Deutsche Nationalbibliografie 2010 a 39

Total Page:16

File Type:pdf, Size:1020Kb

Deutsche Nationalbibliografie 2010 a 39 Deutsche Nationalbibliografie Reihe A Monografien und Periodika des Verlagsbuchhandels Wöchentliches Verzeichnis Jahrgang: 2010 A 39 Stand: 29. September 2010 Deutsche Nationalbibliothek (Leipzig, Frankfurt am Main, Berlin) 2010 ISSN 1869-3946 urn:nbn:de:101-ReiheA39_2010-6 2 Hinweise Die Deutsche Nationalbibliografie erfasst eingesandte Pflichtexemplare in Deutschland veröffentlichter Medienwerke, aber auch im Ausland veröffentlichte deutschsprachige Medienwerke, Übersetzungen deutschsprachiger Medienwerke in andere Sprachen und fremdsprachige Medienwerke über Deutschland im Original. Grundlage für die Anzeige ist das Gesetz über die Deutsche Nationalbibliothek (DNBG) vom 22. Juni 2006 (BGBl. I, S. 1338). Monografien und Periodika (Zeitschriften, zeitschriftenartige Reihen und Loseblattausgaben) werden in ihren unterschiedlichen Erscheinungsformen (z.B. Papierausgabe, Mikroform, Diaserie, AV-Medium, elektronische Offline-Publikationen, Arbeitstransparentsammlung oder Tonträger) angezeigt. Alle verzeichneten Titel enthalten einen Link zur Anzeige im Portalkatalog der Deutschen Nationalbibliothek und alle vorhandenen URLs z.B. von Inhaltsverzeichnissen sind als Link hinterlegt. In Reihe A werden Medienwerke, die im Verlagsbuch- chende Menüfunktion möglich. Die Bände eines mehrbän- handel erscheinen, angezeigt. Auch außerhalb des Ver- digen Werkes werden, sofern sie eine eigene Sachgrup- lagsbuchhandels erschienene Medienwerke werden an- pe haben, innerhalb der eigenen Sachgruppe aufgeführt, gezeigt, wenn sie von gewerbsmäßigen Verlagen vertrie- ansonsten unter der Sachgruppe des Gesamtwerkes. In- ben werden. Ebenfalls angezeigt werden fremdsprachige nerhalb der Sachgruppen werden die Titel alphabetisch Medienwerke über Deutschland, gekennzeichnet mit *G* geordnet. und Übersetzungen deutschsprachiger Werke, die im Aus- Den Anzeigen liegen die "Regeln für die alphabeti- land erschienen sind, gekennzeichnet mit *Ü*. Die Titel- sche Katalogisierung in wissenschaftlichen Bibliotheken anzeigen selbst sind, wie auf der Sachgruppenübersicht (RAK-WB)" sowie die "Regeln für die alphabetische Ka- angegeben, entsprechend der Dewey-Dezimalklassifika- talogisierung von Nichtbuchmaterialien (RAK-NBM)" und tion (DDC) gegliedert und können auch über die Sach- der "International Standard Bibliographic Description gruppenlesezeichen am linken Bildschirmrand angesteu- (ISBD)" zugrunde. ert werden. Ein direkter Sucheinstieg ist über die entspre- Sachgruppe - <100> XA-DE-BY ✛ Ländercode Link zum Portalkatalog ¥=säurefrei - http://d-nb.info/993612954 ¥ 09.N17 ✛ Neuerscheinungsdienst-Nr. Verfasser - Appiah, Anthony: Ethische ✛ Sachtitel Experimente : Übungen zum guten Leben Verfasserangaben - / Kwame Anthony Appiah. Aus dem Engl. Übersetzerangaben - von Michael Bischoff. - München : Beck, ✛ Erscheinungsort : Verlag Erscheinungsjahr. - Seitenzahl - 2009. - 265 S. ; 22 cm - Einheitssacht.: ✛ Format. - Experiments in ethics <dt.> . - ✛ Einheitssachtitel Link zum Inhaltsverzeichnis - Inhaltsverzeichnis - ISBN ISBN Einbandart - 978-3-406-59264-5 kart. : EUR 19.90 ✛ Preis EAN - - EAN 9783406592645 Schlagwort - SW: Ethik DCC-Notation - DDC: 170 Am Schluss der Aufnahme eines Titels stehen in kursi- Die eindeutige Zuordnung von Gliedern einer Grundfolge vem Kleindruck, mit "SW:" eingeleitet, die nach den "Re- zum terminologisch kontrollierten Vokabular der Schlag- geln für den Schlagwortkatalog (RSWK, 3. Aufl 1998, wortnormdatei (SWD) ist gewährleistet. auf dem Stand der 7. Ergänzungslieferung 2010)" an- Sind zur Erschließung eines Dokuments zwei oder mehr gesetzten und zu einer oder mehreren Folgen ver- Grundfolgen erforderlich, so werden diese fortlaufend ge- knüpften Schlagwörter (Grundfolgen). Semikola tren- schrieben, nur getrennt durch das Zeichen . nen die Glieder einer Schlagwortfolge. Aufgrund der An- Im Anschluss an die Schlagwortfolgen stehen,5 eben- setzungsregeln für Schlagwörter ist es möglich, dass falls in kursivem Kleindruck, mit "DDC:" eingeleitet, die einzelne Glieder selbst in Form von Hauptschlagwort- nach der Dewey-Dezimalklassifikation Deutsche Ausgabe Unterschlagwort-Kombinationen auftreten (Ansetzungs- (DDC22ger) erstellten Notationen. Es können bis zu drei folgen). Notationen aufgeführt sein. 3 Sachgruppenübersicht Sach- Fachgebiet Enthält die Sach- Fachgebiet Enthält die gruppe DDC-Klassen gruppe DDC-Klassen 000 Allgemeines, Informatik, 400 Sprache Informationswissenschaft 400 Sprache, Linguistik 400,410 000 Allgemeines, Wissenschaft 000-003 420 Englisch 420 004 Informatik 004-006 430 Deutsch 430 010 Bibliografien 010 439 Andere germanische Sprachen 439 020 Bibliotheks- und 020 440 Französisch, romanische 440 Informationswissenschaft Sprachen allgemein 030 Enzyklopädien 030 450 Italienisch, Rumänisch, 450 050 Zeitschriften, fortlaufende 050 Rätoromanisch Sammelwerke 460 Spanisch, Portugiesisch 460 060 Organisationen, 060 470 Latein 470 Museumswissenschaft 480 Griechisch 480 070 Nachrichtenmedien, 070 Journalismus, Verlagswesen 490 Andere Sprachen 490 080 Allgemeine Sammelwerke 080 090 Handschriften, seltene Bücher 090 500 Naturwissenschaften und Mathematik 100 Philosophie und 500 Naturwissenschaften 500 Psychologie 510 Mathematik 510 100 Philosophie 100-120,140, 520 Astronomie, Kartographie 520 160-190 530 Physik 530 130 Parapsychologie, Okkultismus 130 540 Chemie4 540 150 Psychologie 150 550 Geowissenschaften5 550 560 Paläontologie 560 200 Religion 570 Biowissenschaften, Biologie 570 580 Pflanzen (Botanik) 580 200 Religion, Religionsphilosophie 200, 210 590 Tiere (Zoologie) 590 220 Bibel 220 230 Theologie, Christentum 230-280 600 Technik, Medizin, 290 Andere Religionen 290 angewandte Wissenschaften 300 Sozialwissenschaften 600 Technik 600 610 Medizin, Gesundheit6 610 300 Sozialwissenschaften, 300 Soziologie, Anthropologie 620 Ingenieurwissenschaften 620 310 Statistik 310 630 Landwirtschaft, 630 Veterinärmedizin 320 Politik 320 1 640 Hauswirtschaft und 640 330 Wirtschaft 330 Familienleben 333.7 Natürliche Ressourcen, Energie 333.7-333.9 650 Management 650 und Umwelt 660 Technische Chemie 660 340 Recht2 340 670 Industrielle und handwerkliche 670, 680 350 Öffentliche Verwaltung 350-354 Fertigung 355 Militär 355-359 690 Hausbau, Bauhandwerk 690 360 Soziale Probleme, Sozialarbeit 360 370 Erziehung, Schul- und 370 Bildungswesen 380 Handel, Kommunikation, 380 Verkehr3 390 Bräuche, Etikette, Folklore 390 4Biochemie in 570 1Management in 650 5Kartographie, Geodäsie in 520; Kristallographie, Minera- 2Kriminologie, Strafvollzug in 360 logie in 540 3Philatelie in 760 6Veterinärmedizin 630 4 Sach- Fachgebiet Enthält die Sach- Fachgebiet Enthält die gruppe DDC-Klassen gruppe DDC-Klassen 700 Künste und Unterhaltung 900 Geschichte und Geografie 700 Künste, Bildende Kunst 700 900 Geschichte 900 allgemein 910 Geografie, Reisen 910 710 Landschaftsgestaltung, 710 914.3 Landeskunde Deutschlands 914.3 Raumplanung 920 Biografie, Genealogie, Heraldik 920 720 Architektur 720 930 Alte Geschichte, Archäologie 930 730 Plastik, Numismatik, Keramik, 730 Metallkunst 940 Geschichte Europas 940 740 Zeichnung, Kunsthandwerk 740 943 Geschichte Deutschlands 943 741.5 Comics, Cartoons, Karikaturen 741.5 950 Geschichte Asiens 950 750 Malerei 750 960 Geschichte Afrikas 960 760 Grafische Verfahren, Drucke 760 970 Geschichte Nordamerikas 970 770 Fotografie, Computerkunst 770 980 Geschichte Südamerikas 980 780 Musik 780 990 Geschichte der übrigen Welt 990 790 Freizeitgestaltung, 790-790.2 B Belletristik7 Darstellende Kunst K Kinder- und Jugendliteratur 791 Öffentliche Darbietungen, 791 Film, Rundfunk S Schulbücher 792 Theater, Tanz 792 793 Spiel 793-795 796 Sport 796-799 800 Literatur 800 Literatur, Rhetorik, 800 Literaturwissenschaft 810 Englische Literatur Amerikas 810 820 Englische Literatur 820 830 Deutsche Literatur 830 839 Literatur in anderen 839 germanischen Sprachen 840 Französische Literatur 840 850 Italienische, rumänische, 850 rätoromanische Literatur 860 Spanische und portugiesische 860 Literatur 870 Lateinische Literatur 870 880 Griechische Literatur 880 890 Literatur in anderen Sprachen 890 DDC, Dewey, Dewey Decimal Classification und WebDewey sind eingetragene Warenzeichen des OCLC Online Computer Library Center, Inc. Die Dewey-Dezimalklassifikation ist urheberrechtlich geschützt. 7Wird nur als zusätzliche Sachgruppe zusätzlich zu den © 2003 OCLC Online Computer Library Center, Inc. Used with Permission. Hauptgruppen 800-900 vergeben 5 2010, A39 <000> Deutsche Nationalbibliografie 000 Allgemeines, Wissenschaft EUR 213.95 (freier Pr.), sfr 310.50 (freier Pr.) - ISBN 978-3-642-13231-5 kart. : EUR 93.09 Best.-Nr. 80017298 - EAN 9783642146152 (freier Pr.), sfr 135.00 (freier Pr.) - Best.-Nr. SW: Entscheidungsunterstützungssystem ; Künstliche 80015072 - EAN 9783642132315 <000> XA-DE-BY Intelligenz ; Kongress ; Baltimore <Md., 2010> http://d-nb.info/1002194164 10,N19 i DDC: 006.333 658.403 006.3 <004> XA-DE-BE Dürr, Hans-Peter: Warum es ums Ganze geht http://d-nb.info/1003339522 i 10,N24 : neues Denken für eine Welt im Umbruch ; <004>5 5 XA-DE-BE Böhme, Rainer: Advanced statistical stegana- mit einer DVD / Hans-Peter Dürr. Hrsg. von http://d-nb.info/1006508325 i 10,N36 lysis / Rainer Böhme. - Berlin ; Heidelberg : Dietlind Klemm und Frauke Liesenborghs. - Advances in pattern recognition : procee- Springer, 2010. - XV, 285 S. : Ill., graph. Darst. 4. Aufl. - München : Oekom, 2010. - 189 S. dings / Second Mexican Conference on Pattern ; 24 cm. - (Information security and cryptogra- : Ill. ; 24 cm + 1 DVD . - Literaturangaben Recognition, MCPR 2010, Puebla,
Recommended publications
  • BIOINFORMATICS Doi:10.1093/Bioinformatics/Bti144
    Vol. 00 no. 0 2004, pages 1–11 BIOINFORMATICS doi:10.1093/bioinformatics/bti144 Solving and analyzing side-chain positioning problems using linear and integer programming Carleton L. Kingsford, Bernard Chazelle and Mona Singh∗ Department of Computer Science, Lewis-Sigler Institute for Integrative Genomics, Princeton University, 35, Olden Street, Princeton, NJ 08544, USA Received on August 1, 2004; revised on October 10, 2004; accepted on November 8, 2004 Advance Access publication … ABSTRACT set of possible rotamer choices (Ponder and Richards, 1987; Motivation: Side-chain positioning is a central component of Dunbrack and Karplus, 1993) for each Cα position on the homology modeling and protein design. In a common for- backbone. The goal is to choose a rotamer for each position mulation of the problem, the backbone is fixed, side-chain so that the total energy of the molecule is minimized. This conformations come from a rotamer library, and a pairwise formulation of SCP has been the basis of some of the more energy function is optimized. It is NP-complete to find even a successful methods for homology modeling (e.g. Petrey et al., reasonable approximate solution to this problem. We seek to 2003; Xiang and Honig, 2001; Jones and Kleywegt, 1999; put this hardness result into practical context. Bower et al., 1997) and protein design (e.g. Dahiyat and Mayo, Results: We present an integer linear programming (ILP) 1997; Malakauskas and Mayo, 1998; Looger et al., 2003). In formulation of side-chain positioning that allows us to tackle homology modeling, the goal is to predict the structure for a large problem sizes.
    [Show full text]
  • BIOGRAPHICAL SKETCH NAME: Berger
    BIOGRAPHICAL SKETCH NAME: Berger, Bonnie eRA COMMONS USER NAME (credential, e.g., agency login): BABERGER POSITION TITLE: Simons Professor of Mathematics and Professor of Electrical Engineering and Computer Science EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.) EDUCATION/TRAINING DEGREE Completion (if Date FIELD OF STUDY INSTITUTION AND LOCATION applicable) MM/YYYY Brandeis University, Waltham, MA AB 06/1983 Computer Science Massachusetts Institute of Technology SM 01/1986 Computer Science Massachusetts Institute of Technology Ph.D. 06/1990 Computer Science Massachusetts Institute of Technology Postdoc 06/1992 Applied Mathematics A. Personal Statement Advances in modern biology revolve around automated data collection and sharing of the large resulting datasets. I am considered a pioneer in the area of bringing computer algorithms to the study of biological data, and a founder in this community that I have witnessed grow so profoundly over the last 26 years. I have made major contributions to many areas of computational biology and biomedicine, largely, though not exclusively through algorithmic innovations, as demonstrated by nearly twenty thousand citations to my scientific papers and widely-used software. In recognition of my success, I have just been elected to the National Academy of Sciences and in 2019 received the ISCB Senior Scientist Award, the pinnacle award in computational biology. My research group works on diverse challenges, including Computational Genomics, High-throughput Technology Analysis and Design, Biological Networks, Structural Bioinformatics, Population Genetics and Biomedical Privacy. I spearheaded research on analyzing large and complex biological data sets through topological and machine learning approaches; e.g.
    [Show full text]
  • ABSTRACT HISTORICAL GRAPH DATA MANAGEMENT Udayan
    ABSTRACT Title of dissertation: HISTORICAL GRAPH DATA MANAGEMENT Udayan Khurana, Doctor of Philosophy, 2015 Dissertation directed by: Professor Amol Deshpande Department of Computer Science Over the last decade, we have witnessed an increasing interest in temporal analysis of information networks such as social networks or citation networks. Finding temporal interaction patterns, visualizing the evolution of graph properties, or even simply com- paring them across time, has proven to add significant value in reasoning over networks. However, because of the lack of underlying data management support, much of the work on large-scale graph analytics to date has largely focused on the study of static properties of graph snapshots. Unfortunately, a static view of interactions between entities is often an oversimplification of several complex phenomena like the spread of epidemics, informa- tion diffusion, formation of online communities, and so on. In the absence of appropriate support, an analyst today has to manually navigate the added temporal complexity of large evolving graphs, making the process cumbersome and ineffective. In this dissertation, I address the key challenges in storing, retrieving, and analyzing large historical graphs. In the first part, I present DeltaGraph, a novel, extensible, highly tunable, and distributed hierarchical index structure that enables compact recording of the historical information, and that supports efficient retrieval of historical graph snapshots. I present analytical models for estimating required storage space and snapshot retrieval times which aid in choosing the right parameters for a specific scenario. I also present optimizations such as partial materialization and columnar storage to speed up snapshot retrieval. In the second part, I present Temporal Graph Index that builds upon DeltaGraph to support version-centric retrieval such as a node’s 1-hop neighborhood history, along with snapshot reconstruction.
    [Show full text]
  • John Anthony Capra
    John Anthony Capra Contact Vanderbilt University e-mail: tony.capra-at-vanderbilt.edu Information Dept. of Biological Sciences www: http://www.capralab.org/ VU Station B, Box 35-1634 office: U5221 BSB/MRB III Nashville, TN 37235-1634 phone: (615) 343-3671 Research • Applying computational methods to problems in genetics, evolution, and biomedicine. Interests • Integrating genome-scale data to understand the functional effects of genetic differences between individuals and species. • Modeling evolutionary processes that drive the creation of lineage-specific traits and diseases. Academic Vanderbilt University, Nashville, Tennessee USA Employment Assistant Professor, Department of Biological Sciences August 2014 { Present Assistant Professor, Department of Biomedical Informatics February 2013 { Present Investigator, Center for Human Genetics Research Education And Gladstone Institutes, University of California, San Francisco, CA USA Training Postdoctoral Fellow, October 2009 { December 2012 • Advisor: Katherine Pollard Princeton University, Princeton, New Jersey USA Ph.D., Computer Science, June 2009 • Advisor: Mona Singh • Thesis: Algorithms for the Identification of Functional Sites in Proteins M.A., Computer Science, October 2006 Columbia College, Columbia University, New York, New York USA B.A., Computer Science, May 2004 B.A., Mathematics, May 2004 Pembroke College, Oxford University, Oxford, UK Columbia University Oxford Scholar, October 2002 { June 2003 • Subject: Mathematics Honors and Gladstone Institutes Award for Excellence in Scientific Leadership 2012 Awards Society for Molecular Biology and Evolution (SMBE) Travel Award 2012 PhRMA Foundation Postdoctoral Fellowship in Informatics 2011 { 2013 Princeton University Wu Graduate Fellowship 2004 { 2008 Columbia University Oxford Scholar 2002 { 2003 Publications Capra JA* and Kostka D*. Modeling DNA methylation dynamics with approaches from phyloge- netics.
    [Show full text]
  • Graduation 2019
    Department of Graduation Computer Science Celebration & Awards Dinner 2019 Evening Schedule 6:00pm Social Time 7:00pm Welcome Dr. Sanjeev Setia, Chair Department of Computer Science 7:10pm Dinner 8:00pm Presentation of Awards Dr. Sanjeev Setia, Chair Department of Computer Science Doctor of Philosophy Computer Science Indranil Banerjee Dissertation Title: Problems on Sorting, Sets and Graphs Major Professor: Dana Richards, PhD Arda Gumusalan Dissertation Title: Dynamic Modulation Scaling Enabled Real Time Transmission Scheduling For Wireless Sensor Networks Major Professor: Robert Simon, PhD Yun Guo Dissertation Title: Towards Automatically Localizing and Repairing SQL Faults Major Professors: Jeff Offut, PhD & Amihai Motro, PhD Mohan Krishnamoorthy Dissertation Title: Stochastic Optimization based on White-box Deterministic Approximations: Models, Algorithms and Application to Service Networks Major Professors: Alexander Brodsky, PhD & Daniel Menascé, PhD Arsalan Mousavian Dissertation Title: Semantic and 3D Understanding of a Scene for Robot Perception Major Professor : Jana Kosecka, PhD Zhiyun Ren Dissertation Title: Academic Performance Prediction with Machine Learning Techniques Major Professor : Huzefa Rangwala, PhD Md A. Reza Dissertation Title: Scene Understanding for Robotic Applications Major Professor : Jana Kosecka, PhD Venkateshwar Tadakamalla Dissertation Title: Analysis and Autonomic Elasticity Control for Multi-Server/Queues Under Traffic Surges in Cloud Environments Major Professor : Daniel A. Menascé, PhD Jianchao Tan
    [Show full text]
  • Emerging Topics in Biological Networks and Systems Biology Symposium at the Swedish Collegium for Advanced Study (Scas), Uppsala 9-11 October, 2017
    Emerging Topics in Biological Networks and Systems Biology Symposium at the Swedish Collegium for Advanced Study (scas), Uppsala 9-11 October, 2017 mona singh, Princeton University, usa Network-based Methods for Identifying Cancer Genes Abstract: A central goal in cancer genomics is to identify the somatic alterations that underpin tumor initiation and progression. While commonly mutated cancer genes are readily identifiable, those that are rarely mutated across samples are difficult to distinguish from the large numbers of other infrequently mutated genes. Molecular interactions and networks provide a powerful frame- work with which to tackle some of the difficulties arising from the diverse somatic mutational landscapes of cancers. In this talk, I will first demonstrate that cancer genes can be discovered by identifying genes whose interaction interfaces are enriched in somatic mutations. Next, I will show how to leverage per-individual mutational profiles within the context of protein-protein interaction networks in order to identify small connected subnetworks of genes that, while not individually frequently mutated, comprise pathways that are altered across (i.e., “cover”) a large fraction of individuals. Overall, these two approaches recapitulate known cancer driver genes, and discover novel, and sometimes rarely-mutated, genes with likely roles in cancer. About: Mona Singh obtained her AB and SM degrees at Harvard University, and her PhD at MIT, all three in Computer Science. She did postdoctoral work at the Whitehead Institute for Biomedical Research. She has been on the faculty at Princeton since 1999, and currently she is Professor of Computer Science in the computer science department and the Lewis-Sigler Institute for Integrative Genomics.
    [Show full text]
  • Detection of Cooperatively Bound Transcription Factor Pairs Using Chip-Seq Peak Intensities and Expectation Maximization
    bioRxiv preprint doi: https://doi.org/10.1101/120113; this version posted March 24, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Detection of cooperatively bound transcription factor pairs using ChIP-seq peak intensities and expectation maximization Vishaka Datta∗1, Rahul Siddharthan2, and Sandeep Krishna1 1Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, TIFR, Bengaluru 560065, India 2The Institute of Mathematical Sciences/HBNI, Taramani, Chennai 600 113, India March 24, 2017 Abstract Transcription factors (TFs) often work cooperatively, where the binding of one TF to DNA enhances the binding affinity of a second TF to a nearby location. Such cooperative binding is important for activating gene expression from promoters and enhancers in both prokaryotic and eukaryotic cells. Existing methods to detect cooperative binding of a TF pair rely on analyzing the sequence that is bound. We propose a method that uses, instead, only ChIP-Seq peak intensities and an expectation maximisation (CPI-EM) algorithm. We validate our method using ChIP-seq data from cells where one of a pair of TFs under consideration has been genetically knocked out. Our algorithm relies on our observation that cooperative TF-TF binding is correlated with weak binding of one of the TFs, which we demonstrate in a variety of cell types, including E. coli, S. cerevisiae, M. musculus, as well as human cancer and stem cell lines.
    [Show full text]
  • PSB 2009 Attendees (As of January 9, 2009) Mario Albrecht Max Planck
    PSB 2009 Attendees (as of January 9, 2009) Mario Albrecht Steven Brenner Max Planck Institute for Informatics University of California, Berkeley Hesham Ali Andrzej Brodzik University of Nebraska at Omaha The MITRE Corporation Gil Alterovitz Lukas Burger Harvard/MIT Institute of Bioinformatics, University of Basel Gregory Arnold Amgen Gregory Burrows OHSU Adam Asare UCSF/ITN William Bush Vanderbilt University Pierre Baldi University of California Andrea Califano Columbia University Lars Barquist UC Berkeley J. Gregory Caporaso Univeristy of Colorado Denver James Bassingthwaighte Univeristy of Washington Vincent Carey Harvard Medical School Tanya Berger-Wolf University of Illinois at Chicago Yuhui Cheng University of California, San Diego Ghislain Bidaut INSERM U891 Institut Paoli-Calmette Raymond Cheong Johns Hopkins University Marco Blanchette Stowers Institute for Medical Research Annie Chiang Stanford University Ben Blencowe Gilsoo Cho Anthony Bonner Yonsei University University of Toronto Sung Bum Cho Ingrid Borecki Seoul National University Bioinformatics Washington University Kevin Cohen John Bouck University of Colorado Denver Ceres, Inc. Dilek Colak Philip Bourne King Faisal Specialist Hospital and University of California, San Diego Research Centre PSB 2009 Attendees (as of January 9, 2009) James Costello Laura Elnitski Indiana University NHGRI Anneleen Daemen Drew Endy Dept. Electrical Engineering, KULeuven Stanford University Denise Daley Eric Fahrenthold University of British Columbia Yiping Fan Paul Davis St Jude Children's
    [Show full text]
  • Predicting Specificity in Bzip Coiled-Coil Protein Interactions Comment Jessica H Fong*, Amy E Keating† and Mona Singh*
    Open Access Method2004FongetVolume al. 5, Issue 2, Article R11 Predicting specificity in bZIP coiled-coil protein interactions comment Jessica H Fong*, Amy E Keating† and Mona Singh* Addresses: *Computer Science Department and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Olden Street, Princeton, NJ 08544, USA. †Department of Biology, Massachusetts Institute of Technology, Massachusetts Avenue, Cambridge, MA 02139, USA. Correspondence: Amy E Keating. E-mail: [email protected]. Mona Singh. E-mail: [email protected] reviews Published: 15 January 2004 Received: 22 September 2003 Revised: 21 November 2003 Genome Biology 2004, 5:R11 Accepted: 12 December 2003 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2004/5/2/R11 © 2004 Fong et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. PredictingWenearlycorrect.methodgenerally. present all canFurthermore, human specificity abe method used and to inyeast for cross-validationpredict bZIP predicting bZIP coiled-coil bZIP proteins, interactionsprotein-protein testing protein our showsmethod ininteractions other interactions that identifies genome including s70%me and thediated of is bZIP stronga promising by experimental the interactions coiled-coil approach data while motif. for significantly maintaining predicting When tested improvescoiled-coil that on 92% interactions performan interacof predictions betweentionsce. moreOur are reports Abstract We present a method for predicting protein-protein interactions mediated by the coiled-coil motif. When tested on interactions between nearly all human and yeast bZIP proteins, our method deposited research identifies 70% of strong interactions while maintaining that 92% of predictions are correct.
    [Show full text]
  • Real-Time Analytics for Complex Structure Data
    Real-Time Analytics for Complex Structure Data Ting Guo A Thesis submitted for the degree of Doctor of Philosophy Faculty of Engineering and Information Technology University of Technology, Sydney 2015 2 Certificate of Authorship and Originality I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Signature of Student: Date: 3 4 Acknowledgments On having completed this thesis, I am especially thankful to my supervisor Prof. Chengqi Zhang and co-supervisor Prof. Xingquan Zhu, who had led me to an at one time unfamiliar area of academic research, and trusted me and given me as much as possible freedom to purse my own research interests. Prof. Zhu has taught me how to think and study indepen- dently and how to solve a difficult scientific problem in flexible but rigorous ways. He has sacrificed much of his precious time for developing my academic research skills. When I felt lost and terrified with my future, he always gave me the confidence and motivation to keep going and strive to get better. Prof. Zhang has also given me great help and support in life. I am thankful to the group members I met in the University of Technology, Sydney, including Shirui Pan, Lianhua Chi, Jia Wu, and many others.
    [Show full text]
  • The USTC Complex Co-Opts an Ancient Machinery to Drive Pirna Transcription In
    bioRxiv preprint doi: https://doi.org/10.1101/377390; this version posted July 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The USTC complex co-opts an ancient machinery to drive piRNA transcription in C. elegans Chenchun Weng╪,1, Asia Kosalka╪,2, Ahmet C. Berkyurek╪,2, Przemyslaw Stempor2, Xuezhu Feng1, Hui Mao1, Chenming Zeng1, Wen-Jun Li3, Yong-Hong Yan3, Meng-Qiu Dong3, Cecilia Zuliani5, Orsolya Barabas5, Julie Ahringer2, Shouhong Guang*,1 and Eric A. Miska*,2,4 1 Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China. 2 Wellcome Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK. 3 National Institute of Biological Sciences, Beijing 102206, China. 4 Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK 5 Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany. ╪ These authors contributed equally to this work. * Corresponding authors: S.G. ([email protected]) and E.A.M. ([email protected]) Running title: A USTC complex promotes piRNA biogenesis Keywords: piRNA, Ruby motif, SNPC, PRDE-1, SNPC-4, TOFU-4, TOFU-5, snRNA, U6 RNA bioRxiv preprint doi: https://doi.org/10.1101/377390; this version posted July 30, 2018.
    [Show full text]
  • Accurate Estimation of Gene Expression Levels from DGE Sequencing Data
    Accurate Estimation of Gene Expression Levels from DGE Sequencing Data Marius Nicolae and Ion M˘andoiu Computer Science & Engineering Department, University of Connecticut 371 Fairfield Way, Storrs, CT 06269 {man09004,ion}@engr.uconn.edu Abstract. Two main transcriptome sequencing protocols have been pro- posed in the literature: the most commonly used shotgun sequencing of full length mRNAs (RNA-Seq) and 3’-tag digital gene expression (DGE). In this paper we present a novel expectation-maximization algorithm, called DGE-EM, for inference of gene-specific expression levels from DGE tags. Unlike previous methods, our algorithm takes into account alter- native splicing isoforms and tags that map at multiple locations in the genome, and corrects for incomplete digestion and sequencing errors. The open source Java/Scala implementation of the DGE-EM algorithm is freely available at http://dna.engr.uconn.edu/software/DGE-EM/. Experimental results on real DGE data generated from reference RNA samples show that our algorithm outperforms commonly used estima- tion methods based on unique tag counting. Furthermore, the accuracy of DGE-EM estimates is comparable to that obtained by state-of-the-art estimation algorithms from RNA-Seq data for the same samples. Results of a comprehensive simulation study assessing the effect of various ex- perimental parameters suggest that further improvements in estimation accuracy could be achieved by optimizing DGE protocol parameters such as the anchoring enzymes and digestion time. 1 Introduction Massively parallel transcriptome sequencing is quickly replacing microarrays as the technology of choice for performing gene expression profiling due to its wider dynamic range and digital quantitation capabilities.
    [Show full text]