Summer Assignment

Total Page:16

File Type:pdf, Size:1020Kb

Summer Assignment Summer Assignment Summer Remind Code: Text: @joinhug20 to 81010 Summer Schoology Code: To sign up for our Summer Schoology Course follow these steps: Access Code: 1. Go to Schoology.com 4FD8-8GS8-ZBFMQ 2. Click SIGN UP select Student 3. Use our class access code: 4FD8-8GS8-ZBFMQ 4. Complete your personal information to complete registration ** DO NOT USE YOUR MCS ID TO REGISTER!** Be sure to check Schoology periodically for enrichment opportunities BEFORE our class begins! You will NOT be graded for these opportunities… so no worries if you choose not to complete them These enrichment opportunities will include reading articles, watching videos, practice quizzes to help preview upcoming materials! You will also be able to message me to ask questions about the summer assignment. AP Human Geography Summer Assignment Mrs. Amanda Neslen [email protected] AP Human Geography Students, As part of entering our AP Human Geography class in August it is important for you to acquire a certain level of background knowledge of map skills. Your general understanding of important maps and locations will be imperative to your success in this class. You will need to complete the following series of maps to create your own AP HUG World Atlas. We will refer back to these maps frequently over the year as we prepare for the AP Test in May. These 8 maps will be due on the first BLOCK period of the new school year and will serve as your first 100 points in the class. Maps not received fully completed on the due date will be accepted for ½ credit. Please be sure to follow all directions completely paying careful attention to required colors, symbols, and neatness. Please contact me at the email address above if you have any questions. Do not wait until the very last minute to begin your maps! The earlier you complete your maps, the sooner you can begin preparing for the test that will occur during the first two weeks of school. Map Guidelines Maps will be graded based upon THREE criteria: A. Correct location of all items B. Neat presentation of all lettering and coloring C. Completion of assignment Maps must meet the following guidelines to earn full credit: 1. All lettering of Countries and States must be completed in BLACK ink 2. All lettering of Capitals and Major Cities must be completed in RED ink All Capitals should be shown with a RED STAR symbol All Major Cities should be shown with a BLACK DOT symbol 3. All lettering of Rivers and Bodies of Water must be completed in BLUE ink 4. All lettering of Mountains and Important Landforms must be completed in BLACK ink All mountains should be shown with a BROWN TRIANGLE symbol 5. Rivers and Bodies of Water should be shaded BLUE (Oceans do not need to be colored!) 6. Mountains and Plateaus should be shaded BROWN 7. Deserts should be shaded YELLOW 8. Plains should be shaded LIGHT GREEN 9. Peninsulas do not need to be shaded a specific color 10. Place all items as close to their actual location as possible (DO NOT draw lines across the map!) 11. Countries need to be neatly shaded No TWO countries touching should be the same color (DO NOT use BLUE. Blue represents water only!) Coloring should be light enough to read all lettering (Colored pencil is preferred!) 12. Maps must include a key of all colors and symbols used 13. You may use the following abbreviations: W.‐West E.‐East N.‐North S.‐South Place names that more than NINE letters may be shortened World Atlas Assignment Map 1: World Map Map 3: Central America Map 5: Africa Please LABEL the following: Please LABEL the following: Please LABEL the following: 7 Continents: North America, Countries, Capitals, and Major Cities: Countries, Capitals, and Major Cities: South America, Europe, Asia, Cuba‐Havana South Africa‐Bloemfontein, Africa, Australia, Antarctica Guatemala‐Guatemala City Johannesburg 4 Oceans: Pacific, Atlantic, Belize‐Belmopan Lesotho Indian, Arctic El Salvador‐San Salvador Madagascar Equator Honduras‐Tegucigalpa Sudan Tropic of Cancer Nicaragua‐Managua South Sudan Tropic of Capricorn Costa Rica‐San Jose Niger Panama‐Panama City Algeria Bodies of Water: Nigeria‐Lagos Pacific Ocean Somalia Caribbean Sea Morocco‐Casablanca (not capital) Map 2: North America Gulf of Honduras Please LABEL the following: Libya‐Tripoli Countries, Capitals, and Major Cities: Gulf of Panama Egypt‐Cairo United States‐Washington, Lake Nicaragua Kenya‐Nairobi D.C., Chicago, New York City, Mountain Ranges and other landforms: Chad Yucatan Peninsula Los Angeles Mali Isthmus of Panama Canada‐Ottawa, Toronto Congo/Zaire Mexico‐Mexico City Rwanda Greenland Map 4: South America Botswana Bodies of Water: Please LABEL the following: Ethiopia Pacific Ocean Countries, Capitals, and Major Cities: Colombia‐Bogota Zimbabwe Atlantic Ocean Venezuela‐Caracas Uganda Great Lakes Guyana‐Georgetown Hudson Bay Bodies of Water: Suriname‐Paramaribo Gulf of Mexico Indian Ocean French Guiana Gulf of California Atlantic Ocean Ecuador‐Quito Rivers: Lake Victoria Rio Grande Peru‐Callao Mozambique Channel Mississippi Brazil‐Brasilia Mediterranean Sea Mountain Ranges and other landforms: Bolivia‐La Paz Red Sea Rocky Mountains Chile‐Santiago Rivers: Appalachian Mountains Argentina‐Buenos Aires Nile River Great Plains Uruguay‐Montevideo Congo River Paraguay‐Asuncion Mountain Ranges and other landforms: Atlas Mountains Bodies of Water: Pacific Ocean Sahara Desert Atlantic Ocean Cape of Good Hope Caribbean Sea Suez Canal Scotia Sea Sinai Peninsula Rivers: Strait of Gibraltar Amazon Mountain Ranges and other landforms: Andes Mountains Cape Horn Amazon Basin Map 8: Europe Map 6: Central and Southwest Asia Map 7: Southeast Asia and South Pacific Please LABEL the following: Please LABEL the following: Please LABEL the following: Countries, Capitals, and Major Cities: Countries, Capitals, and Major Cities: Countries, Capitals, and Major Cities: Ireland‐Dublin Turkey China‐Beijing, Hong Kong Russia‐Moscow Syria Japan‐Tokyo Sweden‐Stockholm Lebanon Myanmar (Burma) Greece‐Athens Israel‐Jerusalem Laos Romania Jordan Thailand Slovakia Iraq‐Baghdad Singapore Czech Republic Iran‐Tehran Cambodia Norway‐Oslo Kuwait Vietnam‐Hanoi Spain‐Madrid Saudi Arabia‐ Riyadh, Mecca Malaysia Croatia Yemen Indonesia‐Jakarta Germany‐Berlin United Arab Emirates Philippines‐Manila France‐Paris Oman Papua New Guinea United Kingdom‐London Afghanistan‐Kabul Australia‐Sydney (not capital) Italy‐Rome Pakistan New Zealand Poland‐Warsaw India‐New Delhi, Calcutta, Sri Lanka Finland Mumbai (Bombay) North Korea Bosnia Nepal South Korea Bodies of Water: China Bodies of Water: Atlantic Ocean Sri Lanka Indian Ocean North Sea Bodies of Water: Pacific Ocean Norwegian Sea Indian Ocean Coral Sea Baltic Sea Arabian Sea South China Sea Black Sea Bay of Bengal East China Sea Mediterranean Sea Persian Gulf Sea of Japan Adriatic Sea Red Sea Rivers: Aegean Sea Yangtze River Caspian Sea English Channel Huang He (Yellow) River Black Sea Strait of Gibraltar Mountain Ranges and other landforms: Rivers: Rivers: Himalayan Mountains Ganges River Rhine River Tien Shan Mountains Tigris River Danube River Euphrates River Arabian Peninsula Mountain Ranges and other landforms: Mountain Ranges and other landforms: Indochina Peninsula Pyrenees Mountains Himalayan Mountains Tibetan Plateau Alps Mountains Tien Shan Mountains Caucasus Mountains Arabian Peninsula Ural Mountains Indochina Peninsula Iberian Peninsula Tibetan Plateau Balkan Peninsula To help you label your maps correctly you can use the following sources: http://www.worldatlas.com/aatlas/world.htm http://maps.nationalgeographic.com/maps https://www.cia.gov/library/publications/the-world-factbook/index.html Or you may purchase a cheap atlas from Barnes and Noble or Amazon.com to help you. I recommend that you do not spend more than $20, but it may come in handy next year! AP Human Geography World Atlas Assignment: Map 1 World Continents AP Human Geography World Atlas Assignment: Map 2 North America AP Human Geography World Atlas Assignment: Map 3 Central America AP Human Geography World Atlas Assignment: Map 4 South America AP Human Geography World Atlas Assignment: Map 5 Africa AP Human Geography World Atlas Assignment: Map 6 Central and Southwest Asia AP Human Geography World Atlas Assignment: Map 7 Southeast Asia and South Pacific AP Human Geography World Atlas Assignment: Map 8 Europe .
Recommended publications
  • Variability in the Location. of the Antarctic Polar Front (90 °
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. C13, PAGES 27,825-27,833, DECEMBER 15, !997 Variability in the location.of the Antarctic Polar Front (90ø- 20øW) from satellite sea surface temperature data J. Keith Moore, Mark R. Abbott, and James G. Richman Collegeof Oceanicand AtmosphericSciences, Oregon State University, Corvallis Abstract. The path of the AntarcticPolar Front (PF) is mappedusing satellite sea surfacetemperature data from the NOAA/NASA Pathfinderprogram. The mean path and variabilityof the PF are stronglyinfluenced by bathymetry.Meandering intensity is weaker where the bathymetryis steeplysloped and increasesin areaswhere the bottom is relativelyflat. There is an inverserelationship between meandering intensity and both the width of the front and the changein temperatureacross it. There is a persistent,large separationbetween the surfaceand subsurfaceexpressions of the PF at Ewing Bank on the Falkland Plateau. 1. Introduction of meanderingjets and fronts hasbeen done previouslyfor the PF [Legeckis,1977] and other strongfrontal systems[Hansen TheAntarctic Polar Front (PF) is a strongjet within t•e and Maul, 1970; Olsonet al., 1983; Cornilion, 1986]. Antarctic CircumpolarCurrent (ACG), which flowseastward Satellite altimeter data has shown that there is little zonal continuouslyaround Antarctica [Nowlin and Klinck, 1986].The coherencein the variabilityof the ACC [Fu and Chelton,1984; PF, also known as the Antarctic Convergence,is the location Sandwelland Zhang, 1989; Chelton et al., 1990; Gille, 1994; where Antarctic surfacewaters movingto the north sink rap- Gille and Kelly,1996]. These studies emphasize the importance idly belowSubantarctic waters [Deacon, 1933, 1937].Thus the of local and regionalinstabilities [Chelton et al., 1990;Gille and PF is a regionof elevatedcurrent speeds and stronghorizontal Kelly,1996].
    [Show full text]
  • Your Cruise Secrets of Central America
    Secrets of Central America From 1/4/2022 From Colón Ship: LE CHAMPLAIN to 1/14/2022 to Puerto Caldera PONANT takes you to discover Panama and Costa Rica with an 11-day expedition cruise. A circuit of great beauty around the isthmus of Panama, a link between two continents, which concentrates a biodiversity that is unique in the world, from the Atlantic Ocean to the Pacific Ocean between dream islands, natural reserves and encounters with the fascinating local communities. Your journey in Central America will begin with an all-new port of call in the magnificent Portobelo Bay, between mangroves, tropical forest and discovery of the Congo culture. The fortifications of this former gateway to the New World are a UNESCO World Heritage Site. You will then discover the golden sand and crystal-clear waters of the coral islets of the San Blas Islands. The Kuna live among the palm trees and pirogues; this people perpetuates, among other things, the traditional craft of molas, weaved textiles in sparkling colours. After sailing through the world-famous Panama Canal, your ship will stop in the Pearl Islands, which nestle in the Gulf of Panama. Your ship will then head for the magnificent Darien National Park in Panama. This little corner of paradise is a UNESCO World Heritage site and home to remarkable plants and wildlife. Sandy beaches, rocky coastlines, mangroves, swamps and tropical rainforests vie with each other for beauty and offer a feast for photographers. This will also be the occasion for meeting the astonishing semi-nomadic Emberas community. In Casa Orquideas, in the heart of a region that is home to Costa Rica’s most beautiful beaches, you will have the chance to visit a botanical garden with a sublime collection of tropical flowers.
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • Modification and Pathways of Southern Ocean Deep Waters in the Scotia
    Deep-Sea Research I 49 (2002) 681–705 Modification and pathways of Southern Ocean Deep Waters in the Scotia Sea Alberto C. Naveira Garabatoa,*, Karen J. Heywooda, David P. Stevensb a School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK b School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK Received 11 September 2000; received in revised form 11 June 2001; accepted 23 October 2001 Abstract An unprecedented high-quality, quasi-synoptic hydrographic data set collected during the ALBATROSS cruise along the rim of the Scotia Sea is examined to describe the pathways of the deep water masses flowing through the region, and to quantify changes in their properties as they cross the sea. Owing to sparse sampling of the northern and southern boundaries of the basin, the modification and pathways of deep water masses in the Scotia Sea had remained poorly documented despite their global significance. Weddell Sea Deep Water (WSDW) of two distinct types is observed spilling over the South Scotia Ridge to the west and east of the western edge of the Orkney Passage. The colder and fresher type in the west, recently ventilated in the northern Antarctic Peninsula, flows westward to Drake Passage along the southern margin of the Scotia Sea while mixing intensely with eastward-flowing Circumpolar Deep Water (CDW) of the antarctic circumpolar current (ACC). Although a small fraction of the other WSDW type also spreads westward to Drake Passage, the greater part escapes the Scotia Sea eastward through the Georgia Passage and flows into the Malvinas Chasm via a deep gap northeast of South Georgia.
    [Show full text]
  • Chapter 4 Tectonic Reconstructions of the Southernmost Andes and the Scotia Sea During the Opening of the Drake Passage
    123 Chapter 4 Tectonic reconstructions of the Southernmost Andes and the Scotia Sea during the opening of the Drake Passage Graeme Eagles Alfred Wegener Institute, Helmholtz Centre for Marine and Polar Research, Bre- merhaven, Germany e-mail: [email protected] Abstract Study of the tectonic development of the Scotia Sea region started with basic lithological and structural studies of outcrop geology in Tierra del Fuego and the Antarctic Peninsula. To 19th and early 20th cen- tury geologists, the results of these studies suggested the presence of a submerged orocline running around the margins of the Scotia Sea. Subse- quent increases in detailed knowledge about the fragmentary outcrop ge- ology from islands distributed around the margins of the Scotia Sea, and later their interpretation in light of the plate tectonic paradigm, led to large modifications in the hypothesis such that by the present day the concept of oroclinal bending in the region persists only in vestigial form. Of the early comparative lithostratigraphic work in the region, only the likenesses be- tween Jurassic—Cretaceous basin floor and fill sequences in South Geor- gia and Tierra del Fuego are regarded as strong enough to be useful in plate kinematic reconstruction by permitting the interpretation of those re- gions’ contiguity in mid-Mesozoic times. Marine and satellite geophysical data sets reveal features of the remaining, submerged, 98% of the Scotia 124 Sea region between the outcrops. These data enable a more detailed and quantitative approach to the region’s plate kinematics. In contrast to long- used interpretations of the outcrop geology, these data do not prescribe the proximity of South Georgia to Tierra del Fuego in any past period.
    [Show full text]
  • Article Size, 12 Nm Pore Size; YMC Collision Energy 15, 22.5, and 30; Isolation Window 1.0 M/Z)
    Biogeosciences, 18, 3485–3504, 2021 https://doi.org/10.5194/bg-18-3485-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Archaeal intact polar lipids in polar waters: a comparison between the Amundsen and Scotia seas Charlotte L. Spencer-Jones1, Erin L. McClymont1, Nicole J. Bale2, Ellen C. Hopmans2, Stefan Schouten2,3, Juliane Müller4, E. Povl Abrahamsen5, Claire Allen5, Torsten Bickert6, Claus-Dieter Hillenbrand5, Elaine Mawbey5, Victoria Peck5, Aleksandra Svalova7, and James A. Smith5 1Department of Geography, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK 2NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands 3Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands 4Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany 5British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 6MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany 7School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK Correspondence: Charlotte L. Spencer-Jones ([email protected]) Received: 7 September 2020 – Discussion started: 5 November 2020 Revised: 3 March 2021 – Accepted: 23 March 2021 – Published: 11 June 2021 Abstract. The West Antarctic Ice Sheet (WAIS) is one of compassing the sub-Antarctic front through to the southern the largest potential sources of future sea-level rise, with boundary of the Antarctic Circumpolar Current. IPL-GDGTs glaciers draining the WAIS thinning at an accelerating rate with low cyclic diversity were detected throughout the water over the past 40 years.
    [Show full text]
  • In Shackleton's Footsteps
    In Shackleton’s Footsteps 20 March – 06 April 2019 | Polar Pioneer About Us Aurora Expeditions embodies the spirit of adventure, travelling to some of the most wild and adventure and discovery. Our highly experienced expedition team of naturalists, historians and remote places on our planet. With over 27 years’ experience, our small group voyages allow for destination specialists are passionate and knowledgeable – they are the secret to a fulfilling a truly intimate experience with nature. and successful voyage. Our expeditions push the boundaries with flexible and innovative itineraries, exciting wildlife Whilst we are dedicated to providing a ‘trip of a lifetime’, we are also deeply committed to experiences and fascinating lectures. You’ll share your adventure with a group of like-minded education and preservation of the environment. Our aim is to travel respectfully, creating souls in a relaxed, casual atmosphere while making the most of every opportunity for lifelong ambassadors for the protection of our destinations. DAY 1 | Wednesday 20 March 2019 Ushuaia, Beagle Channel Position: 21:50 hours Course: 84° Wind Speed: 5 knots Barometer: 1007.9 hPa & falling Latitude: 54°55’ S Speed: 9.4 knots Wind Direction: E Air Temp: 11°C Longitude: 67°26’ W Sea Temp: 9°C Finally, we were here, in Ushuaia aboard a sturdy ice-strengthened vessel. At the wharf Gary Our Argentinian pilot climbed aboard and at 1900 we cast off lines and eased away from the and Robyn ticked off names, nabbed our passports and sent us off to Kathrine and Scott for a wharf. What a feeling! The thriving city of Ushuaia receded as we motored eastward down the quick photo before boarding Polar Pioneer.
    [Show full text]
  • Downloaded 09/25/21 09:51 PM UTC 800 MONTHLY WEATHER REVIEW VOLUME 131
    MAY 2003 MAPES ET AL. 799 Diurnal Patterns of Rainfall in Northwestern South America. Part I: Observations and Context BRIAN E. MAPES NOAA±CIRES Climate Diagnostics Center, Boulder, Colorado THOMAS T. W ARNER AND MEI XU Program in Atmospheric and Oceanic Sciences, University of Colorado, and Research Applications Program, National Center for Atmospheric Research,* Boulder, Colorado ANDREW J. NEGRI NASA Goddard Space Flight Center, Laboratory for Atmospheres, Greenbelt, Maryland (Manuscript received 10 January 2002, in ®nal form 29 August 2002) ABSTRACT One of the rainiest areas on earth, the Panama Bight and Paci®c (western) littoral of Colombia, is the focal point for a regional modeling study utilizing the ®fth-generation Pennsylvania State University±NCAR Mesoscale Model (MM5) with nested grids. In this ®rst of three parts, the observed climatology of the region is presented. The seasonal march of rainfall has a northwest±southeast axis, with western Colombia near the center, receiving rain throughout the year. This study focuses on the August±September season. The diurnal cycle of rainfall over land exhibits an afternoon maximum over most of South and Central America, typically composed of relatively small convective cloud systems. Over some large valleys in the Andes, and over Lake Maracaibo, a nocturnal maximum of rainfall is observed. A strong night/morning maximum of rainfall prevails over the coastal ocean, propagating offshore and westward with time. This offshore convection often takes the form of mesoscale convective systems with sizes comparable to the region's coastal concavities and other geographical features. The 10-day period of these model studies (28 August±7 September 1998) is shown to be a period of unusually active weather, but with a time-mean rainfall pattern similar to longer-term climatology.
    [Show full text]
  • Synopsis Sheets CANAL DE PANAMA UK
    Synopsis sheets Rivers of the World THE PANAMA CANAL Initiatives pour l’Avenir des Grands Fleuves The Panama Canal 80 km long, the Panama Canal links the Pacific and Atlantic Oceans, forming a faster transoceanic route for merchant shipping than by passing via Cape Horn, at the southernmost tip of South America. A strategic hub for the world’s maritime trade, 15,000 ships pass through it every year. In 2016, a huge project of Canal’s enlargement was completed to double its capacity and accommodate the new generation ships, larger and longer, the Post Panamax. Now it has to face new challenges: competing projects are emerging and new shipping routes can be opened that would reduce the supremacy of the Panama Canal. A strategic route The origins Océan Atlantique The first attempt to build the canal dates back to 1880. France entrusted Ferdinand de Lesseps with the responsibility of its design and amassed considerable funds. However, the technical difficulties and above all a major financial scandal revealed in 1889 led to the bankruptcy of the Compagnie Universelle du Canal Inter-océanique du Panamá. The new Panama Canal Company took over but met the same fate, and in 1903 the treaty of Hay- Bunau-Varilla officialised the transfer of the operating and building rights to the canal to the United States. Built under the direction of G.W. Goethals, at the head of the U.S. Army Corps of Engineers, the canal opened in 1914 and was finally handed over to Panama in 1999 by virtue of the Torrijos-Carter Treaty.
    [Show full text]
  • Physical Drivers of Phytoplankton Bloom Initiation in the Southern Ocean's Scotia Sea
    UC San Diego UC San Diego Previously Published Works Title Physical Drivers of Phytoplankton Bloom Initiation in the Southern Ocean's Scotia Sea Permalink https://escholarship.org/uc/item/9tz4q3pc Journal JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 124(8) ISSN 2169-9275 Authors Prend, Channing J Gille, Sarah T Talley, Lynne D et al. Publication Date 2019-08-01 DOI 10.1029/2019JC015162 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Physical Drivers of Phytoplankton Bloom Initiation 10.1029/2019JC015162 in the Southern Ocean's Scotia Sea Key Points: Channing J. Prend1 , Sarah T. Gille1 , Lynne D. Talley1 , B. Greg Mitchell1 , • Shallow mixed layers in the Scotia 1 1 Sea support the earliest and largest Isabella Rosso , and Matthew R. Mazloff offshore spring phytoplankton 1 bloom in the Southern Ocean Scripps Institution of Oceanography, La Jolla, CA, USA • About 10% of the water in the bloom region is advected from the Weddell Sea, which helps set the unique Abstract The Scotia Sea is the site of one of the largest spring phytoplankton blooms in the Southern fi strati cation Ocean. Past studies suggest that shelf‐iron inputs are responsible for the high productivity in this region, • Vertical transport associated with a stratified Taylor column may but the physical mechanisms that initiate and sustain the bloom are not well understood. Analysis of enhance productivity by supplying profiling float data from 2002 to 2017 shows that the Scotia Sea has an unusually shallow mixed‐layer depth subsurface iron to the euphotic zone during the transition from winter to spring, allowing the region to support a bloom earlier in the season than elsewhere in the Antarctic Circumpolar Current.
    [Show full text]
  • Chapter 6 Antarctic Oceanography the Region of the World Ocean Bordering on Antarctica Is Unique in Many Respects. First of All
    Chapter 6 Antarctic oceanography The region of the world ocean bordering on Antarctica is unique in many respects. First of all, it is the only region where the flow of water can continue all around the globe nearly unhindered and the circulation therefore comes closest to the situation in the atmosphere. Secondly, the permanent thermocline (the interface z = H(x,y) of Figure 3.1) reaches the surface in the Subtropical Convergence (Figure 5.5) and does not extend into the polar regions; temperature differences between the sea surface and the ocean floor close to the continent are below 1°C and generally do not exceed 5°C, i.e. 20% of the difference found in 1 the tropics (Figure 6.1). What this means is that our 1 /2 layer ocean model cannot be applied to the seas around Antarctica. Fig. 6.1. Temperature profiles for different climatic regions near 150°W (Pacific Ocean). (a) tropical (5°S), (b) subtropical (35°S), (c) subpolar (50°S), (d) polar (55°S). The temperature scale is correct for the polar profile; other profiles are shifted successively by 1°C. Note the shallowness of the warm surface layer and the absence of the permanent thermocline in the polar region. Data from Osborne et al. (1991). It may seem strange that having spent five chapters on a discussion of temperate and tropical ocean dynamics, we now begin our regional discussion with a region that does not fit the earlier picture. However, our earlier discussion is not entirely irrelevant; it taught us how to get an idea of a region's dynamics by identifying the important forces and looking at their balance.
    [Show full text]
  • The Age and Origin of the Central Scotia Sea
    Geophysical Journal International Geophys. J. Int. (2010) 183, 587–600 doi: 10.1111/j.1365-246X.2010.04781.x The age and origin of the central Scotia Sea Graeme Eagles Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK. E-mail: [email protected] Accepted 2010 August 18. Received 2010 July 6; in original form 2010 May 7 SUMMARY Opening of the Drake Passage gateway between the Pacific and Atlantic oceans has been linked in various ways to Cenozoic climate changes. From the oceanic floor of Drake Passage, the largest of the remaining uncertainties in understanding this opening is in the timing and process of the opening of the central Scotia Sea. All but one of the available constraints on the age of the central Scotia Sea is diagnostic of, or consistent with, a Mesozoic age. Comparison of tectonic and magnetic features on the seafloor with plate kinematic models shows that it is likely to have accreted to a mid-ocean ridge between the South American and Antarctic plates following their separation in Jurassic times. Subsequent regional shallowing may be related GJI Geodynamics and tectonics to subduction-related processes that preceded backarc extension in the East Scotia Sea. The presence of a fragment of Jurassic–Cretaceous ocean floor in the gateway implies that deep water connections through the Scotia Sea basin complex may have been possible since Eocene times when the continental tips of South America and the Antarctic Peninsula first passed each other. Key words: Tectonics and climate interactions; Kinematics of crustal and mantle deforma- tion; Antarctica; South America.
    [Show full text]