Molecular Neuroscience and Neuropharmacology (3 Credit Hours) GMS6023 Spring 2021 Delivery Format: in Person

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Neuroscience and Neuropharmacology (3 Credit Hours) GMS6023 Spring 2021 Delivery Format: in Person UNIVERSITY OF FLORIDA COLLEGE OF MEDICINE SYLLABUS NEUROSCIENCE Neuropharmacology and its Clinical Application (3 credit hours) NEW TITLE: Molecular Neuroscience and Neuropharmacology (3 credit hours) GMS6023 Spring 2021 Delivery Format: In person. DeWeese Auditorium – MBI, LG-101A Mondays 9:00am-12:00pm. Instructors: Dr. Habibeh Khoshbouei and Dr. Eduardo Candelario-Jalil Room Number: DeWeese Auditorium – MBI, LG-101A Phone Number: 352-273-8115 (Dr. Khoshbouei) and 352-273-7116 (Dr. Candelario-Jalil) Email Addresses: [email protected] and [email protected] Office Hours: Mondays 1-3pm and Wednesdays 9-11am (Office: L1-100J) Graduate Assistant: None Preferred Course Communications: Email Prerequisites: Doctoral students. You are expected to be familiar with basic Neuroscience concepts before starting this course series. If you are uncertain about the sufficiency of your background, you are encouraged to read through chapters one through ten in Neuroscience Online – an electronic textbook (Open Access) http://nba.uth.tmc.edu/neuroscience/ Purpose and Outcome This is one of the required courses for the Neuroscience concentration. It is intended for all PhD students interested in learning about the neurochemical basis for drug action. Course Overview This course surveys the basic principles of neuropharmacology with an emphasis on the molecular pharmacology of drugs used to treat CNS disorders. The specific focus of this course will be to provide a description of the cellular and molecular actions of drugs on synaptic transmission with in-depth discussion of drug-induced changes in functioning of the nervous system. We will examine how the neurotransmitter systems influence nervous system function as well as therapeutic targets affecting these neurotransmitter systems. Issues surrounding drug entry into the central nervous system will be addressed. Clinical applications of neuropharmacology, the link between neuropharmacology and behavior, and current research investigating the development of drugs for neuronal targets will be addressed. This course is 1 designed to provide a foundation for advanced knowledge in behavioral neuroscience and neuro- psychopharmacology, and to provide an introduction to the pharmacological treatment of CNS pathologies. The ultimate goal is to understand how molecular neuroscience can guide the direction of basic medical science and therapeutic approaches. Course Objectives and/or Goals: Upon successful completion of this course, students will obtain basic knowledge of the neurochemical mechanisms underlying the action of drugs acting on the central nervous system. We will focus on the effects of drugs on synaptic transmission at the cellular and molecular levels. Students will gain an appreciation and new knowledge of drug-induced changes in CNS function in health and disease. Students will have the opportunity to explore several brain disorders associated with alterations in the function of specific neurotransmitter systems and gain a basic understanding of current and future neuropharmacological treatments for these neurological diseases. Instructional Methods: Course materials will be delivered using traditional lectures and online platforms. Student projects will be created and delivered using VoiceThread, an asynchronous communication learning platform. Student projects: Learning projects will provide opportunities to review course material and explore topics of interest in more depth. Students will select a recent paper related to one of the lectures and write an essay of ~1,000 words that would include a summary of the main findings of the study, significance of the results, and a critical evaluation of the data based on a literature review of other published work. Blended Learning: What is blended learning and why is it important? A Blended Learning class uses a mixture of technology and face-to-face instruction to help you maximize your learning. Knowledge content that, as the instructor, I would have traditionally presented during a live class lecture is instead provided online before the live class takes place. This lets me focus my face-to-face teaching on course activities designed to help you strengthen higher order thinking skills such as critical thinking, problem solving, and collaboration. Competency in these skills is critical for today’s health professional. What is expected of you? You are expected to actively engage in the course throughout the semester. You must come to class prepared by completing all out-of-class assignments. This preparation gives you the 2 knowledge or practice needed to engage in higher levels of learning during the live class sessions. If you are not prepared for the face-to-face sessions, you may struggle to keep pace with the activities occurring in the live sessions, and it is unlikely that you will reach the higher learning goals of the course. Similarly, you are expected to actively participate in the live class. Your participation fosters a rich course experience for you and your peers that facilitates overall mastery of the course objectives. Description of Course Content: Topical Outline/Course Schedule This course will take place every Monday from 9:00am-12:00pm during the Spring semester. In the table below, we have provided the specific dates for each class. Week Date(s) Topic(s) Lecturer Readings 1 01/11/2021 Introduction to Neuropharmacology. Khoshbouei Chapter 1. Molecular History of Drug Discovery Past to Present Neuropharmacology (Nestler et Theoretical and practical analysis of al). Receptor Occupancy (Part I). 2 01/25/2021 Theoretical and practical analysis of Chapter 1, 2 and 3. Molecular Receptor Occupancy (Part II). Neuropharmacology (Nestler et Cellular and Molecular Identity of the Khoshbouei al). Cells of the Central Nervous System (CNS). Neurons and circuits. Cellular Responses to drug action. 3 02/01/2021 Principles of Nervous System Physiology Candelario- Chapters 4, 7 and 9. Principles & Pharmacology Jalil of Pharmacology (Golan et al) Sites of Drug Action & Signal Transduction Mechanisms Pharmacogenomics 4 02/08/2021 Glutamatergic Neurotransmission – Candelario- Chapter 17. Basic NMDA, AMPA, Kainate, and Jalil Neurochemistry (Brady et al). Metabotropic Receptors Chapter 13. Principles of Pharmacology (Golan et al) Pathophysiology & Pharmacology of Glutamatergic Neurotransmission 5 02/15/2021 GABA & Glycine Neurotransmission Chapter 13. Principles of Pharmacology (Golan et al) Pathophysiology & Pharmacology of Candelario- Chapter 18. Basic GABAergic & glycinergic Jalil Neurochemistry (Brady et al). Neurotransmission 3 6 02/22/2021 Neuropharmacology of Acetylcholine- Chapter 13. Basic Candelario- General Aspects Neurochemistry (Brady et al). Jalil Drugs acting on Muscarinic Receptors 7 03/01/2021 Neurophysiology of Nicotinic Chapter 13. Basic Acetylcholine Receptor System Candelario- Neurochemistry (Brady et al). Nicotinic Acetylcholine Receptor System Jalil Chapter 10. Principles of (Neuropharmacology) Pharmacology (Golan et al) 8 03/08/2021 Midterm Exam 9 03/15/2021 Neurophysiology of anesthesia Chapter 17. Principles of Martynyuk Pharmacology (Golan et al) Anesthetics – Neuropharmacology 10 03/22/2021 Neurophysiology of the Dopaminergic Chapter 14. Principles of System and its Pathology. Dopaminergic Pharmacology (Golan et al) Khoshbouei Receptor System. Therapeutic Chapter 14. Basic Approaches (Neuropharmacology) Neurochemistry (Brady et al). 11 03/29/2021 Neurophysiology & Pathology of the Chapter 15. Principles of Pharmacology (Golan et al) Adrenergic System Khoshbouei Chapter 14. Basic Adrenergic System Neuropharmacology Neurochemistry (Brady et al ). 12 04/05/2021 Chapter 15. Principles of Serotoninergic Receptor System. Pharmacology (Golan et al) Therapeutic Approaches Khoshbouei Chapter 15. Basic (Neuropharmacology) Neurochemistry (Brady et al). 13 04/12/2021 Neuropeptides (Somatostatin, Chapter 20. Basic neurokinins, Neuropeptide Y, endorphins, Neurochemistry (Brady et al). enkephalins, tachykinins). Khoshbouei Chapter 19. Principles of Opioids Pharmacology (Golan et al) Alcohol Dependence Cannabinoids 14 04/19/2021 Basic Principles of Neuroendocrine Chapters 27, 43, and 44. Control. Oxytocin, vasopressin, hormones Principles of Pharmacology of the anterior pituitary gland, Leptin, (Golan et al) melanocortin. Candelario- Chapter 16 and 20. Basic Jalil Neurochemistry (Brady et al). Other mediators acting on the CNS: Histamine, Melatonin, Eicosanoids, Nitric oxide, Purines. 4 15 04/26/2021 Final Comprehensive Exam Disclaimer: This syllabus represents our current plans and objectives. As we go through the semester, those plans may need to change to enhance the class learning opportunity. Such changes, communicated clearly, are not unusual and should be expected. Course Materials and Technology: One of the following Textbooks is recommended for this course: • Basic Neurochemistry: Principles of Molecular, Cellular, and Medical Neurobiology Scott T. Brady, George J. Siegel, R. Wayne Albers, Donald L. Price -- 8th Ed. Oxford, UK: Academic Press, 2012. ISBN: 978-0-12-374947-5 • Molecular Neuropharmacology: A Foundation for Clinical Neuroscience Eric Nestler, Paul J. Kenny, Scott J. Russo, Anne Schaeffer -- 4th Ed., New York, NY: McGraw-Hill, 2020. ISBN: 978-1-260-45690-5 • Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy. David E. Golan, Ehrin J. Armstrong, April W. Armstrong. – 4th Ed. Philadelphia: Wolters Kluwer, 2017. ISBN: 978-1451191004 Reference books available at the library (on hold) •
Recommended publications
  • Striking the Right Balance Between Gi and Gq Signalling a New Study Explains Why Some Inhibitors of the Serotonin
    RESEARCH HIGHLIGHTS IN BRIEF PERCEPTION Excitability modulates synaesthesia Synaesthetes who experience colours when perceiving or representing numbers exhibit structural and functional differences in cortical areas that are involved in number and colour processing compared to non-synaesthetes. Using transcranial magnetic stimulation or transcranial direct current stimulation, the authors showed that in humans, grapheme-colour synaesthesia is characterized by enhanced cortical excitability in the primary visual cortex and can be augmented or attenuated with cathodal or anodal stimulation, respectively. ORIGINAL RESEARCH PAPER Terhune, D. B. et al. Enhanced cortical excitability in grapheme-color synesthesia and its modulation. Curr. Biol. 21, 2006–2009 (2011) NEUROPHARMACOLOGY Striking the right balance between Gi and Gq signalling A new study explains why some inhibitors of the serotonin Gq protein-coupled receptor 2AR (such as clozapine), but not others (such as ritanserin), have antipsychotic actions. The authors showed that 2AR can form a heteromeric complex with metabotropic glutamate receptor 2 (mGluR2) — which is a Gi protein-coupled receptor — and that this interaction can enhance glutamate-induced Gi signalling and reduce serotonin-induced Gq signalling. The intracellular Gi and Gq signalling balance is predictive of the anti- or pro-psychotic activity of drugs targeting 2AR and mGluR2, providing a potential new metric to improve current antipsychotic therapies. ORIGINAL RESEARCH PAPER Fribourg, M. et al. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147, 1011–1023 (2011) BEHAVIOURAL NEUROSCIENCE Curbing sweet cravings In this study, the authors examined the reward value of sweeteners in mice by assessing the animals’ preferences for sweeteners compared to lick-induced optogenetic activation of midbrain dopaminergic neurons.
    [Show full text]
  • Welcome to the New Open Access Neurosci
    Editorial Welcome to the New Open Access NeuroSci Lucilla Parnetti 1,* , Jonathon Reay 2, Giuseppina Martella 3 , Rosario Francesco Donato 4 , Maurizio Memo 5, Ruth Morona 6, Frank Schubert 7 and Ana Adan 8,9 1 Centro Disturbi della Memoria, Laboratorio di Neurochimica Clinica, Clinica Neurologica, Università di Perugia, 06132 Perugia, Italy 2 Department of Psychology, Teesside University, Victoria, Victoria Rd, Middlesbrough TS3 6DR, UK; [email protected] 3 Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia, and University of Rome Tor Vergata, 00143 Rome, Italy; [email protected] 4 Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; [email protected] 5 Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; [email protected] 6 Department of Cell Biology, School of Biology, University Complutense of Madrid, Av. Jose Antonio Novais 12, 28040 Madrid, Spain; [email protected] 7 School of Biological Sciences, University of Portsmouth, Hampshire PO1 2DY, UK; [email protected] 8 Department of Clinical Psychology and Psychobiology, University of Barcelona, 08035 Barcelona, Spain; [email protected] 9 Institute of Neurosciences, University of Barcelona, 08035 Barcelona, Spain * Correspondence: [email protected] Received: 6 August 2020; Accepted: 17 August 2020; Published: 3 September 2020 Message from Editor-in-Chief: Prof. Dr. Lucilla Parnetti With sincere satisfaction and pride, I present to you the new journal, NeuroSci, for which I am pleased to serve as editor-in-chief. To date, the world of neurology has been rapidly advancing, NeuroSci is a cross-disciplinary, open-access journal that offers an opportunity for presentation of novel data in the field of neurology and covers a broad spectrum of areas including neuroanatomy, neurophysiology, neuropharmacology, clinical research and clinical trials, molecular and cellular neuroscience, neuropsychology, cognitive and behavioral neuroscience, and computational neuroscience.
    [Show full text]
  • Course Syllabus Psychology 267 Clinical Neuroscience Larry Wichlinski Spring Term, 2016
    1 Course Syllabus Psychology 267 Clinical Neuroscience Larry Wichlinski Spring Term, 2016 Office: Olin 123, Ext. 4377, e-mail: LWICHLIN Office Hours: Tuesday 1-3 p.m. Wed. 4a; Fri. 4a and by appointment Required Books: Pistorius, M. (2013). Ghost Boy. Nashville: Nelson Books. Introduction Welcome to Clinical Neuroscience! In this course we will examine the biological dimensions of disorders of the mind and brain. The goal is to gain a better understanding of the role that biological factors play when our brains and minds go awry. The format of this class will be a combination of lecture and discussion. The class is organized by brain disorder, but some themes recur throughout the course, as you will see. The bulk of the reading assignments are journal articles, most of them quite recently published. In addition, we will read selective websites and a contemporary book, Ghost Boy. Please have the assigned readings done by the time you get to class, if at all possible. Also, please have some form of the articles available during class time. Most of the journal articles are available via the Web of Knowledge through the library’s website. The few that are not available will be put on e-reserve for this course. I’ll let you know which articles fall in this category. I may add readings and/or substitute readings as this course unfolds. I will do my best to let you know of any changes in a timely fashion. Exams & Quizzes There will be two quizzes and two exams in this course. Quizzes will consist of multiple choice and short answer questions.
    [Show full text]
  • The Creation of Neuroscience
    The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits.
    [Show full text]
  • Social Cognitive Neuroscience
    Chapter 5 Social Cognitive Neuroscience M ATTHEW D . L IEBERMAN Who we are as humans has a lot to do with what happens have become leaders in the field, despite few having pub- between our ears. What happens between our ears has a lot lished social cognitive neuroscience findings at that point. to do with the social world we traverse, engage, and react There were introductory talks on social cognition and cog- to. The former has been the province of neuroscience and nitive neuroscience by Neil Macrae and Jonathan Cohen, the latter the province of social psychology for nearly a respectively, along with symposia on stereotyping (William century. Recently, scientists have begun to study the social Cunningham, Jennifer Eberhardt, Matthew Lieberman, mind by literally looking between the ears using the tools and Wendy Mendes), self - control (Todd Heatherton, Kevin of neuroscience. Social cognitive neuroscience uses the tools Ochsner, and Cary Savage), emotion (Ralph Adolphs, of neuroscience to study the mental mechanisms that cre- Turhan Canli, Elizabeth Phelps, and Stephanie Preston), ate, frame, regulate, and respond to our experience of the imitation and social relations (Alan Fiske, Marco Iacoboni, social world. On its worst days, social cognitive neurosci- David Perrett, and Andrew Whiten), and theory of mind ence is phrenological, cataloguing countless brain regions (Chris Ashwin, Josep Call, Vittorio Gallese, and Kevin involved in the vast array of social processes. On its best McCabe). If this meeting represented the first time that all days, social cognitive neuroscience enhances our under- of the ingredients of social cognitive neuroscience were standing of the social mind as well as any other method.
    [Show full text]
  • Methodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human
    Basic and Clinical August 2013, Volume 4, Number 3 Review Paper: Methodological Dimensions of Transcranial Brain Stimulation with the Electrical Current in Human Maryam Rostami1, 4, Mehrshad Golesorkhi1, 2, 5, Hamed Ekhtiari1, 2, 3* 1. Translational Neuroscience Program, Institute for Cognitive Science Studies, Tehran, Iran. 2. Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University for Medical Sciences, Tehran, Iran. 3. Iranian National Center for Addiction Studies, Tehran University for Medical Sciences, Tehran, Iran. 4. Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. 5. Department of Computer Science, School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran. Article info: A B S T R A C T Received: 16 October 2012 Transcranial current stimulation (TCS) is a neuromodulation method in which the patient is First Revision: 10 February 2013 exposed to a mild electric current (direct or alternating) at 1-2 mA, resulting in an increase Accepted: 20 May 2013 or a decrease in the brain excitability. This modification in neural activities can be used as a method for functional human brain mapping with causal inferences. This method might Key Words: also facilitate the treatments of many neuropsychiatric disorders based on its inexpensive, Transcranial Electrical Stimulation (tES), simple, safe, noninvasive, painless, semi-focal excitatory and inhibitory effects. Given this, Transcranial Direct Current a comparison amongst different brain stimulation modalities has been made to determine Stimulation (tDCS), the potential advantages of the TCS method. In addition, considerable methodological Transcranial Alternating Current details on using TCS in basic and clinical neuroscience studies in human subjects have Stimulation (tACS), been introduced.
    [Show full text]
  • Feasibility of Using Cranial Electrotherapy Stimulation for Pain in Persons with Parkinson’S Disease
    SAGE-Hindawi Access to Research Parkinson’s Disease Volume 2010, Article ID 569154, 8 pages doi:10.4061/2010/569154 Research Article Feasibility of Using Cranial Electrotherapy Stimulation for Pain in Persons with Parkinson’s Disease Diana H. Rintala,1, 2 Gabriel Tan,1, 2, 3 Pamela Willson,1, 4, 5 Mon S. Bryant,1, 2 andEugeneC.H.Lai1, 4, 5 1 Research Service, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA 2 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA 3 Department of Anesthesiology, Baylor College of Medicine, Houston, TX 77030, USA 4 Parkinson’s Disease Research, Education and Clinical Center, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA 5 Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA Correspondence should be addressed to Diana H. Rintala, [email protected] Received 23 September 2009; Revised 11 January 2010; Accepted 28 February 2010 Academic Editor: Eng King Tan Copyright © 2010 Diana H. Rintala et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objectives. To assess the feasibility of treating musculoskeletal pain in the lower back and/or lower extremities in persons with Parkinson’s disease (PD) with cranial electrotherapy stimulation (CES). Design. Randomized, controlled, double-blind trial. Setting. Veterans Affairs Medical Center, Community. Participants. Nineteen persons with PD and pain in the lower back and/or lower extremities. Thirteen provided daily pain rating data.
    [Show full text]
  • Brain Imaging Technologies
    Updated July 2019 By Carolyn H. Asbury, Ph.D., Dana Foundation Senior Consultant, and John A. Detre, M.D., Professor of Neurology and Radiology, University of Pennsylvania With appreciation to Ulrich von Andrian, M.D., Ph.D., and Michael L. Dustin, Ph.D., for their expert guidance on cellular and molecular imaging in the initial version; to Dana Grantee Investigators for their contributions to this update, and to Celina Sooksatan for monograph preparation. Cover image by Tamily Weissman; Livet et al., Nature 2017 . Table of Contents Section I: Introduction to Clinical and Research Uses..............................................................................................1 • Imaging’s Evolution Using Early Structural Imaging Techniques: X-ray, Angiography, Computer Assisted Tomography and Ultrasound..............................................2 • Magnetic Resonance Imaging.............................................................................................................4 • Physiological and Molecular Imaging: Positron Emission Tomography and Single Photon Emission Computed Tomography...................6 • Functional MRI.....................................................................................................................................7 • Resting-State Functional Connectivity MRI.........................................................................................8 • Arterial Spin Labeled Perfusion MRI...................................................................................................8
    [Show full text]
  • Epigenetic Pathways Through Which Experiences Become Linked with Biology
    Development and Psychopathology 27 (2015), 637–648 # Cambridge University Press 2015 doi:10.1017/S0954579415000206 Epigenetic pathways through which experiences become linked with biology a b PATRICK O. MCGowan AND TANIA L. ROTH aUniversity of Toronto; and bUniversity of Delaware Abstract This article highlights the defining principles, progress, and future directions in epigenetics research in relation to this Special Issue. Exciting studies in the fields of neuroscience, psychology, and psychiatry have provided new insights into the epigenetic factors (e.g., DNA methylation) that are responsive to environmental input and serve as biological pathways in behavioral development. Here we highlight the experimental evidence, mainly from animal models, that factors such as psychosocial stress and environmental adversity can become encoded within epigenetic factors with functional consequences for brain plasticity and behavior. We also highlight evidence that epigenetic marking of genes in one generation can have consequences for future generations (i.e., inherited), and work with humans linking epigenetics, cognitive dysfunction, and psychiatric disorder. Though epigenetics has offered more of a beginning than an answer to the centuries-old nature–nurture debate, continued research is certain to yield substantial information regarding biological determinants of central nervous system changes and behavior with relevance for the study of developmental psychopathology. Experiences, particularly those occurring during sensitive peri- To better understand the consequences of early and later- ods of development, are well recognized for their ability to ca- life stress on epigenetic mechanisms in this capacity, this nalize neurobiological trajectories and yield significant conse- has required the utilization of experimental rodent models quences for lifelong health and mental well-being.
    [Show full text]
  • 5-HT3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: the Iceberg Still Lies Beneath the Surface
    1521-0081/71/3/383–412$35.00 https://doi.org/10.1124/pr.118.015487 PHARMACOLOGICAL REVIEWS Pharmacol Rev 71:383–412, July 2019 Copyright © 2019 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: JEFFREY M. WITKIN 5-HT3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface Gohar Fakhfouri,1 Reza Rahimian,1 Jonas Dyhrfjeld-Johnsen, Mohammad Reza Zirak, and Jean-Martin Beaulieu Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.) Abstract. ....................................................................................384 I. Introduction. ..............................................................................384 II. 5-HT3 Receptor Structure, Distribution, and Ligands.........................................384 A. 5-HT3 Receptor Agonists .................................................................385 B. 5-HT3 Receptor Antagonists. ............................................................385 Downloaded from 1. 5-HT3 Receptor Competitive Antagonists..............................................385 2. 5-HT3 Receptor
    [Show full text]
  • Neurobiology and Behavior (NEURBIO) 1
    Neurobiology and Behavior (NEURBIO) 1 Neurobiology and Behavior (NEURBIO) Courses NEURBIO 200A. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 200B. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Prerequisite: NEURBIO 200A Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 200C. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Prerequisite: NEURBIO 200B Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 201A. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Grading Option: Satisfactory/unsatisfactory only. Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 201B. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Prerequisite: NEURBIO 201A Grading Option: Satisfactory/unsatisfactory only. Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 201C. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Prerequisite: NEURBIO 201B Grading Option: Satisfactory/unsatisfactory only. Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 202A. Foundations of Neuroscience. 2 Units. Intended to expose students to critical reading and analysis of the primary neuroscience literature. Instructors from departments associated with the Interdepartmental Neuroscience Program participate and discuss topics of current interest.
    [Show full text]
  • Art Therapy and the Malnourished Brain: the Development of the Nourishment Framework
    Art Therapy and the Malnourished Brain: The Development of the Nourishment Framework Article submission for Art Therapy: Journal of the American Art Therapy Association ARTTHERAPY-D-19-00021 Eileen Misluk-Gervase INDIANAPOLIS, INDIANA USA Editor’s Note: Eileen Misluk-Gervase, ATR-BC, LPC is an Assistant Professor, Director and Internship Coordinator for the Art Therapy Program at Indiana University Purdue University Indianapolis with Herron School of Art and Design, Indianapolis, Indiana. Correspondence can be directed to the author at [email protected] ________________________________ This is the author’s manuscript of the article published in final edited form as: Misluk-Gervase, E. (2020). Art Therapy and the Malnourished Brain: The Development of the Nourishment Framework. Art Therapy, 1-11. https://doi.org/10.1080/07421656.2020.1739599 Art Therapy and the Malnourished Brain: The Development of the Nourishment Framework Article submission for Art Therapy: Journal of the American Art Therapy Association ARTTHERAPY-D-19-00021 Word Count: 5,276 (6 figures, 1 table) Abstract Art therapy can be particularly successful in addressing the specific needs of individuals struggling with anorexia nervosa (AN) through the use of the creative process. This article provides an understanding of the effect of malnourishment on the brain for individuals with AN and discusses how their unique needs can be met through the application of the Nourishment Framework. The Nourishment Framework is a structured treatment approach that utilizes the individual components of the Expressive Therapies Continuum (ETC) to address specific clinical needs for those struggling with AN. A case study documents the application of the Nourishment Framework while highlighting the directives and materials used to meet client goals.
    [Show full text]