Inversion of Surface Waves: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Inversion of Surface Waves: a Review 11 Inversion of Surface Waves: AReview Barbara Romanowicz University of California, Berkeley,California, USA 1996/07/11 21:46:39.7 h = 15.0 km ∆ =109.7° = 32.3° 1. Introduction Station: CMB Burma–China Border Region M = 6.8 Channel: LHZ W In what follows, we attempt to review progress made in the last R1 R few decades in the analysis of teleseismic and regional surface 1 wave data for the retrieval of earthquake source parameters and global and regional Earth structure. This review is by no means R2 exhaustive. We will rapidly skip over the early developments of R2 R3 R the 1950s and 1960s that led the foundations of normal mode 4 R R 5 6 R7 R8 and surface wave theory as it is used today. We will not attempt to provide an exhaustive review of the vast literature on surface wave measurements and the resulting models, but rather focus on describing key theoretical developments that are relevant and have been applied to inversion. Since surface wave theory is closely related to that of the Earth's normal modes, we will discuss the latter when appropriate. However, we make no attempt to extensively review normal mode theory, as this 02468101214 Time (h) subject is addressed in a separate contribution (see Chapter 10 by Lognonne and CleÂveÂdeÂ). FIGURE 1 Example of vertical component record showing many Earth-circling mantle Rayleigh wave trains over a time window of 14 h. This record was recorded at station CMB of the Berkeley 2. Background Digital Seismic Network (BDSN) and corresponds to a channel with a sampling rate of 1 sample/sec. The earthquake is shallow and the Most of the long-period energy (periods greater than 20 s) epicentral distance Á 109.7 . Because the distance is close to 90 generated by earthquakes and recorded at teleseismic distances the wave packets corresponding to even and odd order trains are well separated from each other. (Courtesy of Joseph Durek and Lind Gee.) propagates as surface waves. Most clearly visible on long- period seismograms are the successive, Earth-circling, dis- persed wave trains of the fundamental mode. For moderate size produce a spectrum of the Earth's free oscillations by Fourier earthquakes recorded at teleseismic distances (M 5.5), only analysis of long time-series. the surface waves propagating along the direct great circle path Most studied are fundamental mode Rayleigh waves, which between the epicenter and the station have signi®cant signal-to- correspond to P±SV energy and have elliptical particle motions noise ratio, mostly between 20 and 100 s period, and the dis- in the vertical plane containing the direction of propagation. persive and attenuative properties of these wave trains have These waves are well recorded on the quieter vertical com- been used extensively, since the 1950s to infer crust and upper ponent seismographs (Fig. 2). On the other hand, Love waves, mantle structure in different regions of the Earth. For earth- which carry SH energy, and are polarized horizontally in a quakes of magnitude 7 or larger, successive Earth-circling direction perpendicular to the direction of propagation, require surface wave trains can be followed for many hours (Fig. 1), rotating the two horizontal records to extract the transverse and are then either analyzed individually or combined to component of motion. Love wave studies have suffered, INTERNATIONAL HANDBOOKOFEARTHQUAKE AND ENGINEERING SEISMOLOGY,VOLUME 81A ISBN: 0-12-440652-1 Copyright # 2002 by the Int'l Assoc. Seismol. & Phys. Earth's Interior Committee on Education. All rights of reproduction in any form reserved. 149 150 Romanowicz Station: CMB 1996/07/12 15:46:59.8 h =15.0 km ∆ = 88.7° = 47.4° 1/23/1997 Southern Bolivia SUR Comp L Dist 8419 km Mb 6.4 MW 7.1 dep 276 km Loyalty Islands Region MW = 6.4 Surface wave Vertical harmonics R1 arrival S Rayleigh Longitudinal P arrival P Love Transverse 0 102030405060 500 1000 1500 2000 2500 3000 3500 Time (min) Time (sec) FIGURE 2 Three-component seismograms observed at station FIGURE 3 Example of longitudinal component seismogram CMB for a shallow earthquake at a distance of Á 88.7. The hor- recorded at IRIS/GSN station SUR showing the arrivals of multiply izontal components have been rotated to the longitudinal and trans- re¯ected body wave phases forming a higher-mode Rayleigh wave verse directions, clearly exhibiting fundamental mode Love and train in front of the fundamental mode (R1). The Airy phase, corre- Rayleigh waves on the transverse and vertical/longitudinal compo- sponding to the group velocity minimum around 230 sec, is well nents, respectively. (Courtesy of Joseph Durek and Lind Gee.) visible in the R1 train. The event occurred on 14 Jan. 1997 in southern Bolivia, at a depth of 276 km. The epicentral distance is 8419km. The especially in the early days of analog recordings, from the seismogram has been bandpass ®ltered with cut-off frequencies at more complex data processing required, and from the higher 35 and 400 sec. (Courtesy of Yuancheng Gung.) levels of background noise on horizontal components at long periods, due primarily to the in¯uence of atmospheric pres- 1959; Ben-Menahem, 1961; Kanamori, 1970). At that time, sure variations, inducing ground tilts. Fundamental mode the theoretical formulation for the excitation of surface Love and Rayleigh waves are generally well separated from waves and normal modes of the Earth was developed (Sato other phases on the seismograms, and well excited by shallow, et al., 1962; Harkrider, 1964; Haskell, 1964), much stimulated crustal earthquakes, while overtones travel at higher group by the occurrence of the great Chilean earthquake of 22 May velocities, appear as packets of mixed overtones (e.g., X 1960, and more quantitative studies of the effects of the phases, Jobert et al., 1977), and are better excited by deeper earthquake source on spectra of surface waves followed. earthquakes (Fig. 3). The association of a normal mode formalism (e.g., Gilbert, Surface waves recorded at teleseismic distances contain 1971) to compute dispersion and excitation of surface waves information about both the characteristics of the earthquake (and complete seismograms) with a moment tensor formal- source and the structure of the Earth along the source station ism to describe the earthquake source (e.g., Backus and path. Separating these two effects has been one of the long- Mulcahy, 1976; Mendiguren, 1977) has led to the present- standing challenges faced by seismologists. day commonly used expressions and to a rapid develop- Studies of the structure of the crust and upper mantle pro- ment of source studies based on surface waves in the 1980s. gressed rapidly in the 1950s and early 1960s, as the tools to A computational method (Takeuchi and Saito, 1972), follow- measure group and phase velocities, and interpret them in ing the theoretical approach of Saito (1967) based on Runge± terms of layered mantle and crust models, became readily Kutta matrix integration, has long been the main reference available (e.g., Ewing et al., 1957; Brune et al., 1961a,b; for the practical calculation of excitation for surface waves Alsop, 1963). In these studies, source effects were generally and normal modes in laterally homogeneous, elastic, ¯at or eliminated by considering propagation between two or more spherical Earth models. Later, different schemes, using stations aligned along the same great circle path, or, at longer different mathematical approaches (variational method) were periods, observation of consecutive Earth-circling wave developed (Wiggins, 1976; Buland and Gilbert, 1984). trains at the same station. On the other hand, in early studies Today, another widely used code for spherical geometry and of earthquake sources, propagation effects were assumed to be ef®cient to relatively short periods (10 s) is based on a pro- known, and amplitudes were ``equalized'' to obtain the pagator matrix approach, in which minors of sets of solutions source radiation pattern and infer information about the fault are used (Gilbert and Backus, 1966; Woodhouse, 1980a, orientation (e.g., Aki, 1960) and its directivity (Alterman et al., 1988). Inversion of Surface Waves 151 These theoretical advances were ®rst applied to the analog surface wave at distance Á, azimuth , and angular frequency data of the World Wide Standard Seismic Network (WWSSN) !. Following Kanamori and Stewart (1976), and Nakanishi accumulated in the 1960s and 1970s. The IDA (International and Kanamori (1982): Deployment of Accelerometers) network, established in the mid-1970s (Agnew et al., 1976), provided the ®rst long-period U Á, , !Us , !S ÁUp Á, , !F !, 0D !I ! 2 digital data, along with several stations installed and operated where Us is the source spectrum, Up contains propagation by the French (Jobert and Roult, 1976). The digital recording effects, I is the instrument response, S(Á) the geometrical greatly facilitated the simultaneous analysis of many records, spreading term, and F and D express the source process as paving the way for large-scale tomographic studies of global clari®ed below. structure and systematic teleseismic source studies. A major The propagation term Up can be expressed as (e.g., drawback, however, was the limited dynamic range of the Romanowicz and Monfret, 1986) IDA instruments, so that ®rst-arriving low-frequency R1 and 1 G1 wave trains would saturate for large earthquakes. This Up Á, , ! exp i=4 exp im=2 problem disappeared in the 1980s with the deployment by sin Á1=2 France of the high dynamic range, digital broadband GEO-  expÀi!Á=C !, expÀ !, Á 3 SCOPE network (Romanowicz et al., 1984, 1991) and by the United States of the IRIS Global Seismic Network (e.g., where m denotes the number of polar passages and C(!, ), Smith, 1986), gradually complemented by many broadband (!, ) are, respectively, the average phase velocity and stations contributed by other countries through the Federation attenuation coef®cient along the source±station path.
Recommended publications
  • Rayleigh Sound Wave Propagation on a Gallium Single Crystal in a Liquid He3 Bath G
    Rayleigh sound wave propagation on a gallium single crystal in a liquid He3 bath G. Bellessa To cite this version: G. Bellessa. Rayleigh sound wave propagation on a gallium single crystal in a liquid He3 bath. Journal de Physique Lettres, Edp sciences, 1975, 36 (5), pp.137-139. 10.1051/jphyslet:01975003605013700. jpa-00231172 HAL Id: jpa-00231172 https://hal.archives-ouvertes.fr/jpa-00231172 Submitted on 1 Jan 1975 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. L-137 RAYLEIGH SOUND WAVE PROPAGATION ON A GALLIUM SINGLE CRYSTAL IN A LIQUID He3 BATH G. BELLESSA Laboratoire de Physique des Solides (*) Université Paris-Sud, Centre d’Orsay, 91405 Orsay, France Résumé. - Nous décrivons l’observation de la propagation d’ondes élastiques de Rayleigh sur un monocristal de gallium. Les fréquences d’études sont comprises entre 40 MHz et 120 MHz et la température d’étude la plus basse est 0,4 K. La vitesse et l’atténuation sont étudiées à des tempéra- tures différentes. L’atténuation des ondes de Rayleigh par le bain d’He3 est aussi étudiée à des tem- pératures et des fréquences différentes.
    [Show full text]
  • Ellipticity of Seismic Rayleigh Waves for Subsurface Architectured Ground with Holes
    Experimental evidence of auxetic features in seismic metamaterials: Ellipticity of seismic Rayleigh waves for subsurface architectured ground with holes Stéphane Brûlé1, Stefan Enoch2 and Sébastien Guenneau2 1Ménard, Chaponost, France 1, Route du Dôme, 69630 Chaponost 2 Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France 52 Avenue Escadrille Normandie Niemen, 13013 Marseille e-mail address: [email protected] Structured soils with regular meshes of metric size holes implemented in first ten meters of the ground have been theoretically and experimentally tested under seismic disturbance this last decade. Structured soils with rigid inclusions embedded in a substratum have been also recently developed. The influence of these inclusions in the ground can be characterized in different ways: redistribution of energy within the network with focusing effects for seismic metamaterials, wave reflection, frequency filtering, reduction of the amplitude of seismic signal energy, etc. Here we first provide some time-domain analysis of the flat lens effect in conjunction with some form of external cloaking of Rayleigh waves and then we experimentally show the effect of a finite mesh of cylindrical holes on the ellipticity of the surface Rayleigh waves at the level of the Earth’s surface. Orbital diagrams in time domain are drawn for the surface particle’s velocity in vertical (x, z) and horizontal (x, y) planes. These results enable us to observe that the mesh of holes locally creates a tilt of the axes of the ellipse and changes the direction of particle movement. Interestingly, changes of Rayleigh waves ellipticity can be interpreted as changes of an effective Poisson ratio.
    [Show full text]
  • Development of an Acoustic Microscope to Measure Residual Stress Via Ultrasonic Rayleigh Wave Velocity Measurements Jane Carol Johnson Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 Development of an acoustic microscope to measure residual stress via ultrasonic Rayleigh wave velocity measurements Jane Carol Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Applied Mechanics Commons Recommended Citation Johnson, Jane Carol, "Development of an acoustic microscope to measure residual stress via ultrasonic Rayleigh wave velocity measurements " (1995). Retrospective Theses and Dissertations. 11061. https://lib.dr.iastate.edu/rtd/11061 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quali^ of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and inqvoper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note win indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overk^.
    [Show full text]
  • Surface Waves (Phenomenology) Surface Waves Are Related to Critical Reflections
    Surface Waves (Phenomenology) Surface waves are related to critical reflections. To understand surface waves, we must first have some knowledge of critical waves and total internal reflections. Total Internal reflection condition: (1) second medium is has greater internal velocity than incoming (2) angle of refraction (transmission) passes 90 1 Wispering wall (not total internal reflection, total internal reflection but has similar effect): Beijing, China θ Nature of “wispering wall” or “wispering gallery”: A sound wave is trapped in a carefully designed circular enclosure. 2 The Sound Fixing and Ranging Channel (SOFAR channel) and Guided Waves A layer of low velocity zone inside ocean that ‘traps’ sound waves due to total internal reflection. Mainly by Maurice Ewing (the ‘Ewing Medal’ at AGU) in the 1940’s 3 Seismic Surface Waves Get me out of here, faaaaaassstttt…. .!! Seismic Surface Waves Facts We have discussed P and S waves, as well as interactions of SH, or P -SV waves near the free surface. As we all know that surface waves are extremely important for studying the crustal and upper mantle structure, as well as source characteristics. Surface Wave Characteristics: (1) Dominant between 10-200 sec (energy decays as r-1, with stationary depth distribution, but body wave r-2). (2) Dispersive which gives distinct depth sensitivity Types: (1)Rayleigh: P-SV equivalent, exists in elastic homogeneous halfspace (2) Love: SH equivalent, only exist if there is velocity gradient with depth (e.g., layer over halfspace) 5 Body wave propagation One person’s noise is another person’s signal. This is certainly true for what surface waves mean to an exploration geophysicist and to a global seismologist Energy decay in surface Surface Wave Propagation waves (as a function of r) is less than that of body wave (r2)--- the main reason that we always find larger surface waves than body waves, especially at long distances.
    [Show full text]
  • Lab #24 Lab #1
    LAB #1 LAB #24 Earthquakes Recommended Textbook Reading Prior to Lab: • Chapter 14, Geohazards: Volcanoes and Earthquakes 14.3 Tectonic Hazards: Faults and Earthquakes 14.4 Unstable Crust: Seismic Waves Goals: After completing this lab, you will be able to: • Classify the types and characteristics of body and surface seismic waves. • Interpret a seismogram and determine the likely seismic wave characteristics. • Determine the arrival time difference between selected P waves and S waves, and use a travel time curve to determine distance to an earthquake’s epicenter. • Use a drawing compass to triangulate an earthquake’s epicenter. • Quantify earthquake magnitude with a magnitude nomogramreproduction after interpreting key variables on a seismogram. • Calculate energy-released comparisons, as well as ground-motion comparisons, for selected earthquakes of varying magnitude. • Identify how an earthquake intensity scale differs from an earthquake magnitude scale. unauthorized • Carry out intensity interval sketching on a map following a hypothetical earthquake. No • Judge the likely earthquake intensity of selected cities during a hypothetical earthquake. 2014. Key Terms and Concepts: • epicenter • S wave • magnitude • seismograph (or seismometer) • magnitude nomogramFreeman • seismogram • modifi ed MercalliH. intensity (MMI) scale • travel time curve • P wave W. © Required Materials: • Drafting compass • Drawing compass • Ruler • Textbook: Living Physical Geography, by Bruce Gervais 273 © 2014 W. H. Freeman and Company LAB #24 Earthquakes 275 Problem-Solving Module #1: Earthquake Waves and the Travel Time Curve Earthquakes generate both P waves (primary) and S waves (secondary). Both P and S waves travel through Earth’s interior and are called body waves. Earthquakes also generate Rayleigh and Love waves.
    [Show full text]
  • The Role of Sine and Cosine Components in Love Waves and Rayleigh Waves for Energy Hauling During Earthquake
    American Journal of Applied Sciences 7 (12): 1550-1557, 2010 ISSN 1546-9239 © 2010 Science Publications The Role of Sine and Cosine Components in Love Waves and Rayleigh Waves for Energy Hauling during Earthquake Zainal Abdul Aziz and Dennis Ling Chuan Ching Department of Mathematics, Faculty of Science, University Technology Malaysia, 81310 Johor, Malaysia Abstract: Problem statement: Love waves or shear waves are referred to dispersive SH waves. The diffusive parameters are found to produce complex amplitude and diffusive waves for energy hauling. Approach: Analytical solutions are found for analysis and discussions. Results: When the standing waves are compared with the Love waves, similar cosine component is found in both waves. Energy hauling between waves is impossible for Love waves if the cosine component is independent. In the view of 3D particle motion, the sine component of the Rayleigh waves will interfere with shear waves and thus the energy hauling capability of shear waves are formed for generating directed dislocations. Nevertheless, the cnoidal waves with low elliptic parameter are shown to act analogous to Rayleigh waves. Conclusion: Love waves or Rayleigh waves are unable to propagate energy once the sine component does not exist. Key words: Energy hauling, sine and cosine, amplitude, love waves, Rayleigh waves, Cnoidal waves, earthquake, phase velocity, periodic, isotropic medium, illustrated, anisotropic INTRODUCTION seismology, Love waves are referred to shear waves and SH waves in layered medium are similar to Love waves. For this reason, the similarity between standing Seismic body waves are classified to P, SH and SV waves. Similar waves have being derived in vector waves and Love waves must be exploited.
    [Show full text]
  • Group Velocity Measurements of Earthquake Rayleigh Wave by S Transform and Comparison with MFT
    EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 24, No. 1 (March, 2020): 91-95 GEOPHYSICS Group Velocity Measurements of Earthquake Rayleigh Wave by S Transform and Comparison with MFT Chanjun Jianga,b,c, Youxue Wanga,b*, Gaofu Zengd aSchool of Earth Science, Guilin University of Technology, Guilin 541006, China. bGuangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin 541006, China. cBowen College of Management, Guilin University of Technology, Guilin 541006, China. dChina Nonferrous Metals (Guilin) Geology and Mining Co,. Ltd, Guilin 541006, China. * Corresponding author: [email protected] ABSTRACT Keywords: Earthquake Rayleigh waves; group Based upon the synthetic Rayleigh wave at different epicentral distances and real earthquake Rayleigh wave, S velocity; S transform; Multiple Filter Technique. transform is used to measure their group velocities, compared with the Multiple Filter Technique (MFT) which is the most commonly used method for group-velocity measurements. When the period is greater than 15 s, especially than 40 s, S transform has higher accuracy than MFT at all epicenter distances. When the period is less than or equal to 15 s, the accuracy of S transform is lower than that of MFT at epicentral distances of 1000 km and 8000 km (especially 8000 km), and the accuracy of such two methods is similar at the other epicentral distances. On the whole, S transform is more accurate than MFT. Furthermore, MFT is dominantly dependent on the value of the Gaussian filter parameter α , but S transform is self-adaptive. Therefore, S transform is a more stable and accurate method than MFT for group velocity measurement of earthquake Rayleigh waves.
    [Show full text]
  • The Branch of Science That Studies Earthquakes Is: ______
    The branch of science that studies earthquakes is: __________ A. Earthquake Regions on Earth Question: What does the map of these earthquakes seem to resemble? _____________________________________________ _______________________________________ B. Earthquake by Definition: _____________________________________________ _______________________________________ - Caused by: - The energy: Earthquakes in PA Date Local Time Magnitude April 22, 2009 9:21 1.1 April 23, 2009 6:26 2.4 April 24, 2009 1:36 2.9 April 30, 2009 18:36 2.0 May 11, 2009 01:18 1.3 May 11, 2009 01:34 1.2 October 25, 2009 07:16 2.6 October 25, 2009 07:18 1.8 October 25, 2009 07:21 2.8 Note: Largest Earthquake in PA was: ________________________ Recently close earthquake was: ________________________ Location: Time: Magnitude: Question: Where do you notice these earthquakes occurring? _______________________________________________ Boundaries and types of Earthquakes •Build up of _________________________________ Which boundary?__________ ___ Type of Earthquake: ______________ Boundary: ___________ Plate Interaction: ___________________ Type of Earthquakes: ____________________ Boundary: _____________ Plate Interaction: ___________________ Type of Earthquakes: ___________________ Boundary: ___________ Plate Interaction: ___________________ Type of Earthquakes: ____________________ Boundary: ___________ Plate Interaction: ___________________ Type of Earthquakes: ____________________ Types of Faults Fault: ___________________________ Three Main Types: Normal, Reverse, Strike-Slip
    [Show full text]
  • Some Observations on Rayleigh Waves and Acoustic Emission in Thick Steel Plates#∞
    SOME OBSERVATIONS ON RAYLEIGH WAVES AND ACOUSTIC #∞ EMISSION IN THICK STEEL PLATES M. A. HAMSTAD National Institute of Standards and Technology, Materials Reliability Division (853), 325 Broadway, Boulder, CO 80305-3328 and University of Denver, School of Engineering and Computer Science, Department of Mechanical and Materials Engineering, Denver, CO 80208 Abstract Rayleigh or surface waves in acoustic emission (AE) applications were examined for nomi- nal 25-mm thick steel plates. Pencil-lead breaks (PLBs) were introduced on the top and bottom surfaces as well as on the plate edge. The plate had large transverse dimensions to minimize edge reflections arriving during the arrival of the direct waves. An AE data sensor was placed on the top surface at both 254 mm and 381 mm from the PLB point or the epicenter of the PLB point. Also a trigger sensor was placed close to the PLB point. The signals were analyzed in the time domain and the frequency/time domain with a wavelet transform. For most of the experiments, the two data sensors had a small aperture (about 3.5 mm) and a high resonant frequency (about 500 kHz). These sensors effectively emphasized a Rayleigh wave relative to Lamb modes. In addition, finite-element modeling (FEM) was used to examine the presence or absence of Rayleigh waves generated by dipole point sources buried at different depths below the plate top surface. The resulting out-of-plane displacement signals were analyzed in a fashion similar to the experimental signals for propagation distances of up to 1016 mm for out-of-plane dipole sources.
    [Show full text]
  • Estimation of Near-Surface Shear-Wave Velocity by Inversion of Rayleigh Waves
    GEOPHYSICS, VOL. 64, NO. 3 (MAY-JUNE 1999); P. 691–700, 8 FIGS., 2 TABLES. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves ∗ ∗ ∗ Jianghai Xia , Richard D. Miller , and Choon B. Park as the earth–air interface. Rayleigh waves are the result of in- ABSTRACT terfering P- and Sv-waves. Particle motion of the fundamental The shear-wave (S-wave) velocity of near-surface ma- mode of Rayleigh waves moving from left to right is ellipti- terials (soil, rocks, pavement) and its effect on seismic- cal in a counterclockwise (retrograde) direction. The motion wave propagation are of fundamental interest in many is constrained to the vertical plane that is consistent with the groundwater, engineering, and environmental studies. direction of wave propagation. Longer wavelengths penetrate Rayleigh-wave phase velocity of a layered-earth model deeper than shorter wavelengths for a given mode, generally is a function of frequency and four groups of earth prop- exhibit greater phase velocities, and are more sensitive to the erties: P-wave velocity, S-wave velocity, density, and elastic properties of the deeper layers (Babuska and Cara, thickness of layers. Analysis of the Jacobian matrix pro- 1991). Shorter wavelengths are sensitive to the physical proper- vides a measure of dispersion-curve sensitivity to earth ties of surficial layers. For this reason, a particular mode of sur- properties. S-wave velocities are the dominant influ- face wave will possess a unique phase velocity for each unique ence on a dispersion curve in a high-frequency range wavelength, leading to the dispersion of the seismic signal.
    [Show full text]
  • Surface Wave Inversion of the Upper Mantle Velocity
    SURFACE WAVE INVERSION OF THE UPPER MANTLE VELOCITY STRUCTURE IN THE ROSS SEA REGION, WESTERN ANTARCTICA __________________________________ A Thesis Presented to The Graduate Faculty Central Washington University __________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science Geology __________________________________ by James D. Rinke June 2011 CENTRAL WASHINGTON UNIVERSITY Graduate Studies We hereby approve the thesis of James D. Rinke Candidate for the degree of Master of Science APPROVED FOR THE GRADUATE FACULTY ______________ _________________________________________ Dr. Audrey Huerta, Committee Chair ______________ _________________________________________ Dr. J. Paul Winberry ______________ _________________________________________ Dr. Timothy Melbourne ______________ _________________________________________ Dean of Graduate Studies ii ABSTRACT SURFACE WAVE INVERSION OF THE UPPER MANTLE VELOCITY STRUCTURE IN THE ROSS SEA REGION, WESTERN ANTARCTICA by James D. Rinke June 2011 The Ross Sea in Western Antarctica is the locale of several extensional basins formed during Cretaceous to Paleogene rifting. Several seismic studies along the Transantarctic Mountains and Victoria Land Basin’s Terror Rift have shown a general pattern of fast seismic velocities in East Antarctica and slow seismic velocities in West Antarctica. This study focuses on the mantle seismic velocity structure of the West Antarctic Rift System in the Ross Embayment and adjacent craton and Transantarctic Mountains to further refine details of the velocity structure. Teleseismic events were selected to satisfy the two-station great-circle-path method between 5 Polar Earth Observing Network and 2 Global Seismic Network stations circumscribing the Ross Sea. Multiple filter analysis and a phase match filter were used to determine the fundamental mode, and linearized least-square algorithm was used to invert the fundamental mode phase velocity to shear velocity as a function of depth.
    [Show full text]
  • Love Wave Biosensors: a Review
    Chapter 11 Love Wave Biosensors: A Review María Isabel Rocha Gaso, Yolanda Jiménez, Laurent A. Francis and Antonio Arnau Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53077 1. Introduction In the fields of analytical and physical chemistry, medical diagnostics and biotechnology there is an increasing demand of highly selective and sensitive analytical techniques which, optimally, allow an in real-time label-free monitoring with easy to use, reliable, miniatur‐ ized and low cost devices. Biosensors meet many of the above features which have led them to gain a place in the analytical bench top as alternative or complementary methods for rou‐ tine classical analysis. Different sensing technologies are being used for biosensors. Catego‐ rized by the transducer mechanism, optical and acoustic wave sensing technologies have emerged as very promising biosensors technologies. Optical sensing represents the most of‐ ten technology currently used in biosensors applications. Among others, Surface Plasmon Resonance (SPR) is probably one of the better known label-free optical techniques, being the main shortcoming of this method its high cost. Acoustic wave devices represent a cost-effec‐ tive alternative to these advanced optical approaches [1], since they combine their direct de‐ tection, simplicity in handling, real-time monitoring, good sensitivity and selectivity capabilities with a more reduced cost. The main challenges of the acoustic techniques re‐ main on the improvement of the sensitivity with the objective to reduce the limit of detec‐ tion (LOD), multi-analysis and multi-analyte detection (High-Throughput Screening systems-HTS), and integration capabilities. Acoustic sensing has taken advantage of the progress made in the last decades in piezoelec‐ tric resonators for radio-frequency (rf) telecommunication technologies.
    [Show full text]