Sheaves and Stacks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1108.5351V3 [Math.AG] 26 Oct 2012 ..Rslso D-Mod( on Results Introduction the to 0.2
ON SOME FINITENESS QUESTIONS FOR ALGEBRAIC STACKS VLADIMIR DRINFELD AND DENNIS GAITSGORY Abstract. We prove that under a certain mild hypothesis, the DG category of D-modules on a quasi-compact algebraic stack is compactly generated. We also show that under the same hypothesis, the functor of global sections on the DG category of quasi-coherent sheaves is continuous. Contents Introduction 3 0.1. Introduction to the introduction 3 0.2. Results on D-mod(Y) 4 0.3. Results on QCoh(Y) 4 0.4. Ind-coherent sheaves 5 0.5. Contents of the paper 7 0.6. Conventions, notation and terminology 10 0.7. Acknowledgments 14 1. Results on QCoh(Y) 14 1.1. Assumptions on stacks 14 1.2. Quasi-coherent sheaves 15 1.3. Direct images for quasi-coherent sheaves 18 1.4. Statements of the results on QCoh(Y) 21 2. Proof of Theorems 1.4.2 and 1.4.10 23 2.1. Reducing the statement to a key lemma 23 2.2. Easy reduction steps 24 2.3. Devissage 24 2.4. Quotients of schemes by algebraic groups 26 2.5. Proof of Proposition 2.3.4 26 2.6. Proof of Theorem 1.4.10 29 arXiv:1108.5351v3 [math.AG] 26 Oct 2012 3. Implications for ind-coherent sheaves 30 3.1. The “locally almost of finite type” condition 30 3.2. The category IndCoh 32 3.3. The coherent subcategory 39 3.4. Description of compact objects of IndCoh(Y) 39 3.5. The category Coh(Y) generates IndCoh(Y) 42 3.6. -
Sheaves and Homotopy Theory
SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case. -
Topos Theory
Topos Theory Olivia Caramello Sheaves on a site Grothendieck topologies Grothendieck toposes Basic properties of Grothendieck toposes Subobject lattices Topos Theory Balancedness The epi-mono factorization Lectures 7-14: Sheaves on a site The closure operation on subobjects Monomorphisms and epimorphisms Exponentials Olivia Caramello The subobject classifier Local operators For further reading Topos Theory Sieves Olivia Caramello In order to ‘categorify’ the notion of sheaf of a topological space, Sheaves on a site Grothendieck the first step is to introduce an abstract notion of covering (of an topologies Grothendieck object by a family of arrows to it) in a category. toposes Basic properties Definition of Grothendieck toposes Subobject lattices • Given a category C and an object c 2 Ob(C), a presieve P in Balancedness C on c is a collection of arrows in C with codomain c. The epi-mono factorization The closure • Given a category C and an object c 2 Ob(C), a sieve S in C operation on subobjects on c is a collection of arrows in C with codomain c such that Monomorphisms and epimorphisms Exponentials The subobject f 2 S ) f ◦ g 2 S classifier Local operators whenever this composition makes sense. For further reading • We say that a sieve S is generated by a presieve P on an object c if it is the smallest sieve containing it, that is if it is the collection of arrows to c which factor through an arrow in P. If S is a sieve on c and h : d ! c is any arrow to c, then h∗(S) := fg | cod(g) = d; h ◦ g 2 Sg is a sieve on d. -
MAPPING STACKS and CATEGORICAL NOTIONS of PROPERNESS Contents 1. Introduction 2 1.1. Introduction to the Introduction 2 1.2
MAPPING STACKS AND CATEGORICAL NOTIONS OF PROPERNESS DANIEL HALPERN-LEISTNER AND ANATOLY PREYGEL Abstract. One fundamental consequence of a scheme being proper is that there is an algebraic space classifying maps from it to any other finite type scheme, and this result has been extended to proper stacks. We observe, however, that it also holds for many examples where the source is a geometric stack, such as a global quotient. In our investigation, we are lead naturally to certain properties of the derived category of a stack which guarantee that the mapping stack from it to any geometric finite type stack is algebraic. We develop methods for establishing these properties in a large class of examples. Along the way, we introduce a notion of projective morphism of algebraic stacks, and prove strong h-descent results which hold in the setting of derived algebraic geometry but not in classical algebraic geometry. Contents 1. Introduction 2 1.1. Introduction to the introduction2 1.2. Mapping out of stacks which are \proper enough"3 1.3. Techniques for establishing (GE) and (L)5 1.4. A long list of examples6 1.5. Comparison with previous results7 1.6. Notation and conventions8 1.7. Author's note 9 2. Artin's criteria for mapping stacks 10 2.1. Weil restriction of affine stacks 11 2.2. Deformation theory of the mapping stack 12 2.3. Integrability via the Tannakian formalism 16 2.4. Derived representability from classical representability 19 2.5. Application: (pGE) and the moduli of perfect complexes 21 3. Perfect Grothendieck existence 23 3.1. -
Noncommutative Stacks
Noncommutative Stacks Introduction One of the purposes of this work is to introduce a noncommutative analogue of Artin’s and Deligne-Mumford algebraic stacks in the most natural and sufficiently general way. We start with quasi-coherent modules on fibered categories, then define stacks and prestacks. We define formally smooth, formally unramified, and formally ´etale cartesian functors. This provides us with enough tools to extend to stacks the glueing formalism we developed in [KR3] for presheaves and sheaves of sets. Quasi-coherent presheaves and sheaves on a fibered category. Quasi-coherent sheaves on geometric (i.e. locally ringed topological) spaces were in- troduced in fifties. The notion of quasi-coherent modules was extended in an obvious way to ringed sites and toposes at the moment the latter appeared (in SGA), but it was not used much in this generality. Recently, the subject was revisited by D. Orlov in his work on quasi-coherent sheaves in commutative an noncommutative geometry [Or] and by G. Laumon an L. Moret-Bailly in their book on algebraic stacks [LM-B]. Slightly generalizing [R4], we associate with any functor F (regarded as a category over a category) the category of ’quasi-coherent presheaves’ on F (otherwise called ’quasi- coherent presheaves of modules’ or simply ’quasi-coherent modules’) and study some basic properties of this correspondence in the case when the functor defines a fibered category. Imitating [Gir], we define the quasi-topology of 1-descent (or simply ’descent’) and the quasi-topology of 2-descent (or ’effective descent’) on the base of a fibered category (i.e. -
Arxiv:2008.10677V3 [Math.CT] 9 Jul 2021 Space Ha Hoyepiil Ea Ihtewr Fj Ea N194 in Leray J
On sheaf cohomology and natural expansions ∗ Ana Luiza Tenório, IME-USP, [email protected] Hugo Luiz Mariano, IME-USP, [email protected] July 12, 2021 Abstract In this survey paper, we present Čech and sheaf cohomologies – themes that were presented by Koszul in University of São Paulo ([42]) during his visit in the late 1950s – we present expansions for categories of generalized sheaves (i.e, Grothendieck toposes), with examples of applications in other cohomology theories and other areas of mathematics, besides providing motivations and historical notes. We conclude explaining the difficulties in establishing a cohomology theory for elementary toposes, presenting alternative approaches by considering constructions over quantales, that provide structures similar to sheaves, and indicating researches related to logic: constructive (intuitionistic and linear) logic for toposes, sheaves over quantales, and homological algebra. 1 Introduction Sheaf Theory explicitly began with the work of J. Leray in 1945 [46]. The nomenclature “sheaf” over a space X, in terms of closed subsets of a topological space X, first appeared in 1946, also in one of Leray’s works, according to [21]. He was interested in solving partial differential equations and build up a strong tool to pass local properties to global ones. Currently, the definition of a sheaf over X is given by a “coherent family” of structures indexed on the lattice of open subsets of X or as étale maps (= local homeomorphisms) into X. Both arXiv:2008.10677v3 [math.CT] 9 Jul 2021 formulations emerged in the late 1940s and early 1950s in Cartan’s seminars and, in modern terms, they are intimately related by an equivalence of categories. -
The Galois Group of a Stable Homotopy Theory
The Galois group of a stable homotopy theory Submitted by Akhil Mathew in partial fulfillment of the requirements for the degree of Bachelor of Arts with Honors Harvard University March 24, 2014 Advisor: Michael J. Hopkins Contents 1. Introduction 3 2. Axiomatic stable homotopy theory 4 3. Descent theory 14 4. Nilpotence and Quillen stratification 27 5. Axiomatic Galois theory 32 6. The Galois group and first computations 46 7. Local systems, cochain algebras, and stacks 59 8. Invariance properties 66 9. Stable module 1-categories 72 10. Chromatic homotopy theory 82 11. Conclusion 88 References 89 Email: [email protected]. 1 1. Introduction Let X be a connected scheme. One of the basic arithmetic invariants that one can extract from X is the ´etale fundamental group π1(X; x) relative to a \basepoint" x ! X (where x is the spectrum of a separably closed field). The fundamental group was defined by Grothendieck [Gro03] in terms of the category of finite, ´etalecovers of X. It provides an analog of the usual fundamental group of a topological space (or rather, its profinite completion), and plays an important role in algebraic geometry and number theory, as a precursor to the theory of ´etalecohomology. From a categorical point of view, it unifies the classical Galois theory of fields and covering space theory via a single framework. In this paper, we will define an analog of the ´etalefundamental group, and construct a form of the Galois correspondence, in stable homotopy theory. For example, while the classical theory of [Gro03] enables one to define the fundamental (or Galois) group of a commutative ring, we will define the fundamental group of the homotopy-theoretic analog: an E1-ring spectrum. -
A Grothendieck Site Is a Small Category C Equipped with a Grothendieck Topology T
Contents 5 Grothendieck topologies 1 6 Exactness properties 10 7 Geometric morphisms 17 8 Points and Boolean localization 22 5 Grothendieck topologies A Grothendieck site is a small category C equipped with a Grothendieck topology T . A Grothendieck topology T consists of a collec- tion of subfunctors R ⊂ hom( ;U); U 2 C ; called covering sieves, such that the following hold: 1) (base change) If R ⊂ hom( ;U) is covering and f : V ! U is a morphism of C , then f −1(R) = fg : W ! V j f · g 2 Rg is covering for V. 2) (local character) Suppose R;R0 ⊂ hom( ;U) and R is covering. If f −1(R0) is covering for all f : V ! U in R, then R0 is covering. 3) hom( ;U) is covering for all U 2 C . 1 Typically, Grothendieck topologies arise from cov- ering families in sites C having pullbacks. Cover- ing families are sets of maps which generate cov- ering sieves. Suppose that C has pullbacks. A topology T on C consists of families of sets of morphisms ffa : Ua ! Ug; U 2 C ; called covering families, such that 1) Suppose fa : Ua ! U is a covering family and y : V ! U is a morphism of C . Then the set of all V ×U Ua ! V is a covering family for V. 2) Suppose ffa : Ua ! Vg is covering, and fga;b : Wa;b ! Uag is covering for all a. Then the set of composites ga;b fa Wa;b −−! Ua −! U is covering. 3) The singleton set f1 : U ! Ug is covering for each U 2 C . -
NONCOMMUTATIVE GEOMETRY and T-DUALITY SEMINAR Lecture 1: Introduction the Main Things We Will Be Talking About in the First Part
NONCOMMUTATIVE GEOMETRY AND T-DUALITY SEMINAR CALDER DAENZER Lecture 1: Introduction The main things we will be talking about in the first part of this course are groupoids and stacks. In the second part of the course we will use this knowledge to study T-duality. As an introduction and motivation, let me quickly point out how groupoids, stacks, and T-duality are related to noncommutative geometry. 0.1. Groupoids and Noncommutative geometry. A major part of Connes' style noncom- mutative geometry can be viewed through the lens of groupoids, via the correspondence groupoids groupoid C*-algebras: More precisely, a locally compact Hausdorff groupoid with an appropriate notion of measure gives rise to a convolution C∗-algebra, and there is a notion of Morita equivalence for groupoids which induces Morita equivalence of the corresponding C∗-algebras. The reason that this correspondence covers a \major part" of noncommutative geometry is that most of the well-known C∗-algebras are in fact Morita equivalent to (twisted) groupoid algebras 1. This includes for example all AF-algebras, noncommutative tori, and Cuntz algebras [Ren], and the continuous trace algebras as well [?]. In fact, at least to me, it is an open question to find a separable C∗-algebra which is not Morita equivalent to a twisted groupoid algebra. There are some genuine advantages to working directly with groupoids rather than C∗-algebras, of which I will name three: (1) The passage to the groupoid algebra can lose information, for example C∗-algebras cannot 1 1 distinguish the non-equivalent groupoids S ⇒ S and Z ⇒ ∗. -
THE 2-LIEN of a 2-GERBE by PRABHU VENKATARAMAN A
THE 2-LIEN OF A 2-GERBE By PRABHU VENKATARAMAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 °c 2008 Prabhu Venkataraman 2 To my parents. 3 ACKNOWLEDGMENTS I would like to thank my advisor, Richard Crew, for guiding me through the literature, for suggesting this problem, and for patiently answering my questions over the years. I have learned a great deal from him. I am also grateful to David Groisser and Paul Robinson. Both of them helped me many times and served on my committee. Thanks also go to committee members Peter Sin and Bernard Whiting for their feedback on this project. The support of my family and friends has been invaluable to me. I thank all of them. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................. 4 ABSTRACT ........................................ 7 CHAPTER 1 INTRODUCTION .................................. 8 2 GERBES, LIENS AND 2-GERBES ......................... 12 2.1 Torsors and H1 ................................. 12 2.2 Fibered Categories and Stacks ......................... 13 2.3 Gerbes and their Liens ............................. 17 2.4 2-Categories, 2-Functors, 2-Natural Transformations ............. 21 2.5 Fibered 2-Categories, 2-Stacks and 2-Gerbes ................. 23 2.6 Representable Functors ............................. 28 2.7 2-Representability ................................ 32 2.8 Giraud's approach to Liens of Gerbes ..................... 34 3 EQUALIZERS AND COEQUALIZERS ...................... 39 3.1 Equalizers .................................... 39 3.2 Representability of Equalizers in CAT .................... 40 3.3 Coequalizers ................................... 43 3.4 Representability of Coequalizers in CAT ................... 44 4 GROUP CATEGORIES ............................... 51 4.1 Inner Equivalences of Group Categories ................... -
Notes on Topos Theory
Notes on topos theory Jon Sterling Carnegie Mellon University In the subjectivization of mathematical objects, the activity of a scientist centers on the articial delineation of their characteristics into denitions and theorems. De- pending on the ends, dierent delineations will be preferred; in these notes, we prefer to work with concise and memorable denitions constituted from a common body of semantically rich building blocks, and treat alternative characterizations as theorems. Other texts To learn toposes and sheaves thoroughly, the reader is directed to study Mac Lane and Moerdijk’s excellent and readable Sheaves in Geometry and Logic [8]; also recommended as a reference is the Stacks Project [13]. ese notes serve only as a supplement to the existing material. Acknowledgments I am grateful to Jonas Frey, Pieter Hofstra, Ulrik Buchholtz, Bas Spiers and many others for explaining aspects of category theory and topos theory to me, and for puing up with my ignorance. All the errors in these notes are mine alone. 1 Toposes for concepts in motion Do mathematical concepts vary over time and space? is question is the fulcrum on which the contradictions between the competing ideologies of mathematics rest. Let us review their answers: Platonism No. Constructivism Maybe. Intuitionism Necessarily, but space is just an abstraction of time. Vulgar constructivism No.1 Brouwer’s radical intuitionism was the rst conceptualization of mathematical activity which took a positive position on this question; the incompatibility of intuition- ism with classical mathematics amounts essentially to the fact that they take opposite positions as to the existence of mathematical objects varying over time. -
Introduction to Algebraic Stacks
Introduction to Algebraic Stacks K. Behrend December 17, 2012 Abstract These are lecture notes based on a short course on stacks given at the Newton Institute in Cambridge in January 2011. They form a self-contained introduction to some of the basic ideas of stack theory. Contents Introduction 3 1 Topological stacks: Triangles 8 1.1 Families and their symmetry groupoids . 8 Various types of symmetry groupoids . 9 1.2 Continuous families . 12 Gluing families . 13 1.3 Classification . 15 Pulling back families . 17 The moduli map of a family . 18 Fine moduli spaces . 18 Coarse moduli spaces . 21 1.4 Scalene triangles . 22 1.5 Isosceles triangles . 23 1.6 Equilateral triangles . 25 1.7 Oriented triangles . 25 Non-equilateral oriented triangles . 30 1.8 Stacks . 31 1.9 Versal families . 33 Generalized moduli maps . 35 Reconstructing a family from its generalized moduli map . 37 Versal families: definition . 38 Isosceles triangles . 40 Equilateral triangles . 40 Oriented triangles . 41 1 1.10 Degenerate triangles . 42 Lengths of sides viewpoint . 43 Embedded viewpoint . 46 Complex viewpoint . 52 Oriented degenerate triangles . 54 1.11 Change of versal family . 57 Oriented triangles by projecting equilateral ones . 57 Comparison . 61 The comparison theorem . 61 1.12 Weierstrass compactification . 64 The j-plane . 69 2 Formalism 73 2.1 Objects in continuous families: Categories fibered in groupoids 73 Fibered products of groupoid fibrations . 77 2.2 Families characterized locally: Prestacks . 78 Versal families . 79 2.3 Families which can be glued: Stacks . 80 2.4 Topological stacks . 81 Topological groupoids . 81 Generalized moduli maps: Groupoid Torsors .