recommended publications
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]
  • Aphids (Hemiptera, Aphididae)
    A peer-reviewed open-access journal BioRisk 4(1): 435–474 (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2 435 doi: 10.3897/biorisk.4.57 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Aphids (Hemiptera, Aphididae) Chapter 9.2 Armelle Cœur d’acier1, Nicolas Pérez Hidalgo2, Olivera Petrović-Obradović3 1 INRA, UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France 2 Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 – León, Spain 3 University of Belgrade, Faculty of Agriculture, Nemanjina 6, SER-11000, Belgrade, Serbia Corresponding authors: Armelle Cœur d’acier ([email protected]), Nicolas Pérez Hidalgo (nperh@unile- on.es), Olivera Petrović-Obradović ([email protected]) Academic editor: David Roy | Received 1 March 2010 | Accepted 24 May 2010 | Published 6 July 2010 Citation: Cœur d’acier A (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(1): 435–474. doi: 10.3897/biorisk.4.57 Abstract Our study aimed at providing a comprehensive list of Aphididae alien to Europe. A total of 98 species originating from other continents have established so far in Europe, to which we add 4 cosmopolitan spe- cies of uncertain origin (cryptogenic). Th e 102 alien species of Aphididae established in Europe belong to 12 diff erent subfamilies, fi ve of them contributing by more than 5 species to the alien fauna. Most alien aphids originate from temperate regions of the world. Th ere was no signifi cant variation in the geographic origin of the alien aphids over time.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Incipient Non-Adaptive Radiation by Founder Effect? Oliarus Polyphemus Fennah, 1973 – a Subterranean Model Case
    Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Andreas Wessel geb. 30.11.1973 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Lutz-Helmut Schön Gutachter/innen: 1. Prof. Dr. Hannelore Hoch 2. Prof. Dr. Dr. h.c. mult. Günter Tembrock 3. Prof. Dr. Kenneth Y. Kaneshiro Tag der mündlichen Prüfung: 20. Februar 2009 Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Doctoral Thesis by Andreas Wessel Humboldt University Berlin 2008 Dedicated to Francis G. Howarth, godfather of Hawai'ian cave ecosystems, and to the late Hampton L. Carson, who inspired modern population thinking. Ua mau ke ea o ka aina i ka pono. Zusammenfassung Die vorliegende Arbeit hat sich zum Ziel gesetzt, den Populationskomplex der hawai’ischen Höhlenzikade Oliarus polyphemus als Modellsystem für das Stu- dium schneller Artenbildungsprozesse zu erschließen. Dazu wurde ein theoretischer Rahmen aus Konzepten und daraus abgeleiteten Hypothesen zur Interpretation be- kannter Fakten und Erhebung neuer Daten entwickelt. Im Laufe der Studie wurde zur Erfassung geografischer Muster ein GIS (Geographical Information System) erstellt, das durch Einbeziehung der historischen Geologie eine präzise zeitliche Einordnung von Prozessen der Habitatsukzession erlaubt. Die Muster der biologi- schen Differenzierung der Populationen wurden durch morphometrische, etho- metrische (bioakustische) und molekulargenetische Methoden erfasst.
    [Show full text]
  • Col., Scarabaeidae, Melolonthinae, Pachydemini)
    VIERAEA Vol. 32 1-6 Santa Cruz de Tenerife, diciembre 2004 ISSN 0210-945X Pachydema keithi Lacroix, 2000, sinonimia de Pachydema ameliae López-Colón, 1986 (Col., Scarabaeidae, Melolonthinae, Pachydemini) JOSÉ I GNACIO L ÓPEZ-COLÓN Plaza de Madrid, 2, 1º/D. E-28529 Rivas-Vaciamadrid (Madrid). España. LÓPEZ-COLÓN, J. I. (2004). Pachydema keithi Lacroix, 2000 synonimy of Pachydema ameliae López-Colón, 1986 (Col., Scarabaeidae, Melolonthinae, Pachydemini). VIERAEA 32: 1-6. RESUMEN: Se establece la nueva sinonimia: Pachydema keithi Lacroix, 2000 = Pachydema bipartita ameliae López-Colón, 1986, la cual pasa a ser considerada con rango específico: Pachydema ameliae López-Colón, 1986 (n. stat.). Palabras clave: Coleoptera, Scarabaeidae, Melolonthinae, Pachydemini, Islas Canarias, Pachydema keithi, Pachydema bipartita ameliae, nueva sinonimia. ABSTRACT: A new synonimy, Pachydema keithi Lacroix, 2000 = Pachydema bipartita ameliae López-Colón, 1986, is set up. Its specific validity is here considered: Pachydema ameliae López-Colón, 1986 (n. stat.). Key words: Coleoptera, Scarabaeidae, Melolonthinae, Pachydemini, Canary Island, Pachydema keithi, Pachydema bipartita ameliae, new synonimy. INTRODUCCIÓN Marc Lacroix ha descrito recientemente una nueva especie canaria de Pachydema: Pachydema keithi Lacroix, 2000, nominada en honor de su colega Denis Keith, cuyo holotypus está conservado en el Museo de París (Museum national d’Histoire naturelle). El nuevo taxon procede del Pozo de las Nieves, en la isla de Gran Canaria. Sin embargo, en realidad Lacroix ha redescrito, paso por paso, a Pachydema bipartita ameliae López-Colón, 1986, una subespecie de Pachydema bipartita (Brullé, 1838) [cuyo holotypus, que procede de Valleseco, Gran Canaria, está conservado en el Departamento de Biología Animal de la Universidad de La Laguna (Tenerife)] que Galante & Stebnicka (1992) pasaron a sinonimia de esta última (ver pág.
    [Show full text]
  • Biodiversity – Economy Or Ecology? Long-Term Study of Changes in the Biodiversity of Aphids Living in Steppe-Like Grasslands in Central Europe
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 114: 140–146, 2017 http://www.eje.cz doi: 10.14411/eje.2017.019 ORIGINAL ARTICLE Biodiversity – economy or ecology? Long-term study of changes in the biodiversity of aphids living in steppe-like grasslands in Central Europe BARBARA OSIADACZ 1, ROMAN HAŁAJ 2 and DAMIAN CHMURA3 1 Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego St. 159, PL 60-594 Poznań, Poland; e-mail: [email protected] 2 The Upper Silesian Nature Society, Huberta St. 35, PL 40-543 Katowice, Poland; e-mail: [email protected] 3 Institute of Environmental Protection and Engineering, University of Bielsko-Biała, Willowa 2, PL 43-309 Bielsko-Biała, Poland; e-mail: [email protected] Key words. Hemiptera, Aphidoidea, bio-ecological groups, community structure, protected habitats, loss of biodiversity, human impact, NMDS methods, regional hotspots Abstract. This paper examines the changes in the species composition of aphids living in dry calcareous grasslands in Central Europe over a 25-year period. To the best of our knowledge, this is the fi rst analysis of this type in the world that takes into account both previous and current data on species richness as well as groups of aphids that are distinguishable on the basis of biological and ecological criteria such as host-alternation and feeding types, life cycle, ecological niche, symbiosis with ants and their eco- logical functional groups. Over the period of more than 25 years, there has been a signifi cant decrease in aphid α-diversity, from 171 to 105 species.
    [Show full text]
  • Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
    Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture.
    [Show full text]
  • Aspects of the Biology and Taxonomy of British Myrmecophilous Root Aphids
    Aspects of the biology and taxonomy of British myrmecophilous root aphids. by Richard George PAUL, BoSc.(Lond.),17.90.(Glcsgow). Thesis submitted for the Degree of Doctor of Philosopk,. of the University of London and for the Diploma of Imperial Colleao Decemi)or 1977. Dopartaent o:vv. .;:iotory)c Cromwell Road. 1.0;AMOH )t=d41/: -1- ABSTRACT. This thesis concerns the biology and taxonomy of root feeding aphids associated with British ants. A root aphid for the purposes of this thesis is defined as an aphid which, during at least part of its life cycle feeds either (a) beneath the normal soil surface or (b) beneath a tent of soil that has been placed over it by ants. The taxonomy of the genera Paranoecia and Anoecia has been revised and some synonomies proposed. Chromosome numbers have been discovered for Anoecia spp. and are used to clarify the taxonomy. The biology of Anoecia species has been studied and new facts about their life cycles have been discovered. A key is given to the British r European, African and North American species of Anoeciinae and this is included in a key to British myrmecophilous root aphids. Suction trap catches (1968-1976) from about twenty British traps have been used as a record of seasonal flight patterns for root aphids. All the Anoecia species caught in 1975 and 1976 were identified on the basis of new taxonomic work. Catches which had formerly all been identified as Anoecia corni were found to be A. corni, A. varans and A. furcata. The information derived from the catches was used to plot relative abundance and distribution maps for the three species.
    [Show full text]
  • Aphids (Hemiptera, Aphididae) Armelle Coeur D’Acier, Nicolas Pérez Hidalgo, Olivera Petrovic-Obradovic
    Aphids (Hemiptera, Aphididae) Armelle Coeur d’Acier, Nicolas Pérez Hidalgo, Olivera Petrovic-Obradovic To cite this version: Armelle Coeur d’Acier, Nicolas Pérez Hidalgo, Olivera Petrovic-Obradovic. Aphids (Hemiptera, Aphi- didae). Alien terrestrial arthropods of Europe, 4, Pensoft Publishers, 2010, BioRisk, 978-954-642-554- 6. 10.3897/biorisk.4.57. hal-02824285 HAL Id: hal-02824285 https://hal.inrae.fr/hal-02824285 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A peer-reviewed open-access journal BioRisk 4(1): 435–474 (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2 435 doi: 10.3897/biorisk.4.57 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Aphids (Hemiptera, Aphididae) Chapter 9.2 Armelle Cœur d’acier1, Nicolas Pérez Hidalgo2, Olivera Petrović-Obradović3 1 INRA, UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France 2 Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 – León, Spain 3 University of Belgrade, Faculty of Agriculture, Nemanjina 6, SER-11000, Belgrade, Serbia Corresponding authors: Armelle Cœur d’acier ([email protected]), Nicolas Pérez Hidalgo (nperh@unile- on.es), Olivera Petrović-Obradović ([email protected]) Academic editor: David Roy | Received 1 March 2010 | Accepted 24 May 2010 | Published 6 July 2010 Citation: Cœur d’acier A (2010) Aphids (Hemiptera, Aphididae).
    [Show full text]
  • A REVISION of the GENUS VESICULAPHIS DEL GUERCIO, with DESCRIPTIONS of FOUR NEW Title SPECIES (HOMOPTERA : APHIDIDAE)
    A REVISION OF THE GENUS VESICULAPHIS DEL GUERCIO, WITH DESCRIPTIONS OF FOUR NEW Title SPECIES (HOMOPTERA : APHIDIDAE) Author(s) Miyazaki, Masahisa Insecta matsumurana. New series : journal of the Faculty of Agriculture Hokkaido University, series entomology, 20, Citation 43-83 Issue Date 1980-07 Doc URL http://hdl.handle.net/2115/9805 Type bulletin (article) File Information 20_p43-83.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INSECTA MATSUMURANA NEW SERIES 20: 43-83 JULY, 1980 A REVISION OF THE GENUS VESICULAPHIS DEL GUERCIO, WITH DESCRIPTIONS OF FOUR NEW SPECIES (HOMOPTERA: APHIDIDAE) By MASAHISA MIYAZAKI MIYAZAKI, M. 1980. A revision of the genus Vesiculaphis del Guercio, with descriptions of four new species from Japan (Homoptera: Aphididae). Ins. matsum. n. s. 20: 43--83, 5 tabs., 10 figs. (2 text-figs., 8 pIs.). Species of the genus Vesiculaphis described so far in the world are reviewed. Of a total of 11 species described by authors, 8 are accepted as representatives of the genus: caricis (Fullaway), kongoensis Takahashi, theobaldi Takahashi, cephalata Miyazaki, samagaltaica (Ivanov­ skaja-Shubina). pieridis Basu, grandis Basu and rhododendri Ghosh et al. The remainder are transferred to other genera: verbasci Chowdhuri et al. to Myzakkaia, kuwanais Ghosh et al. to Myzakkaia (comb. n.) and kalimpongensis Ghosh et al. to Myzus (comb. n.). Four species are described from Japan as new to science: caeyulea, rotunda, nubilimaculata and angusticeps. The alate viviparous female of cephalata is described for the first time. As the result 12 species are placed in the genus. These species are divided into 3 groups, and the phylogenetic relationship among them is discussed with special reference to the chaetotaxy and frontal extrusion of the head.
    [Show full text]
  • Arthropod Pests of Currant and Gooseberry Crops in the U.K.: Their Biology, Management and Future Prospects
    Agricultural and Forest Entomology (2011), DOI: 10.1111/j.1461-9563.2010.00513.x REVIEW ARTICLE Arthropod pests of currant and gooseberry crops in the U.K.: their biology, management and future prospects Carolyn Mitchell, Rex M. Brennan, Jerry V. Cross∗ and Scott N. Johnson Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, U.K. and ∗East Malling Research, New Road, East Malling, Kent ME19 6BJ, U.K. Abstract 1 Approximately 10–12 species of Ribes plants are cultivated for fruit production, mainly blackcurrants, red- and whitecurrants and gooseberries. These crops are increasingly recognized as rich sources of vitamin C and anthocyanins, with production rising by 24% in Europe subsequent to 1998. To date, research into insect pests of Ribes has been fragmented, with little appreciation of how changes in climate and agronomic practices affect biology. 2 We review 12 key pests of currant and gooseberry crops in Northern Europe, with specific emphasis on their biology and current management options. These are blackcurrant leaf curling midge Dasineura tetensi, blackcurrant sawfly Nematus olfaciens, common gooseberry sawfly Nematus ribesii, European permanent currant aphid Aphis schneideri, redcurrant blister aphid Cryptomyzus ribis, currant–sowthistle aphid Hyperomyzus lactucae, European gooseberry aphid Aphis grossulariae, woolly vine scale Pulvinaria vitis, common green capsid Lygocoris pabulinus, winter moth Operophtera brumata, clear wing moth Synanthedon tipuliformis and blackcurrant gall mite Cecidophyopsis ribis. 3 It is anticipated that global climate change could lead to increases in the incidence of some aphids through increased overwintering survival and longer seasonal activity. Moreover, changes in management practices such as increased cropping densities (from 5400 ha−1 to 8700 ha−1) and machine harvesting could lead to pest outbreaks through optimal microhabitats and increased susceptibility to pest colonization.
    [Show full text]