The Neurobiology of Addiction an Overview

Total Page:16

File Type:pdf, Size:1020Kb

The Neurobiology of Addiction an Overview The Neurobiology of Addiction An Overview AMANDA J. ROBERTS, PH.D., AND GEORGE F. KOOB, PH.D. Addiction can be defined in part as a compulsion to use alcohol or other drugs and the occurrence of withdrawal symptoms when long-term consumption ceases. In addition to physical symptoms related to nervous system hyperexcitability, withdrawal includes changes in mental state that may motivate renewed AOD consumption. The manifestations of addiction are associated with changes in nerve cell function by which the brain attempts to adapt to a drug’s presence. These functional changes modulate a person’s initial response to a drug, the establishment of long-term craving for the drug (i.e., addiction), and the persistent sense of discomfort that leads to relapse after abstinence has been achieved. Research is beginning to reveal how specific brain regions may be integrated to form neural circuits that modulate aspects of addiction. KEY WORDS: AOD dependence; compulsion; AOD withdrawal syndrome; AOD craving; positive reinforcement; AODD (alcohol and other drug disorders) relapse; AOD abstinence; neurobiological theory; neurotransmitters; neurotransmission; AOD sensitivity; biological adaptation; brain; dopamine; nucleus accumbens; literature review ddiction can be defined from a Research over the past two decades of neural connections involving sev- behavioral viewpoint as repeat- has increased our understanding of the eral adjacent brain regions. This arti- Aed self-administration of alco- neural processes that underlie drug- cle is not an exhaustive overview, but hol or other drugs (AOD’s) despite seeking behavior. This article summa- a sampling of some topics of interest knowledge of adverse medical and rizes some of the molecular and to researchers studying addiction social consequences and attempts to cellular events in the brain that appear neurobiology. abstain from AOD use. Typically, an to be associated with addiction. The AMANDA J. ROBERTS, PH.D., is a addicted person’s daily activities are article first discusses some observable manifestations of addiction and basic research associate in the Department centered on obtaining and consuming mechanisms involved in initiating and of Neuropharmacology, The Scripps the drug at the expense of social and maintaining addictive behavior. The Research Institute, La Jolla, California. occupational commitments. Many hypothesized roles of various chemical GEORGE F. KOOB, PH.D., is a factors contribute to the development communication systems of the brain of addiction. A person’s initial deci- professor and director of the Division (i.e., neurotransmitters and receptors) of Psychopharmacology, Department sion to use a drug is influenced by are explored, followed by a discussion of Neuropharmacology, The Scripps genetic, psychosocial, and environ- of the interactions between these sys- Research Institute, La Jolla, Califor- mental factors. Once it has entered the tems within brain regions thought to nia, and adjunct professor in the body, however, the drug can promote be involved in addiction. Departments of Psychology and continued drug-seeking behavior by Finally, the article discusses the Psychiatry, University of California. acting directly on the brain. suggested role of an integrated system San Diego, California. VOL. 21, NO. 2, 1997 101 BASIC MECHANISMS Reinforcement Scientists believe that ICSS directly OF ADDICTION activates the brain’s reward centers, Several sources of reinforcement may thus providing a unique tool for inves- Two characteristics are common to contribute to addiction. In positive tigating reinforcement processes. most definitions of AOD addiction: the reinforcement, a rewarding stimulus AOD’s appear to make ICSS more compulsion to use a drug, leading to its (e.g., AOD-induced euphoria) directly rewarding by decreasing the amount increases the probability of a response excessive and uncontrolled consump- of current required by the animal to (e.g., continued AOD use). In negative tion, and the appearance of a cluster of achieve the same level of reward. This reinforcement, the incentive for AOD symptoms when the drug is withheld ability corresponds closely to a drug’s use is relief of a painful or unpleasant after a period of its continuous con- potential for abuse. state (i.e., the physiological and motiva- sumption (i.e., withdrawal syndrome). A third behavioral paradigm used tional symptoms of withdrawal). In Physiological symptoms of alcohol to test the reinforcing actions of addition to their direct reinforcing ef- withdrawal begin from 6 to 48 hours AOD’s is place conditioning (figure fects, drugs can motivate behavior after the last drink and include tremors, C). In a simple place-conditioning elevated blood pressure, increased indirectly through environmental stim- uli with which the drugs have become test, an animal is alternately placed in heart rate, and seizures. AOD with- two distinct environments, neither of drawal also includes changes in mental associated (i.e., conditioned reinforce- ment). For example, the locations which initially elicits any apparent state (e.g., anxiety, negative emotional behavioral response (i.e., neutral envi- state, and craving) that may motivate where drugs are taken or the parapher- nalia used for their administration may ronments). The animal is conditioned renewed AOD consumption. These themselves elicit a druglike state of to associate one of the environments signs may both precede and outlast the euphoria in the absence of the drug (i.e., with the effects of the drug under physiological symptoms. For the pur- conditioned positive reinforcement). study. For example, the animal may pose of this article, addiction is defined Conversely, exposure to stimuli associ- be placed in a dark chamber with a as a loss of control over AOD use and ated with periods of abstinence may rough-textured floor after receiving a the appearance of a withdrawal syn- produce symptoms of withdrawal (i.e., drug injection, and placed in a light drome—with motivational aspects— conditioned negative reinforcement). chamber with a smooth-textured floor upon cessation of such use. Researchers can examine the rein- after receiving an injection of drug- Two factors that modulate behav- forcing effects of AOD’s by measuring free saline solution. This procedure is ior—reinforcement and neuroadapta- the behavior of animals exposed to repeated several times. Later, the tion—contribute to the addictive drugs in the laboratory (see figure). A animal is allowed to enter and explore process. Reinforcement is a theoretical commonly employed method is direct either environment in the absence of construct by which a stimulus (e.g., an self-administration whereby an animal the drug. A greater amount of time unconditioned stimulus, such as the is either allowed free access to AOD’s spent in the drug-associated environ- drug itself or drug withdrawal, or a (e.g., given a bottle containing alcohol ment appears to reflect positive rein- conditioned stimulus, such as drug- to drink) or required to perform a spe- forcing effects of the drug. In the taking paraphernalia) increases the cific behavior to obtain AOD’s (e.g., aforementioned example, a greater probability of a response (e.g., contin- trained to press a lever for a small vol- time spent in the dark, rough-textured ued use of the drug). Neuroadaptation ume of alcohol). Changes in the pat- environment, compared with the light, refers largely to the processes by which terns of self-administration that occur smooth-textured environment, would initial drug effects are either enhanced with long-term AOD exposure or fol- suggest that the administered drug had (i.e., sensitization) or attenuated (i.e., lowing the experimental manipulation positive reinforcing effects. counteradaptation) by repeated AOD of a particular neural system may reveal Whereas the acute positive reinforc- exposure. Drug-related responses (i.e., underlying mechanisms of reinforce- ing effects of drugs may be investi- reinforcement) are modulated by the ment (figure A). gated using these paradigms, negative neuroadaptive changes that occur with A second behavioral test used to reinforcing effects can be examined by AOD exposure. Working together, measure the reinforcing effects of testing animals in the withdrawal or these factors appear to motivate the AOD’s is intracranial self-stimulation abstinent state. These paradigms also initial, short-term (i.e., acute) response (ICSS). In this procedure, electrodes can be used to examine conditioned to a drug and the establishment of the are implanted in the brain of a rat. The positive and negative reinforcement. long-term (i.e., chronic) craving for the rat is subsequently allowed to press a For example, a rat can be trained to drug that characterizes addiction. In lever to receive mild electrical pulses associate the presentation of alcohol addition, some neuroadaptive changes through the electrodes (figure B). with a light. The experimenter can then may be permanent, producing the Animals will self-administer electrical measure the frequency with which the persistent sense of discomfort during stimulation to certain brain regions at rat presses a lever to turn on the light in abstinence that leads to reinstatement extremely high rates, indicating that the absence of alcohol (i.e., condi- of drug use (i.e., relapse). such stimulation is reinforcing. tioned positive reinforcement). 102 ALCOHOL HEALTH & RESEARCH WORLD The NeurobiologyRunning of Addiction Heads Neuroadaptation Although the positive
Recommended publications
  • Striking the Right Balance Between Gi and Gq Signalling a New Study Explains Why Some Inhibitors of the Serotonin
    RESEARCH HIGHLIGHTS IN BRIEF PERCEPTION Excitability modulates synaesthesia Synaesthetes who experience colours when perceiving or representing numbers exhibit structural and functional differences in cortical areas that are involved in number and colour processing compared to non-synaesthetes. Using transcranial magnetic stimulation or transcranial direct current stimulation, the authors showed that in humans, grapheme-colour synaesthesia is characterized by enhanced cortical excitability in the primary visual cortex and can be augmented or attenuated with cathodal or anodal stimulation, respectively. ORIGINAL RESEARCH PAPER Terhune, D. B. et al. Enhanced cortical excitability in grapheme-color synesthesia and its modulation. Curr. Biol. 21, 2006–2009 (2011) NEUROPHARMACOLOGY Striking the right balance between Gi and Gq signalling A new study explains why some inhibitors of the serotonin Gq protein-coupled receptor 2AR (such as clozapine), but not others (such as ritanserin), have antipsychotic actions. The authors showed that 2AR can form a heteromeric complex with metabotropic glutamate receptor 2 (mGluR2) — which is a Gi protein-coupled receptor — and that this interaction can enhance glutamate-induced Gi signalling and reduce serotonin-induced Gq signalling. The intracellular Gi and Gq signalling balance is predictive of the anti- or pro-psychotic activity of drugs targeting 2AR and mGluR2, providing a potential new metric to improve current antipsychotic therapies. ORIGINAL RESEARCH PAPER Fribourg, M. et al. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147, 1011–1023 (2011) BEHAVIOURAL NEUROSCIENCE Curbing sweet cravings In this study, the authors examined the reward value of sweeteners in mice by assessing the animals’ preferences for sweeteners compared to lick-induced optogenetic activation of midbrain dopaminergic neurons.
    [Show full text]
  • 5-HT3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: the Iceberg Still Lies Beneath the Surface
    1521-0081/71/3/383–412$35.00 https://doi.org/10.1124/pr.118.015487 PHARMACOLOGICAL REVIEWS Pharmacol Rev 71:383–412, July 2019 Copyright © 2019 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: JEFFREY M. WITKIN 5-HT3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface Gohar Fakhfouri,1 Reza Rahimian,1 Jonas Dyhrfjeld-Johnsen, Mohammad Reza Zirak, and Jean-Martin Beaulieu Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.) Abstract. ....................................................................................384 I. Introduction. ..............................................................................384 II. 5-HT3 Receptor Structure, Distribution, and Ligands.........................................384 A. 5-HT3 Receptor Agonists .................................................................385 B. 5-HT3 Receptor Antagonists. ............................................................385 Downloaded from 1. 5-HT3 Receptor Competitive Antagonists..............................................385 2. 5-HT3 Receptor
    [Show full text]
  • Neuropharmacology
    FACULTY OF MEDICINE SCHOOL OF MEDICAL SCIENCES DEPARTMENT OF PHARMACOLOGY PHAR 3202 Neuropharmacology COURSE OUTLINE SESSION 2, 2013 2 Contents Page Course Information 3 Assessment Procedures 4 Lecture Outlines 11 Assessment Tasks and Due Dates 14 Timetable 15 Group Assignment Information 16 Practical Class Manual 21 3 PHAR3202 Course Information Neuropharmacology (PHAR3202) is a 3rd year Science Course worth Six Units of Credit (6 UOC). The course will build on the information you have gained in Pharmacology (PHAR2011) and Physiology (2101 & 2201) as well as Biochemistry (BIOC2101/2181)) and Molecular Biology (2201/2291) or Chemistry (2021/2041). OBJECTIVES OF THE COURSE Building on basic pharmacology skills learned in PHAR2011, the objectives of this course are to a) provide both knowledge and conceptual understanding of the use and action of various classes of drugs in the treatment of different human diseases affecting the brain and b) develop an appreciation of the need for further research to identify new drug targets for more effective therapies. COURSE CO-ORDINATOR and LECTURERS: Course Co-ordinators: Dr Nicole Jones Professor Margaret Morris Room 327 Room 322 Wallace Wurth East Wallace Wurth East Ph: 9385 2568 Ph 9385 1560 [email protected] [email protected] Consultation time: Thursday 11-12pm (outside these times please be sure to make an appointment via email as undergraduate students do not have access to the upper floors of the Wallace Wurth building) Students wishing to see the course coordinator outside consultation times should make an appointment via email. Lecturers in this course: Dr. Trudie Binder [email protected] Dr.
    [Show full text]
  • The Selective Serotonin2a Receptor Antagonist, MDL100,907, Elicits A
    BRIEF REPORT The Selective Serotonin2A Receptor Antagonist, MDL100,907, Elicits a Specific Interoceptive Cue in Rats Anne Dekeyne, Ph.D., Loretta Iob, B.Sc., Patrick Hautefaye, Ph.D., and Mark J. Millan, Ph.D. Employing a two-lever, food-reinforced, Fixed Ratio 10 5-HT2B/2C antagonist, SB206,553 (0.16 and 2.5 mg/kg) and drug discrimination procedure, rats were trained to the selective 5-HT2C antagonists, SB242,084 (2.5 and recognize the highly-selective serotonin (5-HT)2A receptor 10.0 mg/kg,) and RS102221 (2.5 and 10.0 mg/kg), did not antagonist, MDL100,907 (0.16 mg/kg, i.p.). They attained significantly generalize. In conclusion, selective blockade of Ϯ Ϯ criterion after a mean S.E.M. of 70 11 sessions. 5-HT2A receptors by MDL100,907 elicits a discriminative MDL100,907 fully generalized with an Effective Dose stimulus in rats which appears to be specifically mediated (ED)50 of 0.005 mg/kg, s.c.. A further selective 5-HT2A via 5-HT2A as compared with 5-HT2B and 5-HT2C receptors. antagonist, SR46349, similarly generalized with an ED50 of [Neuropsychopharmacology 26:552–556, 2002] 0.04 mg/kg, s.c. In distinction, the selective 5-HT2B © 2002 American College of Neuropsychopharmacology antagonist, SB204,741 (0.63 and 10.0 mg/kg), the Published by Elsevier Science Inc. KEY WORDS: Drug discrimination; Interoceptive; 5-HT2A stimulus (DS) properties of several 5-HT2 agonists and receptors hallucinogens, such as mescaline (Appel and Callahan 1989), lysergic acid diethylamide (LSD) (Fiorella et al. Drug discrimination procedures have been extensively 1995) and quipazine (Friedman et al.
    [Show full text]
  • Psychopharmacology, Neuropharmacology & Toxicology Expertise
    Psychopharmacology, Neuropharmacology & Toxicology Expertise October 2013 Dr Ken Gillman MBBS Re: MAOI anti-depressant drugs MRC Psych Dear Doctor and Colleague, Expert in A patient who wishes to consider treatment with MAOI anti- Psycho- depressant drugs (e.g. “Parnate”, “Nardil”) has obtained this letter pharmacology from my website. I am Dr Ken Gillman MRCPsych, a retired Serotonin academic & clinical psychiatrist. I have published many papers about toxicity psycho-pharmacology and am internationally acknowledged as an Neuroleptic expert on serotonin syndrome (aka serotonin toxicity) and drug-drug malignant interactions generally. You may verify my publications via the NLM syndrome at: Drug http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&term=Gillman interactions P MAOIs or at Google scholar (which also shows their high citation frequency) at: TCAs http://scholar.google.com.au/citations?user=ea6KeD0AAAAJ&hl=en SSRIs and you can get the free pdf from the British Journal of Pharmacology website of one of my recent major reviews ‘Tricyclic antidepressant pharmacology and therapeutic drug interactions updated’. http://onlinelibrary.wiley.com/doi/10.1038/sj.bjp.0707253/pdf I have also recently published a review of the MAOIs, ‘Advances pertaining to the pharmacology and interactions of irreversible nonselective monoamine oxidase inhibitors. J Clin Psychopharmacol, 2011. 31(1): p. 66-74’ I have had extensive experience of using monoamine oxidase inhibitor (MAOI) drugs (Nardil/phenelzine & Parnate/tranylcypromine) for severe and atypical depression and have written about this since these drugs are somewhat maligned and because reduced knowledge and awareness of them makes many doctors shy away from using them when they might be of considerable utility and benefit.
    [Show full text]
  • Neuropsychopharmacology - Mirjam A.F.M
    PHARMACOLOGY – Vol. I - Neuropsychopharmacology - Mirjam A.F.M. Gerrits and Jan M. van Ree NEUROPSYCHOPHARMACOLOGY Mirjam A.F.M. Gerrits and Jan M. van Ree Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands Keywords: psychopharmacology, neuropharmacology, central nervous system, antipsychotics, schizophrenia, antidepressants, mood stabilizers, anxiolytics, benzodiazepines Contents 1. Introduction 2. Chemical synaptic transmission in the central nervous system 3. Psychopharmacology and psychotropic drugs 4. Antipsychotics 4.1. Schizophrenia 4.2. Etiology and Pathogenesis of Schizophrenia 4.3. Antipsychotic Drugs 4.3.1. Mechanism of Action 4.3.2. Side Effects of Antipsychotics 4.3.3. Novel Targets for Antipsychotic Drug Action 5. Antidepressants and mood stabilizers 5.1. Etiology and Pathogenesis of Affective Disorders 5.2. Antidepressive Drugs and Mood-stabilizers 5.2.1. Monoamine Oxidase Inhibitors 5.2.2. Tricyclic Antidepressants 5.2.3. Selective 5-HT Uptake Inhibitors 5.2.4. Newer, ‘Atypical’ Antidepressant Drugs 5.2.5. Mood-stabilizers 6. Anxiolytics 6.1. Benzodiazepines 6.1.1. Mechanism of Action 6.1.2. Therapeutic and Side Effects 6.1.3. Pharmacokinetic Aspects Acknowledgements GlossaryUNESCO – EOLSS Bibliography Biographical SketchesSAMPLE CHAPTERS Summary Neuropsychopharmacology is a broad and growing field that is related to several disciplines, including neuropharmacology, psychopharmacology and fundamental neuroscience. It comprises research on the action of psychoactive drugs on different levels. This ranges from molecular and biochemical characterization, to behavioral effects in experimental animals, and finally to clinical application. Over the years, the developments in the neuropsychopharmacological field have led to advances in our ©Encyclopedia of Life Support Systems (EOLSS) PHARMACOLOGY – Vol.
    [Show full text]
  • Today in Psychopharmacology and Neuropharmacology Jie Wu* Barrow Neurological Institute and St
    mac har olo P gy : & O y r p t e s i n Biochemistry & Pharmacology: Open Wu, Biochem & Pharmacol 2013, S1 A m c e c h DOI: 10.4172/2167-0501.S1-e001 e c s o i s B Access ISSN: 2167-0501 Editorial Open Access Today in Psychopharmacology and Neuropharmacology Jie Wu* Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix AZ 85013, USA Psychopharmacology and Neuropharmacology are two rapidly area (VTA), an important brain reward center. Devin Taylor et al. developing branches of pharmacology. Psychopharmacology focuses described a significant effect of nicotine on VTA GABA neuron firing on the actions and effects of psychoactive drugs that have potential or in anesthetized mice, mouse VTA slices, and single GABA neurons effective therapy for mental health disorders. Neuropharmacology is freshly isolated from mouse VTA. They found that systemic or local the study of how drugs affect nervous system functions from molecular, administration of nicotine or α7 nicotine acetylcholine receptor cellular, synaptic, network and behavioral levels; in turn treating a variety (nAChR) agonists increased VTA GABA neuronal firing. This effect of neurological diseases. Both of these branches are closely associated is likely mediated by α7 nAChRs located on glutamatergic terminals/ since they are concerned with the interactions with neurotransmitters, boutons on VTA GABA neurons. These two research articles will help neuropeptides, neuromodulators, enzymes, receptor proteins, second us better understand mechanisms of nicotine reward and reinforcement messengers, co-transporters and ion channels in the central and occurring through the receptors, synapses and neuronal circuits peripheral nervous systems.
    [Show full text]
  • 1 NEUR 651: MOLECULAR NEUROPHARMACOLOGY Spring
    NEUR 651: MOLECULAR NEUROPHARMACOLOGY Spring 2021; R 10:30-1:10; ONLINE INSTRUCTOR: Nadine Kabbani, Ph.D. Office Hours: appointment [email protected] Overview: This is a core graduate neuroscience course that covers key concepts in cellular and molecular neuropharmacology. It emphasizes topics such as receptor signaling, mechanisms of cell structure, and the cellular and synaptic impacts of compounds. We will focus principally on the molecular mechanisms of brain disease and treatment. The course also explores current trends in neuropharmacology research and drug development. Attendance and participation is required. Recommended Textbook: Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (Second Edition or newer). Eric Nestler, Steven Hyman, Robert Malenka Class structure and Grading: This is an online synchronous course and attendance and participation in necessary for success. • You will be provided a weekly Zoom link prior to the first day of class. • You must be signed on with audio (muted) and video turned on by 10:30AM • Absence (two times or more) may result in point deduction from the final grade. • The weekly class time is divided into 2 parts with a 15 min break during the transition. 1. A 1.5-hour lecture 2. A student led presentation and a group discussion of a research article in a Journal Club manner. Your GRADE will be based on 2 exams (each worth 35%) a presentation (20% graded according to the below rubric), regular attendance and participation (10%). Presentation Rubric Criteria Strong (10) Average (8) Below average (6) Content (10pt max.) Topic was Topic was discussed well. Discussion of the topic enabled a discussed One or more issues were broad understanding leaving a thoroughly and not entirely clear.
    [Show full text]
  • Dopamine Transporter Genetic Reduction Induces Morpho-Functional Changes in the Enteric Nervous System
    biomedicines Article Dopamine Transporter Genetic Reduction Induces Morpho-Functional Changes in the Enteric Nervous System Silvia Cerantola 1,† , Valentina Caputi 1,2,†, Gabriella Contarini 3 , Maddalena Mereu 1, Antonella Bertazzo 1, Annalisa Bosi 4 , Davide Banfi 4, Dante Mantini 5,6 , Cristina Giaroni 4 and Maria Cecilia Giron 1,5,* 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; [email protected] (S.C.); [email protected] (V.C.); [email protected] (M.M.); [email protected] (A.B.) 2 Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA 3 Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy; [email protected] 4 Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; [email protected] (A.B.); d.banfi[email protected] (D.B.); [email protected] (C.G.) 5 IRCCS San Camillo Hospital, 30126 Venice, Italy; [email protected] or [email protected] 6 Motor Control and Neuroplasticity Research Group, KU Leuven, 3000 Leuven, Belgium * Correspondence: [email protected]; Tel.: +39-049-827-5091; Fax: +39-049-827-5093 † Authors contributed equally to this study. Abstract: Antidopaminergic gastrointestinal prokinetics are indeed commonly used to treat gas- trointestinal motility disorders, although the precise role of dopaminergic transmission in the gut is still unclear. Since dopamine transporter (DAT) is involved in several brain disorders by mod- Citation: Cerantola, S.; Caputi, V.; ulating extracellular dopamine in the central nervous system, this study evaluated the impact of Contarini, G.; Mereu, M.; Bertazzo, A.; DAT genetic reduction on the morpho-functional integrity of mouse small intestine enteric nervous Bosi, A.; Banfi, D.; Mantini, D.; system (ENS).
    [Show full text]
  • Thomas A. Ban Documenting the History of CINP
    International Network for the History of Neuropsychopharmacology Electronic Archives Individual Collections Thomas A. Ban Documenting the History of CINP Edited by Peter R. Martin International Network for the History of Neuropsychopharmacology Risskov 2015 2 3 Contents PREFACE ..................................................................................................................................................... 4 CHAPTER 1: CINP AND ITS PAST .......................................................................................................... 6 Missing from the Membership Directory: Deceased, Retired, or Dropped? ............................................ 7 CHAPTER 2: HISTORY OF THE CINP .................................................................................................. 12 Historical Background ............................................................................................................................ 13 The Founding of CINP (Milan, May 1957 – Zurich, October 1957) ...................................................... 13 Interaction of Basic Scientists and Clinicians (Rome 1958 – Tarragona 1968) ..................................... 14 Communication of Findings (Prague 1970 – Florence 1984) ................................................................. 15 Communication of Interpretations (San Juan 1986 – Paris 2004) .......................................................... 16 Organizational Changes (Melbourne 1996 – Paris 2004) ......................................................................
    [Show full text]
  • Organoleptic Assessment and Median Lethal Dose Determination of Oral Aldicarb in Rats
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Ann N Y Manuscript Author Acad Sci. Author Manuscript Author manuscript; available in PMC 2021 November 01. Published in final edited form as: Ann N Y Acad Sci. 2020 November ; 1480(1): 136–145. doi:10.1111/nyas.14448. Organoleptic assessment and median lethal dose determination of oral aldicarb in rats Nathaniel C. Rice, Noah A. Rauscher, Mark C. Moffett, Todd M. Myers United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland Abstract Aldicarb, a carbamate pesticide, is an acetylcholinesterase (AChE) inhibitor, with oral median lethal dose (LD50) estimates in rats ranging from 0.46 to 0.93 mg/kg. A three-phase approach was used to comprehensively assess aldicarb as an oral-ingestion hazard. First, the solubility of aldicarb in popular consumer beverages (bottled water, apple juice, and 2% milk) was assessed. Lethality was then assessed by administering aldicarb in bottled water via gavage. A probit model was fit to 24-h survival data and predicted a median lethal dose of 0.83 mg/kg (95% CI: 0.54–1.45 mg/kg; slope: 4.50). Finally, the organoleptic properties (i.e., taste, smell, texture, etc.) were assessed by allowing rats to voluntarily consume 3.0 mL of the above beverages as well as liquid eggs adulterated with aldicarb at various concentrations. This organoleptic assessment determined that aldicarb was readily consumed at lethal and supralethal doses. Overt toxic signs presented within 5 min post-ingestion, and all rats died within 20 min after consuming the highest concentration (0.542 mg/mL), regardless of amount consumed.
    [Show full text]
  • Molecular Neuroscience and Neuropharmacology (3 Credit Hours) GMS6023 Spring 2021 Delivery Format: in Person
    UNIVERSITY OF FLORIDA COLLEGE OF MEDICINE SYLLABUS NEUROSCIENCE Neuropharmacology and its Clinical Application (3 credit hours) NEW TITLE: Molecular Neuroscience and Neuropharmacology (3 credit hours) GMS6023 Spring 2021 Delivery Format: In person. DeWeese Auditorium – MBI, LG-101A Mondays 9:00am-12:00pm. Instructors: Dr. Habibeh Khoshbouei and Dr. Eduardo Candelario-Jalil Room Number: DeWeese Auditorium – MBI, LG-101A Phone Number: 352-273-8115 (Dr. Khoshbouei) and 352-273-7116 (Dr. Candelario-Jalil) Email Addresses: [email protected] and [email protected] Office Hours: Mondays 1-3pm and Wednesdays 9-11am (Office: L1-100J) Graduate Assistant: None Preferred Course Communications: Email Prerequisites: Doctoral students. You are expected to be familiar with basic Neuroscience concepts before starting this course series. If you are uncertain about the sufficiency of your background, you are encouraged to read through chapters one through ten in Neuroscience Online – an electronic textbook (Open Access) http://nba.uth.tmc.edu/neuroscience/ Purpose and Outcome This is one of the required courses for the Neuroscience concentration. It is intended for all PhD students interested in learning about the neurochemical basis for drug action. Course Overview This course surveys the basic principles of neuropharmacology with an emphasis on the molecular pharmacology of drugs used to treat CNS disorders. The specific focus of this course will be to provide a description of the cellular and molecular actions of drugs on synaptic transmission with in-depth discussion of drug-induced changes in functioning of the nervous system. We will examine how the neurotransmitter systems influence nervous system function as well as therapeutic targets affecting these neurotransmitter systems.
    [Show full text]