The Galois Group of a Stable Homotopy Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1108.5351V3 [Math.AG] 26 Oct 2012 ..Rslso D-Mod( on Results Introduction the to 0.2
ON SOME FINITENESS QUESTIONS FOR ALGEBRAIC STACKS VLADIMIR DRINFELD AND DENNIS GAITSGORY Abstract. We prove that under a certain mild hypothesis, the DG category of D-modules on a quasi-compact algebraic stack is compactly generated. We also show that under the same hypothesis, the functor of global sections on the DG category of quasi-coherent sheaves is continuous. Contents Introduction 3 0.1. Introduction to the introduction 3 0.2. Results on D-mod(Y) 4 0.3. Results on QCoh(Y) 4 0.4. Ind-coherent sheaves 5 0.5. Contents of the paper 7 0.6. Conventions, notation and terminology 10 0.7. Acknowledgments 14 1. Results on QCoh(Y) 14 1.1. Assumptions on stacks 14 1.2. Quasi-coherent sheaves 15 1.3. Direct images for quasi-coherent sheaves 18 1.4. Statements of the results on QCoh(Y) 21 2. Proof of Theorems 1.4.2 and 1.4.10 23 2.1. Reducing the statement to a key lemma 23 2.2. Easy reduction steps 24 2.3. Devissage 24 2.4. Quotients of schemes by algebraic groups 26 2.5. Proof of Proposition 2.3.4 26 2.6. Proof of Theorem 1.4.10 29 arXiv:1108.5351v3 [math.AG] 26 Oct 2012 3. Implications for ind-coherent sheaves 30 3.1. The “locally almost of finite type” condition 30 3.2. The category IndCoh 32 3.3. The coherent subcategory 39 3.4. Description of compact objects of IndCoh(Y) 39 3.5. The category Coh(Y) generates IndCoh(Y) 42 3.6. -
Poincar\'E Duality for $ K $-Theory of Equivariant Complex Projective
POINCARE´ DUALITY FOR K-THEORY OF EQUIVARIANT COMPLEX PROJECTIVE SPACES J.P.C. GREENLEES AND G.R. WILLIAMS Abstract. We make explicit Poincar´eduality for the equivariant K-theory of equivariant complex projective spaces. The case of the trivial group provides a new approach to the K-theory orientation [3]. 1. Introduction In 1 well behaved cases one expects the cohomology of a finite com- plex to be a contravariant functor of its homology. However, orientable manifolds have the special property that the cohomology is covariantly isomorphic to the homology, and hence in particular the cohomology ring is self-dual. More precisely, Poincar´eduality states that taking the cap product with a fundamental class gives an isomorphism between homology and cohomology of a manifold. Classically, an n-manifold M is a topological space locally modelled n on R , and the fundamental class of M is a homology class in Hn(M). Equivariantly, it is much less clear how things should work. If we pick a point x of a smooth G-manifold, the tangent space Vx is a represen- tation of the isotropy group Gx, and its G-orbit is locally modelled on G ×Gx Vx; both Gx and Vx depend on the point x. It may happen that we have a W -manifold, in the sense that there is a single representation arXiv:0711.0346v1 [math.AT] 2 Nov 2007 W so that Vx is the restriction of W to Gx for all x, but this is very restrictive. Even if there are fixed points x, the representations Vx at different points need not be equivalent. -
MAPPING STACKS and CATEGORICAL NOTIONS of PROPERNESS Contents 1. Introduction 2 1.1. Introduction to the Introduction 2 1.2
MAPPING STACKS AND CATEGORICAL NOTIONS OF PROPERNESS DANIEL HALPERN-LEISTNER AND ANATOLY PREYGEL Abstract. One fundamental consequence of a scheme being proper is that there is an algebraic space classifying maps from it to any other finite type scheme, and this result has been extended to proper stacks. We observe, however, that it also holds for many examples where the source is a geometric stack, such as a global quotient. In our investigation, we are lead naturally to certain properties of the derived category of a stack which guarantee that the mapping stack from it to any geometric finite type stack is algebraic. We develop methods for establishing these properties in a large class of examples. Along the way, we introduce a notion of projective morphism of algebraic stacks, and prove strong h-descent results which hold in the setting of derived algebraic geometry but not in classical algebraic geometry. Contents 1. Introduction 2 1.1. Introduction to the introduction2 1.2. Mapping out of stacks which are \proper enough"3 1.3. Techniques for establishing (GE) and (L)5 1.4. A long list of examples6 1.5. Comparison with previous results7 1.6. Notation and conventions8 1.7. Author's note 9 2. Artin's criteria for mapping stacks 10 2.1. Weil restriction of affine stacks 11 2.2. Deformation theory of the mapping stack 12 2.3. Integrability via the Tannakian formalism 16 2.4. Derived representability from classical representability 19 2.5. Application: (pGE) and the moduli of perfect complexes 21 3. Perfect Grothendieck existence 23 3.1. -
Noncommutative Stacks
Noncommutative Stacks Introduction One of the purposes of this work is to introduce a noncommutative analogue of Artin’s and Deligne-Mumford algebraic stacks in the most natural and sufficiently general way. We start with quasi-coherent modules on fibered categories, then define stacks and prestacks. We define formally smooth, formally unramified, and formally ´etale cartesian functors. This provides us with enough tools to extend to stacks the glueing formalism we developed in [KR3] for presheaves and sheaves of sets. Quasi-coherent presheaves and sheaves on a fibered category. Quasi-coherent sheaves on geometric (i.e. locally ringed topological) spaces were in- troduced in fifties. The notion of quasi-coherent modules was extended in an obvious way to ringed sites and toposes at the moment the latter appeared (in SGA), but it was not used much in this generality. Recently, the subject was revisited by D. Orlov in his work on quasi-coherent sheaves in commutative an noncommutative geometry [Or] and by G. Laumon an L. Moret-Bailly in their book on algebraic stacks [LM-B]. Slightly generalizing [R4], we associate with any functor F (regarded as a category over a category) the category of ’quasi-coherent presheaves’ on F (otherwise called ’quasi- coherent presheaves of modules’ or simply ’quasi-coherent modules’) and study some basic properties of this correspondence in the case when the functor defines a fibered category. Imitating [Gir], we define the quasi-topology of 1-descent (or simply ’descent’) and the quasi-topology of 2-descent (or ’effective descent’) on the base of a fibered category (i.e. -
Lecture Notes on Simplicial Homotopy Theory
Lectures on Homotopy Theory The links below are to pdf files, which comprise my lecture notes for a first course on Homotopy Theory. I last gave this course at the University of Western Ontario during the Winter term of 2018. The course material is widely applicable, in fields including Topology, Geometry, Number Theory, Mathematical Pysics, and some forms of data analysis. This collection of files is the basic source material for the course, and this page is an outline of the course contents. In practice, some of this is elective - I usually don't get much beyond proving the Hurewicz Theorem in classroom lectures. Also, despite the titles, each of the files covers much more material than one can usually present in a single lecture. More detail on topics covered here can be found in the Goerss-Jardine book Simplicial Homotopy Theory, which appears in the References. It would be quite helpful for a student to have a background in basic Algebraic Topology and/or Homological Algebra prior to working through this course. J.F. Jardine Office: Middlesex College 118 Phone: 519-661-2111 x86512 E-mail: [email protected] Homotopy theories Lecture 01: Homological algebra Section 1: Chain complexes Section 2: Ordinary chain complexes Section 3: Closed model categories Lecture 02: Spaces Section 4: Spaces and homotopy groups Section 5: Serre fibrations and a model structure for spaces Lecture 03: Homotopical algebra Section 6: Example: Chain homotopy Section 7: Homotopical algebra Section 8: The homotopy category Lecture 04: Simplicial sets Section 9: -
NONCOMMUTATIVE GEOMETRY and T-DUALITY SEMINAR Lecture 1: Introduction the Main Things We Will Be Talking About in the First Part
NONCOMMUTATIVE GEOMETRY AND T-DUALITY SEMINAR CALDER DAENZER Lecture 1: Introduction The main things we will be talking about in the first part of this course are groupoids and stacks. In the second part of the course we will use this knowledge to study T-duality. As an introduction and motivation, let me quickly point out how groupoids, stacks, and T-duality are related to noncommutative geometry. 0.1. Groupoids and Noncommutative geometry. A major part of Connes' style noncom- mutative geometry can be viewed through the lens of groupoids, via the correspondence groupoids groupoid C*-algebras: More precisely, a locally compact Hausdorff groupoid with an appropriate notion of measure gives rise to a convolution C∗-algebra, and there is a notion of Morita equivalence for groupoids which induces Morita equivalence of the corresponding C∗-algebras. The reason that this correspondence covers a \major part" of noncommutative geometry is that most of the well-known C∗-algebras are in fact Morita equivalent to (twisted) groupoid algebras 1. This includes for example all AF-algebras, noncommutative tori, and Cuntz algebras [Ren], and the continuous trace algebras as well [?]. In fact, at least to me, it is an open question to find a separable C∗-algebra which is not Morita equivalent to a twisted groupoid algebra. There are some genuine advantages to working directly with groupoids rather than C∗-algebras, of which I will name three: (1) The passage to the groupoid algebra can lose information, for example C∗-algebras cannot 1 1 distinguish the non-equivalent groupoids S ⇒ S and Z ⇒ ∗. -
THE 2-LIEN of a 2-GERBE by PRABHU VENKATARAMAN A
THE 2-LIEN OF A 2-GERBE By PRABHU VENKATARAMAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 °c 2008 Prabhu Venkataraman 2 To my parents. 3 ACKNOWLEDGMENTS I would like to thank my advisor, Richard Crew, for guiding me through the literature, for suggesting this problem, and for patiently answering my questions over the years. I have learned a great deal from him. I am also grateful to David Groisser and Paul Robinson. Both of them helped me many times and served on my committee. Thanks also go to committee members Peter Sin and Bernard Whiting for their feedback on this project. The support of my family and friends has been invaluable to me. I thank all of them. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................. 4 ABSTRACT ........................................ 7 CHAPTER 1 INTRODUCTION .................................. 8 2 GERBES, LIENS AND 2-GERBES ......................... 12 2.1 Torsors and H1 ................................. 12 2.2 Fibered Categories and Stacks ......................... 13 2.3 Gerbes and their Liens ............................. 17 2.4 2-Categories, 2-Functors, 2-Natural Transformations ............. 21 2.5 Fibered 2-Categories, 2-Stacks and 2-Gerbes ................. 23 2.6 Representable Functors ............................. 28 2.7 2-Representability ................................ 32 2.8 Giraud's approach to Liens of Gerbes ..................... 34 3 EQUALIZERS AND COEQUALIZERS ...................... 39 3.1 Equalizers .................................... 39 3.2 Representability of Equalizers in CAT .................... 40 3.3 Coequalizers ................................... 43 3.4 Representability of Coequalizers in CAT ................... 44 4 GROUP CATEGORIES ............................... 51 4.1 Inner Equivalences of Group Categories ................... -
Introduction to Algebraic Stacks
Introduction to Algebraic Stacks K. Behrend December 17, 2012 Abstract These are lecture notes based on a short course on stacks given at the Newton Institute in Cambridge in January 2011. They form a self-contained introduction to some of the basic ideas of stack theory. Contents Introduction 3 1 Topological stacks: Triangles 8 1.1 Families and their symmetry groupoids . 8 Various types of symmetry groupoids . 9 1.2 Continuous families . 12 Gluing families . 13 1.3 Classification . 15 Pulling back families . 17 The moduli map of a family . 18 Fine moduli spaces . 18 Coarse moduli spaces . 21 1.4 Scalene triangles . 22 1.5 Isosceles triangles . 23 1.6 Equilateral triangles . 25 1.7 Oriented triangles . 25 Non-equilateral oriented triangles . 30 1.8 Stacks . 31 1.9 Versal families . 33 Generalized moduli maps . 35 Reconstructing a family from its generalized moduli map . 37 Versal families: definition . 38 Isosceles triangles . 40 Equilateral triangles . 40 Oriented triangles . 41 1 1.10 Degenerate triangles . 42 Lengths of sides viewpoint . 43 Embedded viewpoint . 46 Complex viewpoint . 52 Oriented degenerate triangles . 54 1.11 Change of versal family . 57 Oriented triangles by projecting equilateral ones . 57 Comparison . 61 The comparison theorem . 61 1.12 Weierstrass compactification . 64 The j-plane . 69 2 Formalism 73 2.1 Objects in continuous families: Categories fibered in groupoids 73 Fibered products of groupoid fibrations . 77 2.2 Families characterized locally: Prestacks . 78 Versal families . 79 2.3 Families which can be glued: Stacks . 80 2.4 Topological stacks . 81 Topological groupoids . 81 Generalized moduli maps: Groupoid Torsors . -
Quasi-Coherent Sheaves on the Moduli Stack of Formal Groups
Quasi-coherent sheaves on the Moduli Stack of Formal Groups Paul G. Goerss∗ Abstract The central aim of this monograph is to provide decomposition results for quasi-coherent sheaves on the moduli stack of formal groups. These results will be based on the geometry of the stack itself, particularly the height filtration and an analysis of the formal neighborhoods of the ge- ometric points. The main theorems are algebraic chromatic convergence results and fracture square decompositions. There is a major technical hurdle in this story, as the moduli stack of formal groups does not have the finitness properties required of an algebraic stack as usually defined. This is not a conceptual problem, but in order to be clear on this point and to write down a self-contained narrative, I have included a great deal of discussion of the geometry of the stack itself, giving various equivalent descriptions. For years I have been echoing my betters, especially Mike Hopkins, and telling anyone who would listen that the chromatic picture of stable homotopy theory is dictated and controlled by the geometry of the moduli stack Mfg of smooth, one-dimensional formal groups. Specifically, I would say that the height filtration of Mfg dictates a canonical and natural decomposition of a quasi-coherent sheaf on Mfg, and this decomposition predicts and controls the chromatic decomposition of a finite spectrum. This sounds well, and is even true, but there is no single place in the literature where I could send anyone in order for him or her to get a clear, detailed, unified, and linear rendition of this story. -
Spectra and Stable Homotopy Theory
Spectra and stable homotopy theory Lectures delivered by Michael Hopkins Notes by Akhil Mathew Fall 2012, Harvard Contents Lecture 1 9/5 x1 Administrative announcements 5 x2 Introduction 5 x3 The EHP sequence 7 Lecture 2 9/7 x1 Suspension and loops 9 x2 Homotopy fibers 10 x3 Shifting the sequence 11 x4 The James construction 11 x5 Relation with the loopspace on a suspension 13 x6 Moore loops 13 Lecture 3 9/12 x1 Recap of the James construction 15 x2 The homology on ΩΣX 16 x3 To be fixed later 20 Lecture 4 9/14 x1 Recap 21 x2 James-Hopf maps 21 x3 The induced map in homology 22 x4 Coalgebras 23 Lecture 5 9/17 x1 Recap 26 x2 Goals 27 Lecture 6 9/19 x1 The EHPss 31 x2 The spectral sequence for a double complex 32 x3 Back to the EHPss 33 Lecture 7 9/21 x1 A fix 35 x2 The EHP sequence 36 Lecture 8 9/24 1 Lecture 9 9/26 x1 Hilton-Milnor again 44 x2 Hopf invariant one problem 46 x3 The K-theoretic proof (after Atiyah-Adams) 47 Lecture 10 9/28 x1 Splitting principle 50 x2 The Chern character 52 x3 The Adams operations 53 x4 Chern character and the Hopf invariant 53 Lecture 11 8/1 x1 The e-invariant 54 x2 Ext's in the category of groups with Adams operations 56 Lecture 12 10/3 x1 Hopf invariant one 58 Lecture 13 10/5 x1 Suspension 63 x2 The J-homomorphism 65 Lecture 14 10/10 x1 Vector fields problem 66 x2 Constructing vector fields 70 Lecture 15 10/12 x1 Clifford algebras 71 x2 Z=2-graded algebras 73 x3 Working out Clifford algebras 74 Lecture 16 10/15 x1 Radon-Hurwitz numbers 77 x2 Algebraic topology of the vector field problem 79 x3 The homology of -
Eilenberg-Maclane Spaces in Homotopy Type Theory
Eilenberg-MacLane Spaces in Homotopy Type Theory Daniel R. Licata ∗ Eric Finster Wesleyan University Inria Paris Rocquencourt [email protected] ericfi[email protected] Abstract using the homotopy structure of types, and type theory is used to Homotopy type theory is an extension of Martin-Löf type theory investigate them—type theory is used as a logic of homotopy the- with principles inspired by category theory and homotopy theory. ory. In homotopy theory, one studies topological spaces by way of With these extensions, type theory can be used to construct proofs their points, paths (between points), homotopies (paths or continu- of homotopy-theoretic theorems, in a way that is very amenable ous deformations between paths), homotopies between homotopies to computer-checked proofs in proof assistants such as Coq and (paths between paths between paths), and so on. In type theory, a Agda. In this paper, we give a computer-checked construction of space corresponds to a type A. Points of a space correspond to el- Eilenberg-MacLane spaces. For an abelian group G, an Eilenberg- ements a;b : A. Paths in a space are modeled by elements of the identity type (propositional equality), which we notate p : a = b. MacLane space K(G;n) is a space (type) whose nth homotopy A Homotopies between paths p and q correspond to elements of the group is G, and whose homotopy groups are trivial otherwise. iterated identity type p = q. The rules for the identity type al- These spaces are a basic tool in algebraic topology; for example, a=Ab low one to define the operations on paths that are considered in they can be used to build spaces with specified homotopy groups, homotopy theory. -
Eta-Periodic Motivic Stable Homotopy Theory Over Fields
η-PERIODIC MOTIVIC STABLE HOMOTOPY THEORY OVER FIELDS TOM BACHMANN AND MICHAEL J. HOPKINS Abstract. Over any field of characteristic = 2, we establish a 2-term resolution of the η-periodic, 6 2-local motivic sphere spectrum by shifts of the connective 2-local Witt K-theory spectrum. This is curiously similar to the resolution of the K(1)-local sphere in classical stable homotopy theory. As applications we determine the η-periodized motivic stable stems and the η-periodized algebraic symplectic and SL-cobordism groups. Along the way we construct Adams operations on the motivic spectrum representing Hermitian K-theory and establish new completeness results for certain motivic spectra over fields of finite virtual 2-cohomological dimension. In an appendix, we supply a new proof of the homotopy fixed point theorem for the Hermitian K-theory of fields. Contents 1. Introduction 2 1.1. Inverting the motivic Hopf map 2 1.2. Main results 2 1.3. Proof sketch 3 1.4. Organization 4 1.5. Acknowledgements 5 1.6. Conventions 5 1.7. Table of notation 6 2. Preliminaries and Recollections 6 2.1. Filtered modules 6 2.2. Derived completion of abelian groups 8 2.3. Witt groups 9 2.4. The homotopy t-structure 9 2.5. Completion and localization 10 2.6. Very effective spectra 11 2.7. Inverting ρ 11 3. Adams operations for the motivic spectrum KO 13 3.1. Summary 13 3.2. Motivic ring spectra KO and KGL 14 3.3. The motivic Snaith and homotopy fixed point theorems 16 3.4.