KU-Local Stable Homotopy Theory

Total Page:16

File Type:pdf, Size:1020Kb

KU-Local Stable Homotopy Theory A Stack-theoretic perspective on KU-local stable homotopy theory by Jeroen W. van der Meer A master thesis supervised by Lennart Meier co-supervised by Bas Edixhoven To be defended on July 05, 2019 Mathematisch Instituut Universiteit Leiden Contents Preface 5 Goal...............................................5 Outline and dependencies...................................6 Conventions...........................................7 Acknowledgements.......................................8 A final word...........................................8 1 Spectra 9 1.1 The stable homotopy category...............................9 1.2 First examples of spectra................................. 16 1.3 Complex orientations................................... 19 1.4 Bousfield localizations................................... 24 2 Hopf algebroids and algebraic stacks 29 2.1 Groupoid objects and Hopf algebroids.......................... 29 2.2 Stacks over sites...................................... 32 2.3 Algebraic stacks...................................... 38 2.4 Quasi-coherent sheaves and substacks......................... 40 2.5 Flat Hopf algebroids and Adams stacks......................... 43 3 The moduli stack of formal groups 46 3.1 Constructions of the stack of formal groups....................... 46 3.2 The height filtration.................................... 49 3.3 The Landweber exact functor theorem.......................... 53 3.4 Lubin–Tate deformation theory.............................. 61 4 The KU(p)-local stable homotopy category 71 4.1 Overview of Bousfield’s results.............................. 71 4.2 A fracture square..................................... 74 4.3 The category of KU(p)-comodules revisited........................ 84 4.4 Conclusion and scope for future work.......................... 95 A Formal group laws 97 A.1 First definitions...................................... 97 A.2 Lazard’s theorem...................................... 101 A.3 Heights........................................... 103 A.4 Endomorphisms of formal group laws.......................... 108 Bibliography 114 Index 116 Preface Goal Stable homotopy theory is the branch of mathematics that studies phenomena in homotopy theory that arise after repeated application of the suspension operation. Classical examples of such phenomena include the Freudenthal suspension theorem (homotopy groups of spheres sta- bilize after applying the suspension functor sufficiently many times), the suspension isomorphism (reduced cohomology of a space and of its suspension coincide), and Bott periodicity (K-theory is periodic under the suspension operation). In the same way that algebraic topologists do much of their work in the category of spaces, ho- motopy theorists studying stable phenomena often work in the stable homotopy category. Roughly speaking, this category is what we obtain when we take the homotopy category of topological spaces, and force the suspension functor to be an equivalence of categories. We are left with only those phenomena that survive repeated applications of the suspension functor, which should be precisely the stable phenomena that the homotopy theorists are after. The stable homotopy category is rather complicated, and in order to study it, it is helpful to zoom in a bit further and restrict attention to more digestible pieces of this category. This approach has been quite successful, and its success can be seen, for instance, in the chromatic approach to stable homotopy theory. This approach asserts that structures in the stable homotopy category should loosely correspond to structures in the category of sheaves over a particular space that we call the stack of formal groups. This stack of formal groups admits a filtration, and the chromatic point of view dictates that this ought to translate to a filtration of pieces of the stable homotopy category, each piece more complicated than the previous one, but all of them simpler than the entire thing. For the most part, this thesis will confine itself to only one digestible piece: we will be interested in the aspects of the stable homotopy category that can be detected by K-homology, or the K-local stable homotopy category for short. Building on earlier work due to Adams, this K-local category was first systematically studied several decades ago by Alridge Bousfield who, in 1979, published a paper, [2], in which he gave an algebraic classification of the objects in the K-local stable homotopy 5 category (or, of the K-local spectra for short, in the same way that objects of the stable homotopy category are called spectra), at least when further localized at an odd prime. The paper of Bousfield is almost entirely algebraic. The fact that we can reduce questions in homotopy theory to algebra is essentially thanks to a tool called the Adams spectral sequence. In the special case of the K-local category, this tool roughly tells us the following: given two spaces X and Y , if one understands enough of the (purely algebraic!) structure of Hom K∗(X), K∗(Y ) , where K∗ means K-homology, then one can deduce what the homotopy classes of maps from X to Y should be in the K-local stable homotopy category. Bousfield’s paper predates the chromatic approach that we mentioned earlier. Recall that this approach studies a certain filtration of increasingly complicated pieces of the stable homotopy category. As it turns out, the very first piece of this filtration is strongly related to the K-local category that Bousfield was interested in, and when suitably defined, they are in fact the same thing. This brings us to the goal of this thesis: with the modern, chromatic language at our fingertips, we will shed a new light on the techniques used in the original paper, only to find that, at least in hindsight, the complicated algebraic structures that were initially considered are geometric in origin. In fact, they are but a minor reflection of the deep and mysterious geometric structures governing stable phenomena — structures which, for the most part, remain to be understood to this very day. Outline and dependencies In AppendixA we study formal group laws over commutative rings. We begin by introducing the basic definitions, and proceed to study heights of formal group laws, ending with a mostly independent section on endomorphisms of formal group laws. Most of the results are well-known, though we occasionally use non-standard terminology when discussing heights. Chapter1 serves as an introduction to the basic language of stable homotopy theory that we will need in the rest of this thesis. None of the results in this chapter are new, and the chapter is mostly included for the sake of bookkeeping, not to mention because of the lack of a suitable reference to which to refer. In Chapter2 we introduce Hopf algebroids and algebraic stacks. The purpose of this chapter is two-fold. First, it seems that Hopf algebroids are less familiar than algebraic stacks to most algebraic geometers, and vice versa for topologists, so that it is reasonable to give a combined discussion on both notions. Second, we use this chapter to fix definitions that may otherwise be ambiguous due to inconsistent conventions in the literature. With the language of spectra and algebraic stacks at hand, we are ready to give a detailed study of the geometric structure of the stack of formal groups in Chapter3. We explain how 6 heights of formal group laws give rise to a filtration of the stack into substacks, and proceed to look into the geometry of each of the layers of this stack. We also discuss Landweber’s exact functor theorem, allowing us to construct spectra in the stable homotopy category using maps into the stack of formal groups. We use this theorem to give detailed constructions of various spectra that carry the name ‘Morava E-theory’. It is my hope that the statements and proofs in this chapter fill up some gaps in the mathematical literature. Finally, in Chapter4 we use the machinery developed in the previous chapter to study the K-local stable homotopy category. We start out by outlining the key constructions and result in Bousfield’s paper. After that, we investigate the category of sheaves over certain substacks of the stack of formal groups; by that point we will know that this category is intimately related to the K-local category that we are ultimately interested in. Finally, we use the conclusions of our investigation to revisit Bousfield’s results, and indicate how our results may shed a conceptually simplifying light on the original ideas. In case the reader is interested only in some specific parts of this thesis, the following depen- dency diagram may be of help. A A.1 A.4 A.2 A.3 1 4 1.4 1.2 1.3 1.1 all 2 3 all Conventions Whenever we work with spaces, we assume that we are working inside some convenient category of topological spaces, such as CW complexes or compactly generated weak Hausdorff spaces. At no point will the precise choice of category of spaces be relevant. Likewise, whenever we work with spectra, we will be working in the usual stable homotopy category. Apart from a few constructions in Section 1.2, a particular choice of model for the stable homotopy category will never be relevant. This means that the reader unfamiliar with stable homotopy theory can safely assume the existence of the category as a black box without much loss of continuity. 7 In order for our story to fit within the framework of classical algebraic geometry, all our rings are assumed to be commutative and with unity. In practice, stable homotopy groups of commutative ring
Recommended publications
  • Arxiv:1108.5351V3 [Math.AG] 26 Oct 2012 ..Rslso D-Mod( on Results Introduction the to 0.2
    ON SOME FINITENESS QUESTIONS FOR ALGEBRAIC STACKS VLADIMIR DRINFELD AND DENNIS GAITSGORY Abstract. We prove that under a certain mild hypothesis, the DG category of D-modules on a quasi-compact algebraic stack is compactly generated. We also show that under the same hypothesis, the functor of global sections on the DG category of quasi-coherent sheaves is continuous. Contents Introduction 3 0.1. Introduction to the introduction 3 0.2. Results on D-mod(Y) 4 0.3. Results on QCoh(Y) 4 0.4. Ind-coherent sheaves 5 0.5. Contents of the paper 7 0.6. Conventions, notation and terminology 10 0.7. Acknowledgments 14 1. Results on QCoh(Y) 14 1.1. Assumptions on stacks 14 1.2. Quasi-coherent sheaves 15 1.3. Direct images for quasi-coherent sheaves 18 1.4. Statements of the results on QCoh(Y) 21 2. Proof of Theorems 1.4.2 and 1.4.10 23 2.1. Reducing the statement to a key lemma 23 2.2. Easy reduction steps 24 2.3. Devissage 24 2.4. Quotients of schemes by algebraic groups 26 2.5. Proof of Proposition 2.3.4 26 2.6. Proof of Theorem 1.4.10 29 arXiv:1108.5351v3 [math.AG] 26 Oct 2012 3. Implications for ind-coherent sheaves 30 3.1. The “locally almost of finite type” condition 30 3.2. The category IndCoh 32 3.3. The coherent subcategory 39 3.4. Description of compact objects of IndCoh(Y) 39 3.5. The category Coh(Y) generates IndCoh(Y) 42 3.6.
    [Show full text]
  • Poincar\'E Duality for $ K $-Theory of Equivariant Complex Projective
    POINCARE´ DUALITY FOR K-THEORY OF EQUIVARIANT COMPLEX PROJECTIVE SPACES J.P.C. GREENLEES AND G.R. WILLIAMS Abstract. We make explicit Poincar´eduality for the equivariant K-theory of equivariant complex projective spaces. The case of the trivial group provides a new approach to the K-theory orientation [3]. 1. Introduction In 1 well behaved cases one expects the cohomology of a finite com- plex to be a contravariant functor of its homology. However, orientable manifolds have the special property that the cohomology is covariantly isomorphic to the homology, and hence in particular the cohomology ring is self-dual. More precisely, Poincar´eduality states that taking the cap product with a fundamental class gives an isomorphism between homology and cohomology of a manifold. Classically, an n-manifold M is a topological space locally modelled n on R , and the fundamental class of M is a homology class in Hn(M). Equivariantly, it is much less clear how things should work. If we pick a point x of a smooth G-manifold, the tangent space Vx is a represen- tation of the isotropy group Gx, and its G-orbit is locally modelled on G ×Gx Vx; both Gx and Vx depend on the point x. It may happen that we have a W -manifold, in the sense that there is a single representation arXiv:0711.0346v1 [math.AT] 2 Nov 2007 W so that Vx is the restriction of W to Gx for all x, but this is very restrictive. Even if there are fixed points x, the representations Vx at different points need not be equivalent.
    [Show full text]
  • MAPPING STACKS and CATEGORICAL NOTIONS of PROPERNESS Contents 1. Introduction 2 1.1. Introduction to the Introduction 2 1.2
    MAPPING STACKS AND CATEGORICAL NOTIONS OF PROPERNESS DANIEL HALPERN-LEISTNER AND ANATOLY PREYGEL Abstract. One fundamental consequence of a scheme being proper is that there is an algebraic space classifying maps from it to any other finite type scheme, and this result has been extended to proper stacks. We observe, however, that it also holds for many examples where the source is a geometric stack, such as a global quotient. In our investigation, we are lead naturally to certain properties of the derived category of a stack which guarantee that the mapping stack from it to any geometric finite type stack is algebraic. We develop methods for establishing these properties in a large class of examples. Along the way, we introduce a notion of projective morphism of algebraic stacks, and prove strong h-descent results which hold in the setting of derived algebraic geometry but not in classical algebraic geometry. Contents 1. Introduction 2 1.1. Introduction to the introduction2 1.2. Mapping out of stacks which are \proper enough"3 1.3. Techniques for establishing (GE) and (L)5 1.4. A long list of examples6 1.5. Comparison with previous results7 1.6. Notation and conventions8 1.7. Author's note 9 2. Artin's criteria for mapping stacks 10 2.1. Weil restriction of affine stacks 11 2.2. Deformation theory of the mapping stack 12 2.3. Integrability via the Tannakian formalism 16 2.4. Derived representability from classical representability 19 2.5. Application: (pGE) and the moduli of perfect complexes 21 3. Perfect Grothendieck existence 23 3.1.
    [Show full text]
  • Noncommutative Stacks
    Noncommutative Stacks Introduction One of the purposes of this work is to introduce a noncommutative analogue of Artin’s and Deligne-Mumford algebraic stacks in the most natural and sufficiently general way. We start with quasi-coherent modules on fibered categories, then define stacks and prestacks. We define formally smooth, formally unramified, and formally ´etale cartesian functors. This provides us with enough tools to extend to stacks the glueing formalism we developed in [KR3] for presheaves and sheaves of sets. Quasi-coherent presheaves and sheaves on a fibered category. Quasi-coherent sheaves on geometric (i.e. locally ringed topological) spaces were in- troduced in fifties. The notion of quasi-coherent modules was extended in an obvious way to ringed sites and toposes at the moment the latter appeared (in SGA), but it was not used much in this generality. Recently, the subject was revisited by D. Orlov in his work on quasi-coherent sheaves in commutative an noncommutative geometry [Or] and by G. Laumon an L. Moret-Bailly in their book on algebraic stacks [LM-B]. Slightly generalizing [R4], we associate with any functor F (regarded as a category over a category) the category of ’quasi-coherent presheaves’ on F (otherwise called ’quasi- coherent presheaves of modules’ or simply ’quasi-coherent modules’) and study some basic properties of this correspondence in the case when the functor defines a fibered category. Imitating [Gir], we define the quasi-topology of 1-descent (or simply ’descent’) and the quasi-topology of 2-descent (or ’effective descent’) on the base of a fibered category (i.e.
    [Show full text]
  • Lecture Notes on Simplicial Homotopy Theory
    Lectures on Homotopy Theory The links below are to pdf files, which comprise my lecture notes for a first course on Homotopy Theory. I last gave this course at the University of Western Ontario during the Winter term of 2018. The course material is widely applicable, in fields including Topology, Geometry, Number Theory, Mathematical Pysics, and some forms of data analysis. This collection of files is the basic source material for the course, and this page is an outline of the course contents. In practice, some of this is elective - I usually don't get much beyond proving the Hurewicz Theorem in classroom lectures. Also, despite the titles, each of the files covers much more material than one can usually present in a single lecture. More detail on topics covered here can be found in the Goerss-Jardine book Simplicial Homotopy Theory, which appears in the References. It would be quite helpful for a student to have a background in basic Algebraic Topology and/or Homological Algebra prior to working through this course. J.F. Jardine Office: Middlesex College 118 Phone: 519-661-2111 x86512 E-mail: [email protected] Homotopy theories Lecture 01: Homological algebra Section 1: Chain complexes Section 2: Ordinary chain complexes Section 3: Closed model categories Lecture 02: Spaces Section 4: Spaces and homotopy groups Section 5: Serre fibrations and a model structure for spaces Lecture 03: Homotopical algebra Section 6: Example: Chain homotopy Section 7: Homotopical algebra Section 8: The homotopy category Lecture 04: Simplicial sets Section 9:
    [Show full text]
  • The Galois Group of a Stable Homotopy Theory
    The Galois group of a stable homotopy theory Submitted by Akhil Mathew in partial fulfillment of the requirements for the degree of Bachelor of Arts with Honors Harvard University March 24, 2014 Advisor: Michael J. Hopkins Contents 1. Introduction 3 2. Axiomatic stable homotopy theory 4 3. Descent theory 14 4. Nilpotence and Quillen stratification 27 5. Axiomatic Galois theory 32 6. The Galois group and first computations 46 7. Local systems, cochain algebras, and stacks 59 8. Invariance properties 66 9. Stable module 1-categories 72 10. Chromatic homotopy theory 82 11. Conclusion 88 References 89 Email: [email protected]. 1 1. Introduction Let X be a connected scheme. One of the basic arithmetic invariants that one can extract from X is the ´etale fundamental group π1(X; x) relative to a \basepoint" x ! X (where x is the spectrum of a separably closed field). The fundamental group was defined by Grothendieck [Gro03] in terms of the category of finite, ´etalecovers of X. It provides an analog of the usual fundamental group of a topological space (or rather, its profinite completion), and plays an important role in algebraic geometry and number theory, as a precursor to the theory of ´etalecohomology. From a categorical point of view, it unifies the classical Galois theory of fields and covering space theory via a single framework. In this paper, we will define an analog of the ´etalefundamental group, and construct a form of the Galois correspondence, in stable homotopy theory. For example, while the classical theory of [Gro03] enables one to define the fundamental (or Galois) group of a commutative ring, we will define the fundamental group of the homotopy-theoretic analog: an E1-ring spectrum.
    [Show full text]
  • NONCOMMUTATIVE GEOMETRY and T-DUALITY SEMINAR Lecture 1: Introduction the Main Things We Will Be Talking About in the First Part
    NONCOMMUTATIVE GEOMETRY AND T-DUALITY SEMINAR CALDER DAENZER Lecture 1: Introduction The main things we will be talking about in the first part of this course are groupoids and stacks. In the second part of the course we will use this knowledge to study T-duality. As an introduction and motivation, let me quickly point out how groupoids, stacks, and T-duality are related to noncommutative geometry. 0.1. Groupoids and Noncommutative geometry. A major part of Connes' style noncom- mutative geometry can be viewed through the lens of groupoids, via the correspondence groupoids groupoid C*-algebras: More precisely, a locally compact Hausdorff groupoid with an appropriate notion of measure gives rise to a convolution C∗-algebra, and there is a notion of Morita equivalence for groupoids which induces Morita equivalence of the corresponding C∗-algebras. The reason that this correspondence covers a \major part" of noncommutative geometry is that most of the well-known C∗-algebras are in fact Morita equivalent to (twisted) groupoid algebras 1. This includes for example all AF-algebras, noncommutative tori, and Cuntz algebras [Ren], and the continuous trace algebras as well [?]. In fact, at least to me, it is an open question to find a separable C∗-algebra which is not Morita equivalent to a twisted groupoid algebra. There are some genuine advantages to working directly with groupoids rather than C∗-algebras, of which I will name three: (1) The passage to the groupoid algebra can lose information, for example C∗-algebras cannot 1 1 distinguish the non-equivalent groupoids S ⇒ S and Z ⇒ ∗.
    [Show full text]
  • THE 2-LIEN of a 2-GERBE by PRABHU VENKATARAMAN A
    THE 2-LIEN OF A 2-GERBE By PRABHU VENKATARAMAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 °c 2008 Prabhu Venkataraman 2 To my parents. 3 ACKNOWLEDGMENTS I would like to thank my advisor, Richard Crew, for guiding me through the literature, for suggesting this problem, and for patiently answering my questions over the years. I have learned a great deal from him. I am also grateful to David Groisser and Paul Robinson. Both of them helped me many times and served on my committee. Thanks also go to committee members Peter Sin and Bernard Whiting for their feedback on this project. The support of my family and friends has been invaluable to me. I thank all of them. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................. 4 ABSTRACT ........................................ 7 CHAPTER 1 INTRODUCTION .................................. 8 2 GERBES, LIENS AND 2-GERBES ......................... 12 2.1 Torsors and H1 ................................. 12 2.2 Fibered Categories and Stacks ......................... 13 2.3 Gerbes and their Liens ............................. 17 2.4 2-Categories, 2-Functors, 2-Natural Transformations ............. 21 2.5 Fibered 2-Categories, 2-Stacks and 2-Gerbes ................. 23 2.6 Representable Functors ............................. 28 2.7 2-Representability ................................ 32 2.8 Giraud's approach to Liens of Gerbes ..................... 34 3 EQUALIZERS AND COEQUALIZERS ...................... 39 3.1 Equalizers .................................... 39 3.2 Representability of Equalizers in CAT .................... 40 3.3 Coequalizers ................................... 43 3.4 Representability of Coequalizers in CAT ................... 44 4 GROUP CATEGORIES ............................... 51 4.1 Inner Equivalences of Group Categories ...................
    [Show full text]
  • Introduction to Algebraic Stacks
    Introduction to Algebraic Stacks K. Behrend December 17, 2012 Abstract These are lecture notes based on a short course on stacks given at the Newton Institute in Cambridge in January 2011. They form a self-contained introduction to some of the basic ideas of stack theory. Contents Introduction 3 1 Topological stacks: Triangles 8 1.1 Families and their symmetry groupoids . 8 Various types of symmetry groupoids . 9 1.2 Continuous families . 12 Gluing families . 13 1.3 Classification . 15 Pulling back families . 17 The moduli map of a family . 18 Fine moduli spaces . 18 Coarse moduli spaces . 21 1.4 Scalene triangles . 22 1.5 Isosceles triangles . 23 1.6 Equilateral triangles . 25 1.7 Oriented triangles . 25 Non-equilateral oriented triangles . 30 1.8 Stacks . 31 1.9 Versal families . 33 Generalized moduli maps . 35 Reconstructing a family from its generalized moduli map . 37 Versal families: definition . 38 Isosceles triangles . 40 Equilateral triangles . 40 Oriented triangles . 41 1 1.10 Degenerate triangles . 42 Lengths of sides viewpoint . 43 Embedded viewpoint . 46 Complex viewpoint . 52 Oriented degenerate triangles . 54 1.11 Change of versal family . 57 Oriented triangles by projecting equilateral ones . 57 Comparison . 61 The comparison theorem . 61 1.12 Weierstrass compactification . 64 The j-plane . 69 2 Formalism 73 2.1 Objects in continuous families: Categories fibered in groupoids 73 Fibered products of groupoid fibrations . 77 2.2 Families characterized locally: Prestacks . 78 Versal families . 79 2.3 Families which can be glued: Stacks . 80 2.4 Topological stacks . 81 Topological groupoids . 81 Generalized moduli maps: Groupoid Torsors .
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Smooth Field Theories and Homotopy Field Theories Permalink https://escholarship.org/uc/item/8049k3bs Author Wilder, Alan Cameron Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Smooth Field Theories and Homotopy Field Theories by Alan Cameron Wilder A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Peter Teichner, Chair Associate Professor Ian Agol Associate Professor Michael Hutchings Professor Mary K. Gaillard Fall 2011 Smooth Field Theories and Homotopy Field Theories Copyright 2011 by Alan Cameron Wilder 1 Abstract Smooth Field Theories and Homotopy Field Theories by Alan Cameron Wilder Doctor of Philosophy in Mathematics University of California, Berkeley Professor Peter Teichner, Chair In this thesis we assemble machinery to create a map from the field theories of Stolz and Teichner (see [ST]), which we call smooth field theories, to the field theories of Lurie (see [Lur1]), which we term homotopy field theories. Finally, we upgrade this map to work on inner-homs. That is, we provide a map from the fibred category of smooth field theories to the Segal space of homotopy field theories. In particular, along the way we present a definition of symmetric monoidal Segal space, and use this notion to complete the sketch of the defintion of homotopy bordism category employed in [Lur1] to prove the cobordism hypothesis. i To Kyra, Dashiell, and Dexter for their support and motivation.
    [Show full text]
  • Spectra and Stable Homotopy Theory
    Spectra and stable homotopy theory Lectures delivered by Michael Hopkins Notes by Akhil Mathew Fall 2012, Harvard Contents Lecture 1 9/5 x1 Administrative announcements 5 x2 Introduction 5 x3 The EHP sequence 7 Lecture 2 9/7 x1 Suspension and loops 9 x2 Homotopy fibers 10 x3 Shifting the sequence 11 x4 The James construction 11 x5 Relation with the loopspace on a suspension 13 x6 Moore loops 13 Lecture 3 9/12 x1 Recap of the James construction 15 x2 The homology on ΩΣX 16 x3 To be fixed later 20 Lecture 4 9/14 x1 Recap 21 x2 James-Hopf maps 21 x3 The induced map in homology 22 x4 Coalgebras 23 Lecture 5 9/17 x1 Recap 26 x2 Goals 27 Lecture 6 9/19 x1 The EHPss 31 x2 The spectral sequence for a double complex 32 x3 Back to the EHPss 33 Lecture 7 9/21 x1 A fix 35 x2 The EHP sequence 36 Lecture 8 9/24 1 Lecture 9 9/26 x1 Hilton-Milnor again 44 x2 Hopf invariant one problem 46 x3 The K-theoretic proof (after Atiyah-Adams) 47 Lecture 10 9/28 x1 Splitting principle 50 x2 The Chern character 52 x3 The Adams operations 53 x4 Chern character and the Hopf invariant 53 Lecture 11 8/1 x1 The e-invariant 54 x2 Ext's in the category of groups with Adams operations 56 Lecture 12 10/3 x1 Hopf invariant one 58 Lecture 13 10/5 x1 Suspension 63 x2 The J-homomorphism 65 Lecture 14 10/10 x1 Vector fields problem 66 x2 Constructing vector fields 70 Lecture 15 10/12 x1 Clifford algebras 71 x2 Z=2-graded algebras 73 x3 Working out Clifford algebras 74 Lecture 16 10/15 x1 Radon-Hurwitz numbers 77 x2 Algebraic topology of the vector field problem 79 x3 The homology of
    [Show full text]
  • Eilenberg-Maclane Spaces in Homotopy Type Theory
    Eilenberg-MacLane Spaces in Homotopy Type Theory Daniel R. Licata ∗ Eric Finster Wesleyan University Inria Paris Rocquencourt [email protected] ericfi[email protected] Abstract using the homotopy structure of types, and type theory is used to Homotopy type theory is an extension of Martin-Löf type theory investigate them—type theory is used as a logic of homotopy the- with principles inspired by category theory and homotopy theory. ory. In homotopy theory, one studies topological spaces by way of With these extensions, type theory can be used to construct proofs their points, paths (between points), homotopies (paths or continu- of homotopy-theoretic theorems, in a way that is very amenable ous deformations between paths), homotopies between homotopies to computer-checked proofs in proof assistants such as Coq and (paths between paths between paths), and so on. In type theory, a Agda. In this paper, we give a computer-checked construction of space corresponds to a type A. Points of a space correspond to el- Eilenberg-MacLane spaces. For an abelian group G, an Eilenberg- ements a;b : A. Paths in a space are modeled by elements of the identity type (propositional equality), which we notate p : a = b. MacLane space K(G;n) is a space (type) whose nth homotopy A Homotopies between paths p and q correspond to elements of the group is G, and whose homotopy groups are trivial otherwise. iterated identity type p = q. The rules for the identity type al- These spaces are a basic tool in algebraic topology; for example, a=Ab low one to define the operations on paths that are considered in they can be used to build spaces with specified homotopy groups, homotopy theory.
    [Show full text]