Regulation of Pyruvate Dehydrogenase Kinase 4 (PDK4) Through Protein-Protein Interaction and Its Role in Apoptosis

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Pyruvate Dehydrogenase Kinase 4 (PDK4) Through Protein-Protein Interaction and Its Role in Apoptosis View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wits Institutional Repository on DSPACE Regulation of pyruvate dehydrogenase kinase 4 (PDK4) through protein-protein interaction and its role in apoptosis Patricia Coliwe Ntlabati A dissertation submitted to the faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2008 Declaration I, Patricia Coliwe Ntlabati, declare that this dissertation is my own work and any added information from other sources has been carefully referenced. The dissertation “The regulation of pyruvate dehydrogenase kinase 4 through protein-protein interaction and its role in apoptosis” is being submitted for the degree of Master of Science at the University of the Witwatersrand, South Africa. ………………………………… Patricia Coliwe Ntlabati Date:…………………………… i Dedication I would like to dedicate this work to my family at large, my father and mother who always believed, supported and loved me, my two sisters whom I have inspired throughout the years and not forgetting my two brothers (Thapelo and Eddie) who encouraged me when things were difficult. For my uncle who has been there for me ever since I started with my degree until today. Lastly and foremost I dedicate this thesis to my life partner Makhosini Dlamini who has supported, encouraged and loved me throughout and unconditionally. Your love kept me strong and enabled me to conquer anything including this difficult challenge. ii Abstract Pyruvate dehydrogenase kinase 4 (PDK4), a mammalian mitochondrial serine kinase has emerged as an interesting candidate for diabetes therapy. Due to the high prevalence of this disease especially type 2 diabetes (T2D) and the health complications associated with it, there is extensive effort to find the appropriate treatment. Understanding the regulation of PDK4 would therefore contribute significantly to the development of therapeutic agents. This research outlines the bioinformatics analysis of PDK4, using tools such as Interweaver, ClustalW and Protein Structure Visualiser. These programs were used to determine potentially interacting partners for PDK4. Interweaver database identified 96 proteins which have possible interaction sites for PDK4. Protein p100/p49, containing a death domain that is known to have a role in suppressing apoptosis, was identified as a potential partner for PDK4. The alignment between p100/p49 primary sequence and that of PDK4 using Gene explorer/ClustalW demonstrated sequence similarity between the two proteins. Swiss PDB Viewer then located the positions of the amino acids that are in the hypothetical protein binding motif of p100/p49 within the 3D structure of hPDK4. These amino acids were found to be located in the region of PDK4 which is known to bind protein substrates of PDK4 and may be accessible to other proteins as well. These findings were very interesting as PDK4 have not previously been associated with apoptosis and this could be the link between apoptosis and insulin resistance. iii Cell biology studies were then performed to verify the relationship between PDK4 and apoptosis. In this regard, HeLa and HepG2 cells were treated with apoptosis inducing agents such as TNFα, C2-Ceramide, and Linoleic acid. These cells were then monitored for apoptosis and PDK4 mRNA expression using a DNA laddering assay as well as Real Time PCR. The results showed that these factors to induce apoptosis in a concentration dependent manner. This induction of apoptosis by these three factors indicated to suppress PDK4 mRNA levels. These findings suggested a regulatory role for PDK4 in apoptosis. iv Acknowledgements My biggest thank you goes to the Council for Scientific and Industrial Research (CSIR), Biosciences unit in Modderfontein for granting me this opportunity to further my studies in terms of funding and allowing me access to their premises and facilities. To Dr Lungile Shoba who has been the driving force to the completion of my degree as being the best supervisor ever. I thank you for the patience, encouragement, guidance, support, understanding and advice you gave me throughout. I would also like to thank my other supervisor Dr Zodwa Dlamini from the University of the Witwatersrand Medical School, Molecular and Cellular Pathology Group Leader for her undivided support, guidance and advice as well as using her laboratory to conduct some of my experiments. To the Enzyme Technology group, I would like to thank Dr Dean Brady and Dr Justin Jordaan, for understanding and allowing me the opportunity to successfully complete my degree. I would also like to thank everyone in the group for the advice and support in particular Phiyane and Fritha for the contribution they made towards my thesis. To my colleagues from the PDK project Thandeka and Lindiwe, thanks for support, good times, assistance and true friendship. Lastly I want to acknowledge the University of the Witwatersrand, National Research Foundation (NRF), Wits Medical School Molecular and Cellular Pathology group in particular Zukile, Lindiwe and Lebogang for assisting with experiments and others for being there as friends (Mfundo, Raymond and Makgotso). v Publications Meetings: • SASBMB XXth Conference Ntlabati P.C. Lungile S. and Dlamini Z. Regulation of pyruvate dehydrogenase kinase 4 (PDK4) through protein-protein interaction and its role in apoptosis. 2006. University of KwaZulu Natal. P120. • Bio-08 Conference Ntlabati P.C. Lungile S. and Dlamini Z. Regulation of pyruvate dehydrogenase kinase 4 (PDK4) through protein-protein interaction and its role in apoptosis. 2008. University of Rhodes. P188. vi Table of Contents Declaration ...................................................................................................................... i Dedication ...................................................................................................................... ii Abstract ......................................................................................................................... iii Acknowledgements ........................................................................................................ v Publications ................................................................................................................... vi Table of Contents ......................................................................................................... vii List of Figures ............................................................................................................... xi List of Tables .............................................................................................................. xiv Abbreviations ............................................................................................................... xv 1 Introduction ................................................................................................................. 1 1.1 Physiological role of PDK4 ................................................................................. 2 1.2 Regulation of PDK4 ............................................................................................. 4 1.2.1 Regulation of PDK enzyme activity ............................................................. 5 1.2.2 Regulation of PDK gene expression ............................................................. 6 1.2.2.1 Signalling pathways activated by insulin ................................................ 7 1.2.2.2 Signalling pathways activated by Fatty acids ....................................... 10 1.2.2.3 Signalling pathways activated by Glucocorticoids ............................... 13 1.3 Regulation of PDK4 by protein-protein interaction ........................................... 14 1.4 The role of NFκB and p100 in apoptosis and T2D ............................................ 15 1.4.1 Signal transduction pathway involved in induction of apoptosis………….15 1.4.2 NFκB and the death receptor pathway…………………………………….17 1.4.3 Signal transduction through NFκB ………………………………………..20 1.5 NFκB and PDK4: Roles in apoptosis and Type II diabetes…………………... 21 vii 1.6 Objectives of the study ....................................................................................... 23 2 Materials and Methods .............................................................................................. 24 2.1 Bioinformatics analysis ...................................................................................... 24 2.1.1 Analysis of protein-protein interaction ....................................................... 24 2.1.2 Consensus sequence identification ............................................................. 25 2.1.3 Structural localization of the hypothetical protein binding motif in hPDK4 .............................................................................................................................. 25 2.1.3.1 Modelling of hPDK4................................................................................ 25 2.1.3.2 Localization of the hypothetical protein binding motif in hPDK4 structure .............................................................................................................................. 25 2.2 Cellular and Molecular Analysis ....................................................................... 26 2.2.1 Culturing of cells......................................................................................... 26 2.2.2 Cell Viability
Recommended publications
  • Pparδ and FOXO1 Mediate Palmitate-Induced Inhibition of Muscle Pyruvate Dehydrogenase Complex and CHO Oxidation, Events Reversed by Electrical Pulse Stimulation
    International Journal of Molecular Sciences Article PPARδ and FOXO1 Mediate Palmitate-Induced Inhibition of Muscle Pyruvate Dehydrogenase Complex and CHO Oxidation, Events Reversed by Electrical Pulse Stimulation Hung-Che Chien 1,2 , Paul L. Greenhaff 1 and Dumitru Constantin-Teodosiu 1,* 1 School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK; [email protected] (H.-C.C.); paul.greenhaff@nottingham.ac.uk (P.L.G.) 2 Department of Physiology and Biophysics, National Defense Medical Centre, Taipei 11490, Taiwan * Correspondence: [email protected]; Tel.: +44-115-8230111 Received: 20 July 2020; Accepted: 15 August 2020; Published: 18 August 2020 Abstract: The mechanisms behind the reduction in muscle pyruvate dehydrogenase complex (PDC)-controlled carbohydrate (CHO) oxidation during chronic high-fat dietary intake are poorly understood, as is the basis of CHO oxidation restoration during muscle contraction. C2C12 myotubes were treated with (300 µM) palmitate or without (control) for 16 h in the presence and absence of electrical pulse stimulation (EPS, 11.5 V, 1 Hz, 2 ms). Compared to control, palmitate reduced cell glucose uptake (p < 0.05), PDC activity (p < 0.01), acetylcarnitine accumulation (p < 0.05) and glucose-derived mitochondrial ATP production (p < 0.01) and increased pyruvate dehydrogenase kinase isoform 4 (PDK4) (p < 0.01), peroxisome proliferator-activated receptor alpha (PPARα)(p < 0.01) and peroxisome proliferator-activated receptor delta (PPARδ)(p < 0.01) proteins, and reduced the whole-cell p-FOXO1/t-FOXO1 (Forkhead Box O1) ratio (p < 0.01). EPS rescued palmitate-induced inhibition of CHO oxidation, reflected by increased glucose uptake (p < 0.01), PDC activity (p < 0.01) and glucose-derived mitochondrial ATP production (p < 0.01) compared to palmitate alone.
    [Show full text]
  • ROS Production Induced by BRAF Inhibitor Treatment Rewires
    Cesi et al. Molecular Cancer (2017) 16:102 DOI 10.1186/s12943-017-0667-y RESEARCH Open Access ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells Giulia Cesi, Geoffroy Walbrecq, Andreas Zimmer, Stephanie Kreis*† and Claude Haan† Abstract Background: Most melanoma patients with BRAFV600E positive tumors respond well to a combination of BRAF kinase and MEK inhibitors. However, some patients are intrinsically resistant while the majority of patients eventually develop drug resistance to the treatment. For patients insufficiently responding to BRAF and MEK inhibitors, there is an ongoing need for new treatment targets. Cellular metabolism is such a promising new target line: mutant BRAFV600E has been shown to affect the metabolism. Methods: Time course experiments and a series of western blots were performed in a panel of BRAFV600E and BRAFWT/ NRASmut human melanoma cells, which were incubated with BRAF and MEK1 kinase inhibitors. siRNA approaches were used to investigate the metabolic players involved. Reactive oxygen species (ROS) were measured by confocal microscopy and AZD7545, an inhibitor targeting PDKs (pyruvate dehydrogenase kinase) was tested. Results: We show that inhibition of the RAS/RAF/MEK/ERK pathway induces phosphorylation of the pyruvate dehydrogenase PDH-E1α subunit in BRAFV600E and in BRAFWT/NRASmut harboring cells. Inhibition of BRAF, MEK1 and siRNA knock-down of ERK1/2 mediated phosphorylation of PDH. siRNA-mediated knock-down of all PDKs or the use of DCA (a pan-PDK inhibitor) abolished PDH-E1α phosphorylation. BRAF inhibitor treatment also induced the upregulation of ROS, concomitantly with the induction of PDH phosphorylation.
    [Show full text]
  • Supplement 1 Overview of Dystonia Genes
    Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase
    [Show full text]
  • 1 Silencing Branched-Chain Ketoacid Dehydrogenase Or
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.960153; this version posted February 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Silencing branched-chain ketoacid dehydrogenase or treatment with branched-chain ketoacids ex vivo inhibits muscle insulin signaling Running title: BCKAs impair insulin signaling Dipsikha Biswas1, PhD, Khoi T. Dao1, BSc, Angella Mercer1, BSc, Andrew Cowie1 , BSc, Luke Duffley1, BSc, Yassine El Hiani2, PhD, Petra C. Kienesberger1, PhD, Thomas Pulinilkunnil1†, PhD 1Department of Biochemistry and Molecular Biology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada, 2Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada. †Correspondence to Thomas Pulinilkunnil, PhD Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada. Telephone: (506) 636-6973; Fax: (506) 636-6001; email: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.960153; this version posted February 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International
    [Show full text]
  • Transglutaminase-Catalyzed Inactivation Of
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12604–12609, November 1997 Medical Sciences Transglutaminase-catalyzed inactivation of glyceraldehyde 3-phosphate dehydrogenase and a-ketoglutarate dehydrogenase complex by polyglutamine domains of pathological length ARTHUR J. L. COOPER*†‡§, K.-F. REX SHEU†‡,JAMES R. BURKE¶i,OSAMU ONODERA¶i, WARREN J. STRITTMATTER¶i,**, ALLEN D. ROSES¶i,**, AND JOHN P. BLASS†‡,†† Departments of *Biochemistry, †Neurology and Neuroscience, and ††Medicine, Cornell University Medical College, New York, NY 10021; ‡Burke Medical Research Institute, Cornell University Medical College, White Plains, NY 10605; and Departments of ¶Medicine, **Neurobiology, and iDeane Laboratory, Duke University Medical Center, Durham, NC 27710 Edited by Louis Sokoloff, National Institutes of Health, Bethesda, MD, and approved August 28, 1997 (received for review April 24, 1997) ABSTRACT Several adult-onset neurodegenerative dis- Q12-containing peptide (16). In the work of Kahlem et al. (16) the eases are caused by genes with expanded CAG triplet repeats largest Qn domain studied was Q18. We found that both a within their coding regions and extended polyglutamine (Qn) nonpathological-length Qn domain (n 5 10) and a longer, patho- domains within the expressed proteins. Generally, in clinically logical-length Qn domain (n 5 62) are excellent substrates of affected individuals n > 40. Glyceraldehyde 3-phosphate dehy- tTGase (17, 18). drogenase binds tightly to four Qn disease proteins, but the Burke et al. (1) showed that huntingtin, huntingtin-derived significance of this interaction is unknown. We now report that fragments, and the dentatorubralpallidoluysian atrophy protein purified glyceraldehyde 3-phosphate dehydrogenase is inacti- bind selectively to glyceraldehyde 3-phosphate dehydrogenase vated by tissue transglutaminase in the presence of glutathione (GAPDH) in human brain homogenates and to immobilized S-transferase constructs containing a Qn domain of pathological rabbit muscle GAPDH.
    [Show full text]
  • 1 Silencing Branched-Chain Ketoacid Dehydrogenase Or
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.960153; this version posted February 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Silencing branched-chain ketoacid dehydrogenase or treatment with branched-chain ketoacids ex vivo inhibits muscle insulin signaling Running title: BCKAs impair insulin signaling Dipsikha Biswas1, PhD, Khoi T. Dao1, BSc, Angella Mercer1, BSc, Andrew Cowie1 , BSc, Luke Duffley1, BSc, Yassine El Hiani2, PhD, Petra C. Kienesberger1, PhD, Thomas Pulinilkunnil1†, PhD 1Department of Biochemistry and Molecular Biology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada, 2Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada. †Correspondence to Thomas Pulinilkunnil, PhD Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Dalhousie Medicine New Brunswick, 100 Tucker Park Road, Saint John E2L4L5, New Brunswick, Canada. Telephone: (506) 636-6973; Fax: (506) 636-6001; email: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.21.960153; this version posted February 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International
    [Show full text]
  • Aerobic Glycolysis Fuels Platelet Activation: Small-Molecule Modulators of Platelet Metabolism As Anti-Thrombotic Agents
    ARTICLE Platelet Biology & its Disorders Aerobic glycolysis fuels platelet activation: Ferrata Storti Foundation small-molecule modulators of platelet metabolism as anti-thrombotic agents Paresh P. Kulkarni,1† Arundhati Tiwari,1† Nitesh Singh,1 Deepa Gautam,1 Vijay K. Sonkar,1 Vikas Agarwal2 and Debabrata Dash1 1Department of Biochemistry, Institute of Medical Sciences and 2Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Haematologica 2019 Pradesh, India Volume 104(4):806-818 † PPK and AT contributed equally to this work. ABSTRACT latelets are critical to arterial thrombosis, which underlies myocardial infarction and stroke. Activated platelets, regardless of the nature of Ptheir stimulus, initiate energy-intensive processesthat sustain throm- bus, while adapting to potential adversities of hypoxia and nutrient depri- vation within the densely packed thrombotic milieu. We report here that stimulated platelets switch their energy metabolism to robicae glycolysis by modulating enzymes at key checkpoints in glucose metabolism. We found that aerobic glycolysis, in turn, accelerates flux through the pentose phos- phate pathway and supports platelet activation. Hence, reversing metabolic adaptations of platelets could be an effective alternative to conventional anti-platelet approaches, which are crippled by remarkable redundancy in platelet agonists and ensuing signaling pathways. In support of this hypoth- esis, small-molecule modulators of pyruvate dehydrogenase, pyruvate kinase M2 and glucose-6-phosphate dehydrogenase, all of which impede aerobic glycolysis and/or the pentose phosphate pathway, restrained the Correspondence: agonist-induced platelet responsesex vivo. These drugs, which include the DEBABRATA DASH anti-neoplastic candidate, dichloroacetate, and the Food and Drug [email protected] Administration-approved dehydroepiandrosterone, profoundly impaired thrombosis in mice, thereby exhibiting potential as anti-thrombotic agents.
    [Show full text]
  • Emerging Roles of P53 Family Members in Glucose Metabolism
    International Journal of Molecular Sciences Review Emerging Roles of p53 Family Members in Glucose Metabolism Yoko Itahana and Koji Itahana * Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; [email protected] * Correspondence: [email protected]; Tel.: +65-6516-2554; Fax: +65-6221-2402 Received: 19 January 2018; Accepted: 22 February 2018; Published: 8 March 2018 Abstract: Glucose is the key source for most organisms to provide energy, as well as the key source for metabolites to generate building blocks in cells. The deregulation of glucose homeostasis occurs in various diseases, including the enhanced aerobic glycolysis that is observed in cancers, and insulin resistance in diabetes. Although p53 is thought to suppress tumorigenesis primarily by inducing cell cycle arrest, apoptosis, and senescence in response to stress, the non-canonical functions of p53 in cellular energy homeostasis and metabolism are also emerging as critical factors for tumor suppression. Increasing evidence suggests that p53 plays a significant role in regulating glucose homeostasis. Furthermore, the p53 family members p63 and p73, as well as gain-of-function p53 mutants, are also involved in glucose metabolism. Indeed, how this protein family regulates cellular energy levels is complicated and difficult to disentangle. This review discusses the roles of the p53 family in multiple metabolic processes, such as glycolysis, gluconeogenesis, aerobic respiration, and autophagy. We also discuss how the dysregulation of the p53 family in these processes leads to diseases such as cancer and diabetes. Elucidating the complexities of the p53 family members in glucose homeostasis will improve our understanding of these diseases.
    [Show full text]
  • Glycolysis Citric Acid Cycle Oxidative Phosphorylation Calvin Cycle Light
    Stage 3: RuBP regeneration Glycolysis Ribulose 5- Light-Dependent Reaction (Cytosol) phosphate 3 ATP + C6H12O6 + 2 NAD + 2 ADP + 2 Pi 3 ADP + 3 Pi + + 1 GA3P 6 NADP + H Pi NADPH + ADP + Pi ATP 2 C3H4O3 + 2 NADH + 2 H + 2 ATP + 2 H2O 3 CO2 Stage 1: ATP investment ½ glucose + + Glucose 2 H2O 4H + O2 2H Ferredoxin ATP Glyceraldehyde 3- Ribulose 1,5- Light Light Fx iron-sulfur Sakai-Kawada, F Hexokinase phosphate bisphosphate - 4e + center 2016 ADP Calvin Cycle 2H Stroma Mn-Ca cluster + 6 NADP + Light-Independent Reaction Phylloquinone Glucose 6-phosphate + 6 H + 6 Pi Thylakoid Tyr (Stroma) z Fe-S Cyt f Stage 1: carbon membrane Phosphoglucose 6 NADPH P680 P680* PQH fixation 2 Plastocyanin P700 P700* D-(+)-Glucose isomerase Cyt b6 1,3- Pheophytin PQA PQB Fructose 6-phosphate Bisphosphoglycerate ATP Lumen Phosphofructokinase-1 3-Phosphoglycerate ADP Photosystem II P680 2H+ Photosystem I P700 Stage 2: 3-PGA Photosynthesis Fructose 1,6-bisphosphate reduction 2H+ 6 ADP 6 ATP 6 CO2 + 6 H2O C6H12O6 + 6 O2 H+ + 6 Pi Cytochrome b6f Aldolase Plastoquinol-plastocyanin ATP synthase NADH reductase Triose phosphate + + + CO2 + H NAD + CoA-SH isomerase α-Ketoglutarate + Stage 2: 6-carbonTwo 3- NAD+ NADH + H + CO2 Glyceraldehyde 3-phosphate Dihydroxyacetone phosphate carbons Isocitrate α-Ketoglutarate dehydogenase dehydrogenase Glyceraldehyde + Pi + NAD Isocitrate complex 3-phosphate Succinyl CoA Oxidative Phosphorylation dehydrogenase NADH + H+ Electron Transport Chain GDP + Pi 1,3-Bisphosphoglycerate H+ Succinyl CoA GTP + CoA-SH Aconitase synthetase
    [Show full text]
  • PDK4 Promotes Vascular Calcification by Interfering with Autophagic
    Ma et al. Cell Death and Disease (2020) 11:991 https://doi.org/10.1038/s41419-020-03162-w Cell Death & Disease ARTICLE Open Access PDK4 promotes vascular calcification by interfering with autophagic activity and metabolic reprogramming Wen-Qi Ma 1,Xue-JiaoSun1,YiZhu1 and Nai-Feng Liu1 Abstract Pyruvate dehydrogenase kinase 4 (PDK4) is an important mitochondrial matrix enzyme in cellular energy regulation. Previous studies suggested that PDK4 is increased in the calcified vessels of patients with atherosclerosis and is closely associated with mitochondrial function, but the precise regulatory mechanisms remain largely unknown. This study aims to investigate the role of PDK4 in vascular calcification and the molecular mechanisms involved. Using a variety of complementary techniques, we found impaired autophagic activity in the process of vascular smooth muscle cells (VSMCs) calcification, whereas knocking down PDK4 had the opposite effect. PDK4 drives the metabolic reprogramming of VSMCs towards a Warburg effect, and the inhibition of PDK4 abrogates VSMCs calcification. Mechanistically, PDK4 disturbs the integrity of the mitochondria-associated endoplasmic reticulum membrane, concomitantly impairing mitochondrial respiratory capacity, which contributes to a decrease in lysosomal degradation by inhibiting the V-ATPase and lactate dehydrogenase B interaction. PDK4 also inhibits the nuclear translocation of the transcription factor EB, thus inhibiting lysosomal function. These changes result in the interruption of autophagic flux, which accelerates calcium deposition in VSMCs. In addition, glycolysis serves as a metabolic adaptation to improve VSMCs oxidative stress resistance, whereas inhibition of glycolysis by 2-deoxy-D-glucose induces the apoptosis of 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; VSMCs and increases the calcium deposition in VSMCs.
    [Show full text]
  • Lipoyl Moieties in the Pyruvate and A-Ketoglutarate Dehydrogenase
    Vol. 74, No. 10, pp 42&S-4227, October 1977 Biochemistry Acyl group and electron pair relay system: A network of interacting lipoyl moieties in the pyruvate and a-ketoglutarate dehydrogenase complexes from Escherichia coli (multienzyme complexes/thiol-disulfide interchange/crosslinking of subunits) JIMMY H. COLLINS AND LESTER J. REED Clayton Foundation Biochemical Institute and Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712 Contributed by Lester J. Reed, August 18, 1977 ABSTRACT The dihydrolipoyl transacetylase component complex by [2-'4C]pyruvate (6) and of the pyruvate-dependent of the Escherichia coli pyruvate dehydrogenase complex [pyr- reaction of N-ethyl[2,3-14C]maleimide with the complex (7) uvate:lipoate oxidoreductase (decarboxylating and acceptor- indicate the presence of two functionally active lipoyl acetylating), EC 1.2.4.11 bears two sites on each of its 24poly- moieties peptide chains that undergo reductive acetylation by on each transacetylase chain. 2-4C pyruvate and thiamin pyrophosphate, acetylation by In this communication, we confirm and extend this latter [lMClacetyl-CoA in the presence of DPNH, and reaction with finding, and we present evidence indicating that the trans- N-ethyl[2,3-14Clmaleimide in the presence of pyruvate and succinylase component of the a-ketoglutarate dehydrogenase thiamin pyrophosphate. The data strongly ir tat these sites complex bears one functionally active lipoyl moiety per chain are covalent y bound lipoyl moieties. The results of similar ex- and that the 48 lipoyl moieties in periments with the E. coli a-ketoglutarate dehydrogenase the transacetylase and the 24 complex [2-oxoglutaratelipoate oxidoreductase (decarboxylating lipoyl moieties in the transsuccinylase comprise a network that and acceptor-succinylating), EC 1±2.4.2] indicate that its dihy- functions as an acyl group and electron pair relay system drolipoyl transsuccinylase component bears only one lipoyl through thiol-disulfide and acyl-transfer reactions among all moiety on each of its 24 chains.
    [Show full text]
  • PDK4-Deficiency Results in Expedited Cellular Proliferation Through E2F1
    Molecular Pharmacology Fast Forward. Published on December 21, 2016 as DOI: 10.1124/mol.116.106757 This article has not been copyedited and formatted. The final version may differ from this version. MOL #106757 PDK4-deficiency results in expedited cellular proliferation through E2F1-mediated increase of cyclins Jonathan Choiniere, Jianguo Wu, and Li Wang Department of Physiology and Neurobiology, and The Institute for Systems Genomics, Downloaded from University of Connecticut, Storrs, CT 06269 (J.C, J.W, L.W) Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516 (L.W) Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, molpharm.aspetjournals.org CT 06520 (L.W) School of Pharmaceut ical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China (L.W) at ASPET Journals on September 28, 2021 1 Molecular Pharmacology Fast Forward. Published on December 21, 2016 as DOI: 10.1124/mol.116.106757 This article has not been copyedited and formatted. The final version may differ from this version. MOL #106757 Running title: PDK4 and arsenic crosstalk in HCC cell proliferation Corresponding Author: To whom correspondence should be addressed: Li Wang, Ph.D. Department of Physiology and Neurobiology, and The Institute for Systems Genomics, University of Connecticut Downloaded from 75 North Eagleville Rd., U3156, Storrs, CT 06269. molpharm.aspetjournals.org Tel: 860-486-0857 Fax: 860-486-3303 E-mail: [email protected] Manuscript information: at ASPET Journals on September 28, 2021 Number of text pages: 23 Number of tables: 0 Number of figures: 5 Number of references: 64 Number of words in abstract: 182 Number of words in introduction: 581 Number of words in discussion: 650 2 Molecular Pharmacology Fast Forward.
    [Show full text]