Found Comput Math DOI 10.1007/s10208-013-9159-7 Polynomial-Time Homology for Simplicial Eilenberg–MacLane Spaces Marek Krcálˇ · Jiríˇ Matoušek · Francis Sergeraert Received: 30 January 2012 / Accepted: 24 April 2013 © SFoCM 2013 Abstract In an earlier paper of Cadek,ˇ Vokrínek,ˇ Wagner, and the present authors, we investigated an algorithmic problem in computational algebraic topology, namely, the computation of all possible homotopy classes of maps between two topological spaces, under suitable restriction on the spaces. We aim at showing that, if the dimensions of the considered spaces are bounded by a constant, then the computations can be done in polynomial time. In this paper we make a significant technical step towards this goal: we show that the Eilenberg– MacLane space K(Z, 1), represented as a simplicial group, can be equipped with polynomial-time homology (this is a polynomial-time version of effective homology considered in previous works of the third author and co-workers). To this end, we construct a suitable discrete vector field, in the sense of Forman’s discrete Morse theory,onK(Z, 1). The construction is purely combinatorial and it can be understood as a certain procedure for reducing finite sequences of integers, without any reference to topology. Communicated by Peter Buergisser. M. Krcálˇ · J. Matoušek () Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic e-mail:
[email protected] J. Matoušek Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland F. Sergeraert Institut Fourier, BP 74, 38402 St Martin, d’Hères Cedex, France Found Comput Math The Eilenberg–MacLane spaces are the basic building blocks in a Postnikov sys- tem, which is a “layered” representation of a topological space suitable for homotopy- theoretic computations.