Pest and Vector Control

Total Page:16

File Type:pdf, Size:1020Kb

Pest and Vector Control This page intentionally left blank Pest and Vector Control As ravagers of crops and carriers of diseases affecting plants, humans and animals, insects present a challenge to a growing human population. In Pest and Vector Control, Professors van Emden and Service describe the available options for meeting this challenge, discussing their relative advantages, disadvantages and future potential. Methods such as chemical and biological control, environmental and cultural control, host tolerance and resistance are discussed, integrating (often for the first time) infor- mation and experience from the agricultural and medical/veterinary fields. Chemical control is seen as a major component of insect control, both now and in the future, but this is balanced with an extensive account of associated problems, especially the development of pesticide-tolerant populations. Pest and Vector Control H. F. van Emden Emeritus Professor of Horticulture School of Plant Sciences The University of Reading and M. W. Service Emeritus Professor of Medical Entomology Vector Research Group Liverpool School of Tropical Medicine Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge , UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521811958 © H. F. van Emden and M. W. Service 2004 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2004 - ---- eBook (EBL) - --- eBook (EBL) - ---- hardback - --- hardback - ---- paperback - --- paperback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Prefacepageix 1Manandinsects1 Impactonman1 Pestsandvectors8 Categoriesofpestsandvectors9 Agriculturalpracticesanddisease20 Beneficialimpactsofinsects24 2Thecausesofpestandvectoreddiseaseoutbreaks31 Introduction 31 The pest problem 31 Factors affecting the abundance of insects 32 Epidemic situations 40 3 Insecticides and their formulation 52 Introduction 52 The industrial development of new insecticides 53 The main groups of insecticides 58 Formulations 72 vi Contents 4 Application of insecticides 77 Introduction 77 Spray application to the target/surface 78 Application of solids 93 Special forms of application of insecticide 94 Deposits and residues 104 5 Problems with insecticides 107 Introduction 107 Case history for lessons in failure: malaria eradication 108 Toxicity to humans 110 Effects on wildlife 112 Nature fights back 114 The resistance race 121 The other road 122 6 Environmental/cultural control 123 Introduction 123 History of environmental/cultural control 123 Sources of environmental/cultural control 125 Conclusions 145 7 Biological control 147 Introduction 147 History of biological control 147 Advantages of biological control 149 Disadvantages of biological control 151 The range of animal biological control agents 153 The techniques of biological control 158 Some examples of successful biological control 167 Principal reasons for the failure of biological control 172 Is biological control natural? 174 8 Insect pathogens 177 Introduction 177 Advantages of pathogens 178 Contents vii Disadvantages of pathogens 179 Types of pathogens used in pest control 181 Conclusions 189 9 Genetic control 190 Introduction 190 Sterile-insect release technique 191 Chromosomal translocations 196 Hybrid sterility 197 Competitive displacement 198 Cytoplasmic incompatibility 199 Chemosterilization 199 Genetic manipulation of insects 201 10 Pheromones 204 Introduction 204 Use of pheromones for monitoring pest populations 207 Use of pheromones for trapping-out pest populations (‘lure and kill’) 208 The pheromone confusion technique 210 Oviposition deterrent pheromones 213 Alarm pheromone 213 Distribution of pheromone usage 214 Pest resistance to pheromone techniques 214 11 Plant and host resistance 215 Introduction 215 Sources of variation 217 Location of sources for resistance 219 The classification of resistance 220 Mechanisms of plant resistance 221 The problems of using plant resistance 231 Vertebrate host resistance 237 12 Other control measures and related topics 242 Introduction 242 Physical methods 242 viii Contents Behaviour-modifying chemicals (other than mentionedelsewhere)253 Legislative controls 257 Other topics 261 13 Pest and vector management 271 Introduction 271 The classic examples of insecticide failure on crops in the 1950s 272 Theintegratedcontrolconcept275 Concepts of pest and vector management 277 The procedure of integrated control 278 Thefateoftheintegratedcontrolconceptinrespectofcrops302 Later developments of the integrated control concept: crop pests 303 Later developments of the integrated control concept: medical and veterinary pests 304 Control versus eradication 306 Pest management packages 307 Modelling medical and veterinary pest populations 315 Conclusions316 Appendix of names of some chemicals and microbials used as pesticides 320 References 325 Index 328 Preface For nearly 30 years, generations of students of crop protection have used a slim volume, written by one of us (HvE), and first published in the Studies in Biology Series entitled Pest Control and its Ecology (1974) and later revised with the title simplified to Pest Control (1989). When the time came for a 3rd edition, the publisher (in the form of Ward Cooper of Cambridge University Press) asked that the book be enlarged and expanded to include areas of applied entomology not included previously, particularly the control of insects of medical and veterinary importance. Fortunately we had been undergraduates together in the Department of Zoology and Applied Entomology at Imperial College, graduating in 1955 and, although agricultural and medical entomology led our respective careers in different directions immediately thereafter, we have remained in contact and firm friends ever since. The co-authorship of the new enlarged edition was therefore never in doubt! Like Pest Control (1989), this book is also limited to the control of arthro- pods; we felt that amplifying the title would make the latter cumbersome if more descriptive. We think the result is a book unique in the width of its coverage of the control of problem insects. We have not only covered insects of agricultural, stored product, medical and veterinary importance, but we have included the full range of control methods, including some which will be unfamiliar to most readers. These follow a general introduction on how insects interact with man and a ‘rough guide’ to the essentials of animal population dynamics as necessary to understand how insect problems arise. In then going through the different control methods, we give our opinion on their advantages and x Preface limitations as well as their relative importance and where they are going in the future. Even those still on the research bench, and those we suspect may not be going anywhere, are included. This is because we wish to explore the rich variety of man’s ingenuity in his battle against insects and make it clear that contributions have come from unexpected quarters, e.g. the physics of spec- tral absorption of different glasshouse cladding materials and the design of machines for paint-spraying metal grids. Another rather unusual feature of our book is that we not only include the components and principles of pest management but, in our final chapter, also explain how the different compo- nents may be combined and integrated into pest management programmes. Now anyone in either the agricultural or medical entomology field will know that ‘never (or only very rarely) the twain shall meet’. Conferences or day-meetings on the two entomological disciplines attract totally different audiences, who hardly read each other’s textbooks or scientific papers. We are ourselves examples of this; we believe we have never attended the same meeting or conference. Even the indispensable applied entomology abstracting journal, the Review of Applied Entomology, was split into two distinct annual volumes (Agricultural and Medical and Veterinary) as long ago as 1913. Combining the two areas of entomology in a single book has previously rarely been attempted, and we quickly discovered a major difference as to how pest control is subdivided in our two disciplines. In agriculture there are many crops, with several major pests on each; control is usually practised on the clearly defined area of the crop. In medical/veterinary entomology, by contrast, the types of problems are fewer, but nevertheless some of the problems involve really serious diseases transmitted by arthropods to very large populations of humans or livestock. Control of the vectors often is not on the attacked target (a human or animal) but carried out in the wider environment of that target, an environment which is usually heterogeneous and may be on a very large (e.g. regional or countrywide) scale. The result of these contrasts is that, whereas a text on pest control in agricultural entomology is divided by control approach (chemical, biological, cultural etc.), control in medical/veterinary entomology is usually
Recommended publications
  • The Auricle Moray Beekeepers Association Newsletter Hot Off the ‘Press’ Au Gust Issue No: 5/09 T HIS MONTH’S NEWSLETTER IS ANONYMOUSLY SPONSORED by an M.B.A
    The Auricle Moray Beekeepers Association Newsletter Hot off the ‘press’ Au gust Issue No: 5/09 T HIS MONTH’S NEWSLETTER IS ANONYMOUSLY SPONSORED BY AN M.B.A. MEMBER – THANK YOU! ‘I’M A BEEKEEPER, GET ME OUT OF HERE!!!’ Approximately 30 members attended the August meeting at Andrew Tassell’s apiary in Fochabers and those who managed to forge the swollen burn, scramble up the muddy bank, overcome the assault course and navigate through the ‘jungle’ enjoyed an informative talk and demonstration by Andrew entitled, ‘Preparing Bees for the Heather.’ Heather honey is the ‘Rolls Royce’ of honey and Scottish heather honey is much sought after demanding premium prices so it is worth making the effort to get some, particularly as most of us live within easy reach of the heather. Andrew demonstrating how to secure a hive watched by MBA member Adrian Wardlaw Andrew moves his best hives to the heather during the last weekend of July for about five weeks and if the heather secretes nectar for a couple of weeks there should be at least one super of honey on each hive. Hives for the heather should be absolutely packed full with bees so Andrew adds up to 2 frames of emerging brood from another disease free hive a couple of weeks before the move. Other tips include moving frames of eggs and brood to the outside of the brood frame and frames of honey to the centre. As the bees usually like to store honey in the outside frames, leaving the centre frames for the queen to lay in, they usually move this honey to a super, and this should be done a couple of weeks before and then again a couple of days before the move.
    [Show full text]
  • Recent Advances in Developing Insect Natural Products As Potential Modern Day Medicines
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2014, Article ID 904958, 21 pages http://dx.doi.org/10.1155/2014/904958 Review Article Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines Norman Ratcliffe,1,2 Patricia Azambuja,3 and Cicero Brasileiro Mello1 1 Laboratorio´ de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niteroi,´ RJ, Brazil 2 Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK 3 Laboratorio´ de Bioqu´ımica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundac¸ao˜ Oswaldo Cruz, Avenida Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil Correspondence should be addressed to Patricia Azambuja; [email protected] Received 1 December 2013; Accepted 28 January 2014; Published 6 May 2014 Academic Editor: Ronald Sherman Copyright © 2014 Norman Ratcliffe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Except for honey as food, and silk for clothing and pollination of plants, people give little thought to the benefits of insects in their lives. This overview briefly describes significant recent advances in developing insect natural products as potential new medicinal drugs. This is an exciting and rapidly expanding new field since insects are hugely variable and have utilised an enormous range of natural products to survive environmental perturbations for 100s of millions of years. There is thus a treasure chest of untapped resources waiting to be discovered. Insects products, such as silk and honey, have already been utilised for thousands of years, and extracts of insects have been produced for use in Folk Medicine around the world, but only with the development of modern molecular and biochemical techniques has it become feasible to manipulate and bioengineer insect natural products into modern medicines.
    [Show full text]
  • Insect Management
    C H A P T E R 5 INSECT MANAGEMENT “change in form.” Pests of field crops undergo either sim- LEARNING OBJECTIVES ple or complete metamorphosis. After completely studying this chapter, you should: Group 1. Simple Metamorphosis I Understand how insects grow and develop. When insects that develop by simple metamorphosis hatch from their eggs, they resemble the adult insects I Understand the difference between simple and com- except that the immatures, or nymphs, do not have plete metamorphosis. wings. Nymphs periodically molt, growing larger. After I Be able to identify general and major insect pests of the final molt, nymphs become adults and generally have alfalfa, corn, dry beans, soybeans, small grains, and wings. Many pests of field crops such as potato leafhop- sugar beets. per, sugarbeet root aphid, tarnished plant bug, and grasshoppers develop by simple metamorphosis. I Be able to describe the life cycles and habitats of the Nymphs and adults are often found together in the crop major field crop pests. and usually eat the same food. Insect damage reduces crop yield or quality, or conta- minates the final product. Insects can also transmit plant diseases. To effectively control insect pests, you should understand how insects grow and develop. Egg Nymphs Adult GROWTH AND DEVELOPMENT A plant bug is an example of an insect with simple Growth metamorphosis. An insect’s body is confined in a protective exoskele- Group 2. Complete Metamorphosis ton. This hard outer covering does not grow continuous- ly. A new, soft exoskeleton is formed under the old one, Insects that develop by complete metamorphosis and the old exoskeleton is shed—a process called molt- make a radical change in appearance from immature to ing.
    [Show full text]
  • Myiasis During Adventure Sports Race
    DISPATCHES reexamined 1 day later and was found to be largely healed; Myiasis during the forming scar remained somewhat tender and itchy for 2 months. The maggot was sent to the Finnish Museum of Adventure Natural History, Helsinki, Finland, and identified as a third-stage larva of Cochliomyia hominivorax (Coquerel), Sports Race the New World screwworm fly. In addition to the New World screwworm fly, an important Old World species, Mikko Seppänen,* Anni Virolainen-Julkunen,*† Chrysoimya bezziana, is also found in tropical Africa and Iiro Kakko,‡ Pekka Vilkamaa,§ and Seppo Meri*† Asia. Travelers who have visited tropical areas may exhibit aggressive forms of obligatory myiases, in which the larvae Conclusions (maggots) invasively feed on living tissue. The risk of a Myiasis is the infestation of live humans and vertebrate traveler’s acquiring a screwworm infestation has been con- animals by fly larvae. These feed on a host’s dead or living sidered negligible, but with the increasing popularity of tissue and body fluids or on ingested food. In accidental or adventure sports and wildlife travel, this risk may need to facultative wound myiasis, the larvae feed on decaying tis- be reassessed. sue and do not generally invade the surrounding healthy tissue (1). Sterile facultative Lucilia larvae have even been used for wound debridement as “maggot therapy.” Myiasis Case Report is often perceived as harmless if no secondary infections In November 2001, a 41-year-old Finnish man, who are contracted. However, the obligatory myiases caused by was participating in an international adventure sports race more invasive species, like screwworms, may be fatal (2).
    [Show full text]
  • Ken Macintyre and Barb Dobson 2017 Research Anthropologists
    Ken Macintyre and Barb Dobson 2017 Research anthropologists www.anthropologyfromtheshed.com The writings of colonial recorders have often misrepresented Aboriginal people as deriving most of their food from the hunting of large game (kangaroo, wallaby, emu) when in fact the bulk of their diet (around 80%) was based on vegetable foods and small game, for example, lizards, goannas, snakes, insect larvae, rodents and small marsupials many of which are now endangered or extinct. Grub eating was looked down upon as an aberrant, opportunistic and almost degenerate means of human survival. This practice, like other unfamiliar food traditions such as indigenous geophagy (earth-eating) that we have described in a separate paper (www.anthropologyfromtheshed.com) only reinforced the colonial idea that the Aborigines of southwestern Australia, like those in other parts of Australia, were subhuman, uncivilized and deserved to be colonized by the economically, culturally and technologically superior ‘civilized’ white people. Little did the colonial superiors realize that traditional Nyungar knowledge of environmental, botanical, biological, phenological, ecological and entomological phenomena was heavily steeped in science and mythology and that this could have become a valuable asset to the colonizers had they wished to avail themselves of this knowledge. Nyungar people used a range of environmental and astronomical indicators for predicting weather, seasonality, animal breeding patterns, movements and so on. They understood how humans, animals, plants and all of life were interconnected and this awareness was manifest in their complicated web of kinship and totemistic affiliations, rituals and mythology. Even anthropology graduates often have great difficulty comprehending the intricacies of these classificatory totemic kin relationships that bonded humans to their natural world.
    [Show full text]
  • Bugs As Drugs, Part 1: Insects. the “New” Alternative Medicine for the 21St Century? E
    amr Review Article Bugs as Drugs, Part 1: Insects. The “New” Alternative Medicine for the 21st Century? E. Paul Cherniack, MD Abstract estimates that $20 billion will be needed to replace Insects and insect-derived products have been widely used in the shortage of 800,000 conventional health care folk healing in many parts of the world since ancient times. workers by 2015.1 Globally ubiquitous, arthropods Promising treatments have at least preliminarily been studied potentially provide a cheap, plentiful supply of experimentally. Maggots and honey have been used to heal healing substances in an economically challenged chronic and post-surgical wounds and have been shown to be world. comparable to conventional dressings in numerous settings. Honey has also been applied to treat burns. Honey has been Maggots combined with beeswax in the care of several dermatologic The most well-studied medical application of disorders, including psoriasis, atopic dermatitis, tinea, arthropods is the use of maggots – the larvae of pityriasis versicolor, and diaper dermatitis. Royal jelly has flies (most frequently that of Lucilia sericata, a been used to treat postmenopausal symptoms. Bee and ant blowfly) that feed on necrotic tissue.2 Traditional venom have reduced the number of swollen joints in patients healers from many parts of the world including with rheumatoid arthritis. Propolis, a hive sealant made by Asia, South America, and Australia have used bees, has been utilized to cure aphthous stomatitis. “larval therapy,”3 and records of physician use of Cantharidin, a derivative of the bodies of blister beetles, has maggots to heal wounds have existed since the been applied to treat warts and molluscum contagiosum.
    [Show full text]
  • An Initial in Vitro Investigation Into the Potential Therapeutic Use of Lucilia Sericata Maggot to Control Superficial Fungal Infections
    Volume 6, Number 2, June .2013 ISSN 1995-6673 JJBS Pages 137 - 142 Jordan Journal of Biological Sciences An Initial In vitro Investigation into the Potential Therapeutic Use Of Lucilia sericata Maggot to Control Superficial Fungal Infections Sulaiman M. Alnaimat1,*, Milton Wainwright2 and Saleem H. Aladaileh 1 1 Biological Department, Al Hussein Bin Talal University, Ma’an, P.O. Box 20, Jordan; 2 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield,S10 2TN, UK Received: November 12, 2012; accepted January 12, 2013 Abstract In this work an attempt was performed to investigate the in vitro ability of Lucilia sericata maggots to control fungi involved in superficial fungal infections. A novel GFP-modified yeast culture to enable direct visualization of the ingestion of yeast cells by maggot larvae as a method of control was used. The obtained results showed that the GFP-modified yeasts were successfully ingested by Lucilia sericata maggots and 1mg/ml of Lucilia sericata maggots excretions/ secretions (ES) showed a considerable anti-fungal activity against the growth of Trichophyton terrestre mycelium, the radial growth inhibition after 10 days of incubation reached 41.2 ±1.8 % in relation to the control, these results could lead to the possible application of maggot therapy in the treatment of wounds undergoing fungal infection. Keywords: Lucilia sericata, Maggot Therapy, Superficial Fungal Infections And Trichophyton Terrestre. (Sherman et al., 2000), including diabetic foot ulcers 1. Introduction (Sherman, 2003), malignant adenocarcinoma (Sealby, 2004), and for venous stasis ulcers (Sherman, 2009); it is Biosurgical debridement or "maggot therapy" is also used to combat infection after breast-conservation defined as the use of live, sterile maggots of certain type surgery (Church 2005).
    [Show full text]
  • Diptera) S Novými Poznatky O Identifikaci, Ekologii a Rozšíření Středoevropských Druhů
    MASARYKOVA UNIVERZITA Přírodovědecká fakulta Olga KOMZÁKOVÁ Studium fylogeneze evropských rodů čeledi Anthomyiidae (Diptera) s novými poznatky o identifikaci, ekologii a rozšíření středoevropských druhů Dizertační práce Školitel: Prof. RNDr. Rudolf Rozkošný, DrSc. Brno, 2012 Bibliografická identifikace Jméno a příjmení autora: Olga Komzáková Název disertační práce: Studium fylogeneze evropských rodů čeledi Anthomyiidae (Diptera) s novými poznatky o identifikaci, ekologii a rozšíření středoevropských druhů Název disertační práce anglicky: A study on the phylogeny of the European genera of Anthomyiidae (Diptera) with new data on identification, ecology and the distribution of the Central European species Studijní progarm: Biologie Studujní obor (směr), 15001V - Zoologie kombinace oborů: Školitel: Prof. RNDr. Rudolf Rozkošný, DrSc Rok obhajoby: 2012 Klíčová slova: Anthomyiidae, fylogenetická analýza, kladogram, molekulární analýza, fylogram, ovipositor, Botanophila, synekologické analýzy, checklist, rozšíření. Klíčová slova anglicky: Anthomyiidae, phylogenetic analysis, cladogram, molecular analysis, phylogram, ovipositor, Botanophila, synecological analysis, check list, distribution. © Olga Komzáková, Masarykova univerzita, 2012 Poděkování Na tomto místě bych ráda poděkovala zejména svému školiteli prof. Rudolfu Rozkošnému za vzorné odborné vedení, obrovskou trpělivost a ochotu. Velký dík patří i Dr. Verneru Michelsenovi, který mi byl nápomocen při determinacích obtížných druhů a při studiu entomologických sbírek v Zoologickém muzeu v Kodani.
    [Show full text]
  • Elephant Weevil Impact and Control in Vineyards – Stage 3
    Elephant Weevil impact and control in vineyards – Stage 3: Regional Survey & Evaluation Trials of Elephant Weevil (Orthorhinus cylindrirostris) in the Langhorne Creek Grape Growing Area. FINAL REPORT to GRAPE AND WINE RESEARCH & DEVELOPMENT CORPORATION Project Number: RT 03/08-2 Principal Investigator: Mr. Steven Coventry. Research Organisation: Langhorne Creek Vine Improvement Date: 30th June 2004. Executive Summary: This project represented the third and final stage of an initial investigation into the incidence and impact of the Elephant Weevil pest in Langhorne Creek vineyards. The project helped raise awareness of this pest to growers and gained the cooperation of the community in endeavours to better understand and monitor for the Elephant Weevil. A grower survey proved it difficult to isolate any particular impacting factors but did provide a very good map compilation of the incidence of the Elephant Weevil. It also served to highlight areas for the student, Steven Coventry, to focus his field efforts (given the relatively short period of the project). This project has resulted in a better understanding of the lifecycle, developmental stages, behaviour and activity of the Elephant Weevil in the Langhorne Creek wine region. The primary findings are summarised below: • Weaker vines tend to be favoured by the Elephant Weevils. • Not grape vine variety specific. • Early indications are that the main incidence is nearer the river systems (Angas & Bremer). • The basic control measures of cutting out affected wood or vines and burning the material seems to be quite effective (though costly in time and income). • Adults have been found from about late September through into vintage.
    [Show full text]
  • Edible Insects and Other Invertebrates in Australia: Future Prospects
    Alan Louey Yen Edible insects and other invertebrates in Australia: future prospects Alan Louey Yen1 At the time of European settlement, the relative importance of insects in the diets of Australian Aborigines varied across the continent, reflecting both the availability of edible insects and of other plants and animals as food. The hunter-gatherer lifestyle adopted by the Australian Aborigines, as well as their understanding of the dangers of overexploitation, meant that entomophagy was a sustainable source of food. Over the last 200 years, entomophagy among Australian Aborigines has decreased because of the increasing adoption of European diets, changed social structures and changes in demography. Entomophagy has not been readily adopted by non-indigenous Australians, although there is an increased interest because of tourism and the development of a boutique cuisine based on indigenous foods (bush tucker). Tourism has adopted the hunter-gatherer model of exploitation in a manner that is probably unsustainable and may result in long-term environmental damage. The need for large numbers of edible insects (not only for the restaurant trade but also as fish bait) has prompted feasibility studies on the commercialization of edible Australian insects. Emphasis has been on the four major groups of edible insects: witjuti grubs (larvae of the moth family Cossidae), bardi grubs (beetle larvae), Bogong moths and honey ants. Many of the edible moth and beetle larvae grow slowly and their larval stages last for two or more years. Attempts at commercialization have been hampered by taxonomic uncertainty of some of the species and the lack of information on their biologies.
    [Show full text]
  • 210818 the Principles of Maggot Therapy and Its Role in Contemporary Wound Care
    Copyright EMAP Publishing 2021 This article is not for distribution except for journal club use Clinical Practice Keywords Maggot therapy/Wound care/Wound healing Review This article has been Wound care double-blind peer reviewed In this article... ● Evidence supporting maggot therapy in wound care ● Indications for use and how the process works ● Patient perception of the treatment The principles of maggot therapy and its role in contemporary wound care Key points Author Yamni Nigam is professor (anatomy and physiology), College of Human and Maggot therapy has Health Sciences, Swansea University. been available on NHS prescription Abstract Maggot therapy is becoming increasingly established as an option for the since 2004 debridement and treatment of sloughy, necrotic wounds. Although used tentatively NT SELF- over the previous few decades, it became more widespread following its availability ASSESSMENT Maggots are on NHS prescription in 2004. Since then, the scientific and clinical evidence for the Test your clinically effective efficacy of maggot therapy has mounted considerably, and it has been shown to be knowledge. for the debridement effective, not only for wound debridement but also in reducing the bacterial burden After reading this of sloughy, necrotic of a wound and accelerating wound healing. This article reviews current evidence, article go to chronic wounds and discusses the clinical indications for use, and the rearing and clinical application nursingtimes.net/ of maggots, as well as patient and health provider perceptions of maggot therapy. NTSAMaggots If you score 80% Secondary benefits or more, you will of maggot therapy Citation Nigam Y (2021) The principles of maggot therapy and its role in receive a certificate include reduction of contemporary wound care.
    [Show full text]
  • Biology and Control of Spinach and Chard Leafminers
    Factsheet 30/12 Field Vegetables Biology and control of spinach and chard leafminers Professor John Colvin, NRI, the University of Greenwich Leafminers cause damage to chard and spinach crops by creating unsightly mines that reduce crop quality and value. A much worse scenario occurs when the leaf or stem mines go unnoticed and the larvae are able to feed for two weeks. Larvae develop into 6 mm long white maggots whose presence in speciality salad crops is unacceptable. This factsheet, an output from HDC project 397, provides details on the identity of the pest responsible, the damage it causes and summarises information on pest biology in Britain. Management strategies are also presented. Action points • Remove volunteer chard, spinach plants and any other • Establish a leafminer monitoring system to inform host plants in spring to reduce host availability for decision making and ensure timely application of controls. leafminer populations emerging from winter diapause. • When monitoring data indicates the need for sprays, • Prepare fields early in the year, by ploughing in leafminer chemical products with different modes of action should host plants. This should reduce populations by killing be alternated to prevent resistance development and pupae present in the soil. thus ensure sustainable long-term chard and spinach production. 1. Adult P. hyoscyami female that, to the non-specialist, looks like many other fly species Background Growers of high value leafy salads use mesh netting to protect In 2011 the beet leafminer or “mangold fly” Pegomya hyoscyami some crops from a complex of insect and vertebrate pests. (Figures 1 & 2) was found to be the only leafminer species Unfortunately, it is impractical to use netting to protect Swiss causing significant damage to chard and spinach crops in chard (Beta vulgaris subsp.
    [Show full text]