A Concise Course in Algebraic Topology

Total Page:16

File Type:pdf, Size:1020Kb

A Concise Course in Algebraic Topology A Concise Course in Algebraic Topology J. P. May Contents Introduction 1 Chapter 1. The fundamental group and some of its applications 5 1. What is algebraic topology? 5 2. The fundamental group 6 3. Dependence on the basepoint 7 4. Homotopy invariance 7 1 5. Calculations: π1(R) = 0 and π1(S )= Z 8 6. The Brouwer fixed point theorem 10 7. The fundamental theorem of algebra 10 Chapter2. CategoricallanguageandthevanKampentheorem 13 1. Categories 13 2. Functors 13 3. Natural transformations 14 4. Homotopy categories and homotopy equivalences 14 5. The fundamental groupoid 15 6. Limits and colimits 16 7. The van Kampen theorem 17 8. ExamplesofthevanKampentheorem 19 Chapter 3. Covering spaces 21 1. The definition of covering spaces 21 2. The unique path lifting property 22 3. Coverings of groupoids 22 4. Group actions and orbit categories 24 5. Theclassificationofcoveringsofgroupoids 25 6. Theconstructionofcoveringsofgroupoids 27 7. Theclassificationofcoveringsofspaces 28 8. Theconstructionofcoveringsofspaces 30 Chapter 4. Graphs 35 1. The definition of graphs 35 2. Edge paths and trees 35 3. The homotopy types of graphs 36 4. CoversofgraphsandEulercharacteristics 37 5. Applications to groups 37 Chapter 5. Compactly generated spaces 39 1. The definition of compactly generated spaces 39 2. Thecategoryofcompactlygeneratedspaces 40 v vi CONTENTS Chapter 6. Cofibrations 43 1. The definition of cofibrations 43 2. Mapping cylinders and cofibrations 44 3. Replacing maps by cofibrations 45 4. Acriterionforamaptobeacofibration 45 5. Cofiber homotopy equivalence 46 Chapter 7. Fibrations 49 1. The definition of fibrations 49 2. Path lifting functions and fibrations 49 3. Replacing maps by fibrations 50 4. Acriterionforamaptobeafibration 51 5. Fiber homotopy equivalence 52 6. Change of fiber 53 Chapter8. Basedcofiberandfibersequences 57 1. Based homotopy classes of maps 57 2. Cones, suspensions, paths, loops 57 3. Based cofibrations 58 4. Cofiber sequences 59 5. Based fibrations 61 6. Fiber sequences 61 7. Connectionsbetweencofiberandfibersequences 63 Chapter 9. Higher homotopy groups 65 1. The definition of homotopy groups 65 2. Longexactsequencesassociatedtopairs 65 3. Longexactsequencesassociatedtofibrations 66 4. A few calculations 66 5. Change of basepoint 68 6. n-Equivalences, weak equivalences, and a technical lemma 69 Chapter 10. CW complexes 73 1. The definition and some examples of CW complexes 73 2. SomeconstructionsonCWcomplexes 74 3. HELP and the Whitehead theorem 75 4. The cellular approximation theorem 76 5. Approximation of spaces by CW complexes 77 6. Approximation of pairs by CW pairs 78 7. Approximation of excisive triads by CW triads 79 Chapter 11. The homotopy excision and suspension theorems 83 1. Statement of the homotopy excision theorem 83 2. The Freudenthal suspension theorem 85 3. Proofofthehomotopyexcisiontheorem 86 Chapter 12. A little homological algebra 91 1. Chain complexes 91 2. Maps and homotopies of maps of chain complexes 91 3. Tensor products of chain complexes 92 CONTENTS vii 4. Short and long exact sequences 93 Chapter 13. Axiomatic and cellular homology theory 95 1. Axioms for homology 95 2. Cellular homology 97 3. Verification of the axioms 100 4. The cellular chains of products 101 5. Some examples: T , K, and RP n 103 Chapter 14. Derivations of properties from the axioms 107 1. Reducedhomology;basedversusunbasedspaces 107 2. Cofibrations and the homology of pairs 108 3. Suspensionandthelongexactsequenceofpairs 109 4. Axioms for reduced homology 110 5. Mayer-Vietoris sequences 112 6. The homology of colimits 114 Chapter 15. The Hurewicz and uniqueness theorems 117 1. The Hurewicz theorem 117 2. TheuniquenessofthehomologyofCWcomplexes 119 Chapter 16. Singular homology theory 123 1. The singular chain complex 123 2. Geometric realization 124 3. Proofs of the theorems 125 4. Simplicial objects in algebraic topology 126 5. Classifying spaces and K(π,n)s 128 Chapter17. Somemorehomologicalalgebra 131 1. Universal coefficients in homology 131 2. The K¨unneth theorem 132 3. Hom functors and universal coefficients in cohomology 133 4. Proofoftheuniversalcoefficienttheorem 135 5. Relations between ⊗ and Hom 136 Chapter 18. Axiomatic and cellular cohomology theory 137 1. Axioms for cohomology 137 2. Cellular and singular cohomology 138 3. Cup products in cohomology 139 4. An example: RP n andtheBorsuk-Ulamtheorem 140 5. Obstruction theory 142 Chapter 19. Derivations of properties from the axioms 145 1. Reducedcohomologygroupsandtheirproperties 145 2. Axioms for reduced cohomology 146 3. Mayer-Vietorissequencesincohomology 147 4. Lim1 and the cohomology of colimits 148 5. TheuniquenessofthecohomologyofCWcomplexes 149 Chapter 20. The Poincar´eduality theorem 151 1. Statement of the theorem 151 viii CONTENTS 2. The definition of the cap product 153 3. Orientations and fundamental classes 155 4. The proof of the vanishing theorem 158 5. The proof of the Poincar´eduality theorem 160 6. The orientation cover 163 Chapter 21. The index of manifolds; manifolds with boundary 165 1. The Euler characteristic of compact manifolds 165 2. The index of compact oriented manifolds 166 3. Manifolds with boundary 168 4. Poincar´eduality for manifolds with boundary 169 5. The index of manifolds that are boundaries 171 Chapter 22. Homology, cohomology, and K(π,n)s 175 1. K(π,n)s and homology 175 2. K(π,n)s and cohomology 177 3. Cup and cap products 179 4. Postnikov systems 182 5. Cohomology operations 184 Chapter23. Characteristicclassesofvectorbundles 187 1. The classification of vector bundles 187 2. Characteristic classes for vector bundles 189 3. Stiefel-Whitney classes of manifolds 191 4. Characteristic numbers of manifolds 193 5. ThomspacesandtheThomisomorphismtheorem 194 6. The construction of the Stiefel-Whitney classes 196 7. Chern,Pontryagin,andEulerclasses 197 8. A glimpse at the general theory 200 Chapter 24. An introduction to K-theory 203 1. The definition of K-theory 203 2. The Bott periodicity theorem 206 3. The splitting principle and the Thom isomorphism 208 4. The Chern character; almost complex structures on spheres 211 5. The Adams operations 213 6. The Hopf invariant one problem and its applications 215 Chapter 25. An introduction to cobordism 219 1. Thecobordismgroupsofsmoothclosedmanifolds 219 2. Sketch proof that N∗ is isomorphic to π∗(T O) 220 3. Prespectra and the algebra H∗(T O; Z2) 223 4. The Steenrod algebra and its coaction on H∗(T O) 226 5. The relationship to Stiefel-Whitney numbers 228 6. Spectra and the computation of π∗(T O)= π∗(MO) 230 7. An introduction to the stable category 232 Suggestions for further reading 235 1. Aclassicbookandhistoricalreferences 235 2. Textbooksinalgebraictopologyandhomotopytheory 235 CONTENTS ix 3. Books on CW complexes 236 4. Differential forms and Morse theory 236 5. Equivariant algebraic topology 237 6. Categorytheoryandhomologicalalgebra 237 7. Simplicial sets in algebraic topology 237 8. TheSerrespectralsequenceandSerreclasstheory 237 9. TheEilenberg-Moorespectralsequence 237 10. Cohomology operations 238 11. Vector bundles 238 12. Characteristic classes 238 13. K-theory 239 14. Hopf algebras; the Steenrod algebra, Adams spectral sequence 239 15. Cobordism 240 16. Generalized homology theory and stable homotopy theory 240 17. Quillen model categories 240 18. Localization and completion; rational homotopy theory 241 19. Infinite loop space theory 241 20. Complex cobordism and stable homotopy theory 242 21. Follow-ups to this book 242 Introduction The first year graduate program in mathematics at the University of Chicago consists of three three-quarter courses, in analysis, algebra, and topology. The first two quarters of the topology sequence focus on manifold theory and differential geometry, including differential forms and, usually, a glimpse of de Rham cohomol- ogy. The third quarter focuses on algebraic topology. I have been teaching the third quarter off and on since around 1970. Before that, the topologists, including me, thought that it would be impossible to squeeze a serious introduction to al- gebraic topology into a one quarter course, but we were overruled by the analysts and algebraists, who felt that it was unacceptable for graduate students to obtain their PhDs without having some contact with algebraic topology. This raises a conundrum. A large number of students at Chicago go into topol- ogy, algebraic and geometric. The introductory course should lay the foundations for their later work, but it should also be viable as an introduction to the subject suitable for those going into other branches of mathematics. These notes reflect my efforts to organize the foundations of algebraic topology in a way that caters to both pedagogical goals. There are evident defects from both points of view. A treatment more closely attuned to the needs of algebraic geometers and analysts would include Cechˇ cohomology on the one hand and de Rham cohomology and perhaps Morse homology on the other. A treatment more closely attuned to the needs of algebraic topologists would include spectral sequences and an array of calculations with them. In the end, the overriding pedagogical goal has been the introduction of basic ideas and methods of thought. Our understanding of the foundations of algebraic topology has undergone sub- tle but serious changes since I began teaching this course. These changes reflect in part an enormous internal development of algebraic topology over this period, one which is largely unknown to most other mathematicians, even those working in such closely related fields as geometric topology
Recommended publications
  • Equivariant Geometric K-Homology with Coefficients
    Equivariant geometric K-homology with coefficients Michael Walter Equivariant geometric K-homology with coefficients Diplomarbeit vorgelegt von Michael Walter geboren in Lahr angefertigt am Mathematischen Institut der Georg-August-Universität zu Göttingen 2010 v Equivariant geometric K-homology with coefficients Michael Walter Abstract K-homology is the dual of K-theory. Kasparov’s analytic version, where cycles are given by (ab- stract) elliptic operators over (not necessarily commutative) spaces, has proved to be an extremely powerful tool which, together with its bivariant generalization KK-theory, lies at the heart of many important results at the intersection of algebraic topology, functional analysis and geome- try. Independently, Baum and Douglas have proposed a geometric version of K-homology inspired by singular bordism. Cycles for this theory are given by vector bundles over compact Spinc- manifolds with boundary which map to the target, i.e. E f (M, BM) / (X, Y). There is a natural transformation to analytic K-homology defined by sending such a cycle to the pushforward of the class determined by the twisted Dirac operator. It is well-known to be an isomorphism, although a rigorous proof has appeared only recently. While both theories have obvious generalizations to the equivariant case and coefficients, the question whether these remain isomorphic is far from trivial (and has negative answer in the general case). In their work on equivariant correspondences Emerson and Meyer have isolated a useful sufficient condition for their theory which, while vastly more general, only deals with the absolute case. Our focus is not so much to construct a geometric theory in the most general situation, but to show that in the presence of a group action and coefficients the above picture still gives a generalized homology theory in a very geometrical way, isomorphic to Kasparov’s theory.
    [Show full text]
  • The Fundamental Group
    The Fundamental Group Tyrone Cutler July 9, 2020 Contents 1 Where do Homotopy Groups Come From? 1 2 The Fundamental Group 3 3 Methods of Computation 8 3.1 Covering Spaces . 8 3.2 The Seifert-van Kampen Theorem . 10 1 Where do Homotopy Groups Come From? 0 Working in the based category T op∗, a `point' of a space X is a map S ! X. Unfortunately, 0 the set T op∗(S ;X) of points of X determines no topological information about the space. The same is true in the homotopy category. The set of `points' of X in this case is the set 0 π0X = [S ;X] = [∗;X]0 (1.1) of its path components. As expected, this pointed set is a very coarse invariant of the pointed homotopy type of X. How might we squeeze out some more useful information from it? 0 One approach is to back up a step and return to the set T op∗(S ;X) before quotienting out the homotopy relation. As we saw in the first lecture, there is extra information in this set in the form of track homotopies which is discarded upon passage to [S0;X]. Recall our slogan: it matters not only that a map is null homotopic, but also the manner in which it becomes so. So, taking a cue from algebraic geometry, let us try to understand the automorphism group of the zero map S0 ! ∗ ! X with regards to this extra structure. If we vary the basepoint of X across all its points, maybe it could be possible to detect information not visible on the level of π0.
    [Show full text]
  • Categories of Sets with a Group Action
    Categories of sets with a group action Bachelor Thesis of Joris Weimar under supervision of Professor S.J. Edixhoven Mathematisch Instituut, Universiteit Leiden Leiden, 13 June 2008 Contents 1 Introduction 1 1.1 Abstract . .1 1.2 Working method . .1 1.2.1 Notation . .1 2 Categories 3 2.1 Basics . .3 2.1.1 Functors . .4 2.1.2 Natural transformations . .5 2.2 Categorical constructions . .6 2.2.1 Products and coproducts . .6 2.2.2 Fibered products and fibered coproducts . .9 3 An equivalence of categories 13 3.1 G-sets . 13 3.2 Covering spaces . 15 3.2.1 The fundamental group . 15 3.2.2 Covering spaces and the homotopy lifting property . 16 3.2.3 Induced homomorphisms . 18 3.2.4 Classifying covering spaces through the fundamental group . 19 3.3 The equivalence . 24 3.3.1 The functors . 25 4 Applications and examples 31 4.1 Automorphisms and recovering the fundamental group . 31 4.2 The Seifert-van Kampen theorem . 32 4.2.1 The categories C1, C2, and πP -Set ................... 33 4.2.2 The functors . 34 4.2.3 Example . 36 Bibliography 38 Index 40 iii 1 Introduction 1.1 Abstract In the 40s, Mac Lane and Eilenberg introduced categories. Although by some referred to as abstract nonsense, the idea of categories allows one to talk about mathematical objects and their relationions in a general setting. Its origins lie in the field of algebraic topology, one of the topics that will be explored in this thesis. First, a concise introduction to categories will be given.
    [Show full text]
  • Sheaves and Homotopy Theory
    SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case.
    [Show full text]
  • Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
    MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X).
    [Show full text]
  • The Fundamental Group and Seifert-Van Kampen's
    THE FUNDAMENTAL GROUP AND SEIFERT-VAN KAMPEN'S THEOREM KATHERINE GALLAGHER Abstract. The fundamental group is an essential tool for studying a topo- logical space since it provides us with information about the basic shape of the space. In this paper, we will introduce the notion of free products and free groups in order to understand Seifert-van Kampen's Theorem, which will prove to be a useful tool in computing fundamental groups. Contents 1. Introduction 1 2. Background Definitions and Facts 2 3. Free Groups and Free Products 4 4. Seifert-van Kampen Theorem 6 Acknowledgments 12 References 12 1. Introduction One of the fundamental questions in topology is whether two topological spaces are homeomorphic or not. To show that two topological spaces are homeomorphic, one must construct a continuous function from one space to the other having a continuous inverse. To show that two topological spaces are not homeomorphic, one must show there does not exist a continuous function with a continuous inverse. Both of these tasks can be quite difficult as the recently proved Poincar´econjecture suggests. The conjecture is about the existence of a homeomorphism between two spaces, and it took over 100 years to prove. Since the task of showing whether or not two spaces are homeomorphic can be difficult, mathematicians have developed other ways to solve this problem. One way to solve this problem is to find a topological property that holds for one space but not the other, e.g. the first space is metrizable but the second is not. Since many spaces are similar in many ways but not homeomorphic, mathematicians use a weaker notion of equivalence between spaces { that of homotopy equivalence.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Vanessa Robins Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200, Australia. email: [email protected] September 11, 2013 Abstract This manuscript will be published as Chapter 5 in Wiley's textbook Mathe- matical Tools for Physicists, 2nd edition, edited by Michael Grinfeld from the University of Strathclyde. The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology. arXiv:1304.7846v2 [math-ph] 10 Sep 2013 1 Contents 1 Introduction 3 2 Homotopy Theory 4 2.1 Homotopy of paths . 4 2.2 The fundamental group . 5 2.3 Homotopy of spaces . 7 2.4 Examples . 7 2.5 Covering spaces . 9 2.6 Extensions and applications . 9 3 Homology 11 3.1 Simplicial complexes . 12 3.2 Simplicial homology groups . 12 3.3 Basic properties of homology groups . 14 3.4 Homological algebra . 16 3.5 Other homology theories . 18 4 Cohomology 18 4.1 De Rham cohomology . 20 5 Morse theory 21 5.1 Basic results . 21 5.2 Extensions and applications . 23 5.3 Forman's discrete Morse theory . 24 6 Computational topology 25 6.1 The fundamental group of a simplicial complex . 26 6.2 Smith normal form for homology . 27 6.3 Persistent homology . 28 6.4 Cell complexes from data . 29 2 1 Introduction Topology is the study of those aspects of shape and structure that do not de- pend on precise knowledge of an object's geometry.
    [Show full text]
  • MA3403 Algebraic Topology Lecturer: Gereon Quick Lecture 21
    MA3403 Algebraic Topology Lecturer: Gereon Quick Lecture 21 21. Applications of cup products in cohomology We are going to see some examples where we calculate or apply multiplicative structures on cohomology. But we start with a couple of facts we forgot to mention last time. Relative cup products Let (X;A) be a pair of spaces. The formula which specifies the cup product by its effect on a simplex (' [ )(σ) = '(σj[e0;:::;ep]) (σj[ep;:::;ep+q]) extends to relative cohomology. For, if σ : ∆p+q ! X has image in A, then so does any restriction of σ. Thus, if either ' or vanishes on chains with image in A, then so does ' [ . Hence we get relative cup product maps Hp(X; R) × Hq(X;A; R) ! Hp+q(X;A; R) Hp(X;A; R) × Hq(X; R) ! Hp+q(X;A; R) Hp(X;A; R) × Hq(X;A; R) ! Hp+q(X;A; R): More generally, assume we have two open subsets A and B of X. Then the formula for ' [ on cochains implies that cup product yields a map Sp(X;A; R) × Sq(X;B; R) ! Sp+q(X;A + B; R) where Sn(X;A+B; R) denotes the subgroup of Sn(X; R) of cochains which vanish on sums of chains in A and chains in B. The natural inclusion Sn(X;A [ B; R) ,! Sn(X;A + B; R) induces an isomorphism in cohomology. For we have a map of long exact coho- mology sequences Hn(A [ B) / Hn(X) / Hn(X;A [ B) / Hn+1(A [ B) / Hn+1(X) Hn(A + B) / Hn(X) / Hn(X;A + B) / Hn+1(A + B) / Hn+1(X) 1 2 where we omit the coefficients.
    [Show full text]
  • Homological Mirror Symmetry for the Genus 2 Curve in an Abelian Variety and Its Generalized Strominger-Yau-Zaslow Mirror by Cath
    Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Denis Auroux, Chair Professor David Nadler Professor Marjorie Shapiro Spring 2019 Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror Copyright 2019 by Catherine Kendall Asaro Cannizzo 1 Abstract Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo Doctor of Philosophy in Mathematics University of California, Berkeley Professor Denis Auroux, Chair Motivated by observations in physics, mirror symmetry is the concept that certain mani- folds come in pairs X and Y such that the complex geometry on X mirrors the symplectic geometry on Y . It allows one to deduce information about Y from known properties of X. Strominger-Yau-Zaslow (1996) described how such pairs arise geometrically as torus fibra- tions with the same base and related fibers, known as SYZ mirror symmetry. Kontsevich (1994) conjectured that a complex invariant on X (the bounded derived category of coherent sheaves) should be equivalent to a symplectic invariant of Y (the Fukaya category). This is known as homological mirror symmetry. In this project, we first use the construction of SYZ mirrors for hypersurfaces in abelian varieties following Abouzaid-Auroux-Katzarkov, in order to obtain X and Y as manifolds.
    [Show full text]
  • 4 Homotopy Theory Primer
    4 Homotopy theory primer Given that some topological invariant is different for topological spaces X and Y one can definitely say that the spaces are not homeomorphic. The more invariants one has at his/her disposal the more detailed testing of equivalence of X and Y one can perform. The homotopy theory constructs infinitely many topological invariants to characterize a given topological space. The main idea is the following. Instead of directly comparing struc- tures of X and Y one takes a “test manifold” M and considers the spacings of its mappings into X and Y , i.e., spaces C(M, X) and C(M, Y ). Studying homotopy classes of those mappings (see below) one can effectively compare the spaces of mappings and consequently topological spaces X and Y . It is very convenient to take as “test manifold” M spheres Sn. It turns out that in this case one can endow the spaces of mappings (more precisely of homotopy classes of those mappings) with group structure. The obtained groups are called homotopy groups of corresponding topological spaces and present us with very useful topological invariants characterizing those spaces. In physics homotopy groups are mostly used not to classify topological spaces but spaces of mappings themselves (i.e., spaces of field configura- tions). 4.1 Homotopy Definition Let I = [0, 1] is a unit closed interval of R and f : X Y , → g : X Y are two continuous maps of topological space X to topological → space Y . We say that these maps are homotopic and denote f g if there ∼ exists a continuous map F : X I Y such that F (x, 0) = f(x) and × → F (x, 1) = g(x).
    [Show full text]
  • Algebraic Topology
    ALGEBRAIC TOPOLOGY C.R. F. MAUNDER ALGEBRAIC TOPOLOGY C. R. F. MAUNDER Fellow of Christ's College and University Lecturer in Pure Mathematics, Cambridge CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge C82inP 32East 57th Street, New York, NYzoozz,USA 296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia CC. R. F. Miunder '970 CCambridge University Press 1980 First published by VanNostrandReinhold (UK) Ltd First published by the Cambridge University Press 1980 Firstprinted in Great Britain by Lewis Reprints Ltd, London and Tonbridge Reprinted in Great Britain at the University Press, Cambridge British Library cataloguing in publication data Maunder, Charles Richard Francis Algebraic topology. r.Algebraic topology I. Title 514'.2QA6!2 79—41610 ISBN 0521 231612 hard covers ISBN 0 521298407paperback INTRODUCTION Most of this book is based on lectures to third-year undergraduate and postgraduate students. It aims to provide a thorough grounding in the more elementary parts of algebraic topology, although these are treated wherever possible in an up-to-date way. The reader interested in pursuing the subject further will find ions for further reading in the notes at the end of each chapter. Chapter 1 is a survey of results in algebra and analytic topology that will be assumed known in the rest of the book. The knowledgeable reader is advised to read it, however, since in it a good deal of standard notation is set up. Chapter 2 deals with the topology of simplicial complexes, and Chapter 3 with the fundamental group.
    [Show full text]
  • A Few Points in Topos Theory
    A few points in topos theory Sam Zoghaib∗ Abstract This paper deals with two problems in topos theory; the construction of finite pseudo-limits and pseudo-colimits in appropriate sub-2-categories of the 2-category of toposes, and the definition and construction of the fundamental groupoid of a topos, in the context of the Galois theory of coverings; we will take results on the fundamental group of étale coverings in [1] as a starting example for the latter. We work in the more general context of bounded toposes over Set (instead of starting with an effec- tive descent morphism of schemes). Questions regarding the existence of limits and colimits of diagram of toposes arise while studying this prob- lem, but their general relevance makes it worth to study them separately. We expose mainly known constructions, but give some new insight on the assumptions and work out an explicit description of a functor in a coequalizer diagram which was as far as the author is aware unknown, which we believe can be generalised. This is essentially an overview of study and research conducted at dpmms, University of Cambridge, Great Britain, between March and Au- gust 2006, under the supervision of Martin Hyland. Contents 1 Introduction 2 2 General knowledge 3 3 On (co)limits of toposes 6 3.1 The construction of finite limits in BTop/S ............ 7 3.2 The construction of finite colimits in BTop/S ........... 9 4 The fundamental groupoid of a topos 12 4.1 The fundamental group of an atomic topos with a point . 13 4.2 The fundamental groupoid of an unpointed locally connected topos 15 5 Conclusion and future work 17 References 17 ∗e-mail: [email protected] 1 1 Introduction Toposes were first conceived ([2]) as kinds of “generalised spaces” which could serve as frameworks for cohomology theories; that is, mapping topological or geometrical invariants with an algebraic structure to topological spaces.
    [Show full text]