Secretin-Modulated Potassium Channel Trafficking As a Novel Mechanism for Regulating Cerebellar Synapses Michael Williams University of Vermont

Total Page:16

File Type:pdf, Size:1020Kb

Secretin-Modulated Potassium Channel Trafficking As a Novel Mechanism for Regulating Cerebellar Synapses Michael Williams University of Vermont University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2013 Secretin-Modulated Potassium Channel Trafficking as a Novel Mechanism for Regulating Cerebellar Synapses Michael Williams University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Williams, Michael, "Secretin-Modulated Potassium Channel Trafficking as a Novel Mechanism for Regulating Cerebellar Synapses " (2013). Graduate College Dissertations and Theses. 241. https://scholarworks.uvm.edu/graddis/241 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. SECRETIN-MODULATED POTASSIUM CHANNEL TRAFFICKING AS A NOVEL MECHANISM FOR REGULATING CEREBELLAR SYNAPSES A Dissertation Presented by Michael R. Williams to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Neuroscience October, 2012 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Neuroscience. Dissertation Examination Committee: ____________________________________ Advisor Anthony Morielli, Ph.D. ____________________________________ Alan Howe, Ph.D ____________________________________ Victor May, Ph.D ____________________________________ Chairperson John Green, Ph. D ____________________________________ Dean, Graduate College Domenico Grasso, Ph.D Date: August 24, 2012 ABSTRACT The voltage-gated potassium channel Kv1.2 is a critical modulator of neuronal physiology, including dendritic excitability, action potential propagation, and neurotransmitter release. However, mechanisms by which Kv1.2 may be regulated in the brain are poorly understood. In heterologous expression systems Kv1.2 is regulated by endocytosis of the channel from the plasma membrane, and this trafficking can be modulated by adenylate cyclase (AC). The goal of this dissertation was to determine whether AC modulated endocytic trafficking of endogenous Kv1.2 occurred in the mammalian nervous system. Within the brain, Kv1.2 is expressed at its highest levels in the cerebellar cortex. Specifically, Kv1.2 is expressed in dendrites of Purkinje cells (PC), the sole efferent neurons of the cerebellar cortex; Kv1.2 is also expressed in axon terminals of Basket cells (BC), which make inhibitory synapses to Purkinje cells. The loss of functional Kv1.2 in PC dendrites or BC axon terminals causes profound changes in the neurophysiology of Purkinje cells, and aberrant loss of Kv1.2 produces cerebellar ataxia. Therefore, the cerebellum offers a brain structure where Kv1.2 is abundant and has known and important roles in synaptic physiology. A candidate regulator of Kv1.2 trafficking in cerebellar synapses is the secretin peptide receptor: the receptor is also located in both PC dendrites and BC axon terminals, and ligand binding to the secretin receptor stimulates AC. Although secretin affects cerebellar neurophysiology and cerebellar dependent behavior, the mechanisms are not well resolved. By cell-surface protein biotinylation and subsequent immunoblot quantitation of secretin treated rat cerebellar slice lysates, secretin was found to decrease cell-surface Kv1.2. This effect could be mimicked by stimulating AC with forskolin, and could be occluded by inhibition of the secretin receptor, AC, or protein kinase A. The secretin receptor stimulated loss of surface Kv1.2 was not accompanied by decreased total Kv1.2 protein levels, but did involve enhanced channel endocytosis. Microscopy studies using two novel independent techniques provided evidence that both BC axon terminals and PC dendrites are sites of AC-stimulated Kv1.2 endocytosis. The physiological significance of secretin mediated suppression of Kv1.2 was supported by collaborative studies which found infusions into the cerebellar cortex of either a toxin that inhibits Kv1.2, or of secretin, enhanced eyeblink conditioning, a form of cerebellar dependent learning, in rats. These studies provided the first evidence that Kv1.2 is regulated by endocytic trafficking in the brain. However, to address the role of that trafficking in synaptic physiology requires knowledge about the determinants of Kv1.2’s endocytic potential, and non-destructive assays to measure Kv1.2 endocytosis in neural circuits. This dissertation therefore concludes with preliminary studies that explore an ancient motif regulating Kv1.2 trafficking, and that discuss a novel dual fluorescent fusion protein reporter of Kv1.2’s subcellular localization. CITATION Material from this dissertation has been published in the following form: Williams, M. R., J. R. Fuchs, et al. (2012). "Cellular mechanisms and behavioral consequences of Kv1.2 regulation in the rat cerebellum." J Neurosci 32(27): 9228-9237. ii ACKNOWLEDGEMENTS At the risk of omitting the deserving, I happily thank several people in particular. Chronologically, though in magnitude as well, my parents Steve and Julie, my sister Aaren, and my wife Heather deserve and have my peerless gratitude for their loving support and patience, including all the time they have waited while I “finish up one more thing” before spending an evening or weekend with them. By the same token, the people I have enjoyed the privilege of calling friends have been irreplaceable sources of support and occasional though welcome reminders of sources of satisfaction outside of work. I must thank Dr. Terry Rabinowitz for kindly providing both my first research venture in Vermont and for being a catalyst for my training. I owe a great debt of gratitude to Dr.’s Felix Eckenstein and Rae Nishi for answering my many calls and e- mails when they welcomed me into the SNURF program. The opportunity, and their kindness, was remarkable, as has been their continued advocacy and efforts in furthering my training. It has also been a personal and professional joy to work with Dr. John Green and Jason Fuchs; the labs of Dr. Jom Hammack and of Dr. Paul Newhouse; Dr.’s Steve Lidofsky and Lis Barfod, as well as Ann Moore. Likewise, my peers in the NGP, and my many teachers, have greatly enriched my experience here. So too have my lab mates Gene Cilento, Jeff Shortway, Jason Fuchs, Emilee Connors, Megan Doczi, Lee Stirling, Ed Nesti, Brandon Fields, and John Markey. iii Any success I have had or will have is a product of many people’s support and training, including from Todd Clason, Dr. Sheryl White, Thomm Buttolph, all the faculty and staff of the COBREs, and indeed of UVM at large, such as Ed McIntyre. A great deal of aid or administrative support has also come from Dr, Cynthia Forehand, Allison Sturtevant, Margo Green, Carrie Perkins, Hallie Davis-Penders, Emily McLaughlin, Sandy Bossick, and Sylvie Frisbie. Financial support has been generously provided through many avenues, including Dr. Dave Warshaw, Dr. Mark Nelson, and Dr. Anthony Morielli. Speaking of Dr. Morielli, it would be a lengthy tome in and of itself to give due thanks for his unwavering support financially, professionally, intellectually, and personally. I will endeavor to embarrass him further with thanks in person, and spare him here but for stating the hope to return the favor even if only to my future mentees. Lastly, it would be a great omission were I not to sincerely thank my defense committee, Dr.’s: Alan Howe, Anthony Morielli, John Green, and Victor May; their time, aid, and insights have been greatly appreciated. iv TABLE OF CONTENTS CITATION .......................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................... iii LIST OF FIGURES ............................................................................................................ x CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW ......................................... 1 Introduction ..................................................................................................................... 1 Structural Classes Of Potassium Channels...................................................................... 1 Kv Channels .................................................................................................................... 2 The Diverse Roles Of Kv1.2 ........................................................................................... 4 Function Of Kv1.2 In Neurons ........................................................................................ 5 Kv1.2 Controls Transmitter Release In The Brain .......................................................... 8 Change In Kv1.2 Function Is Important For Changes In Neurophysiology ................... 9 Kv1.2 Can Be Regulated In The Brain ......................................................................... 10 Trafficking Of Ion Channels As A Mechanism Of Plasticity ....................................... 10 Regulation Of Kv1.2 By Channel Trafficking At The Plasma Membrane ................... 12 Changes In cAMP Can Regulate Kv1.2 Channel Trafficking ...................................... 13 Evidence That Presynaptic Kv1.2 May Be Regulated Via cAMP ...............................
Recommended publications
  • Age-Dependent Myocardial Transcriptomic Changes in the Rat
    Revista Română de Medicină de Laborator Vol. 22, Nr. 1, Martie, 2014 9 Research article DOI: 10.2478/rrlm-2014-0001 Age-dependent myocardial transcriptomic changes in the rat. Novel insights into atrial and ventricular arrhythmias pathogenesis Modificări transcriptomice dependente de vârstă în miocardul de șobolan. Noi aspecte referitoare la patogeneza aritmiilor atriale și ventriculare Alina Scridon1,2, Emmanuelle Fouilloux-Meugnier3, Emmanuelle Loizon3, Marcel Perian1, Sophie Rome3, Claude Julien2, Christian Barrès2, Philippe Chevalier2,4 1.Physiology Department, University of Medicine and Pharmacy of Tîrgu Mureș, 540139, Tîrgu Mureș, Romania 2. Unité de Neurocardiologie, EA4612, Université Lyon 1, F-69008, Lyon, France 3. Unité 1060 INSERM CarMen, Université Lyon 1, F-69008, Lyon, France 4. Hospices Civils de Lyon, Hôpital Louis Pradel, Service de Rythmologie, 69500, Bron, France Abstract Background: Aging is associated with significantly increased prevalence of cardiac arrhythmias, but tran- scriptional events that underlie this process remain to be established. To gain deeper insight into molecular mech- anisms of aging-related cardiac arrhythmias, we performed mRNA expression analysis comparing atrial and ven- tricular myocardium from Wistar-Kyoto (WKY) rats of different ages. Methods: Atrial and ventricular sampling was performed in 3 groups (n=4 each) of young (14-week-old), adult (25-week-old), and aging (47-week-old) WKY rats. mRNA expressions of 89 genes involved in cardiac arrhythmogenicity were investigated using TaqMan Low Density Array analysis. Results: Of the 89 studied genes, 40 and 64 genes presented steady atrial and ventricu- lar expressions, respectively. All genes differentially expressed within the atria of WKY rats were up-regulated with advancing age, mainly the genes encoding for various K+, Ca2+, Na+ channels, and type 6 collagen.
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • Supplementary Table S1. Upregulated Genes Differentially
    Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2///
    [Show full text]
  • Characterization of Functional Effects of Two New Active Fractions
    Basic and Clinical January, February 2019, Volume 10, Number 1 Research Paper: Characterization of Functional Effects of Two New Active Fractions Isolated From Scorpion Venom on Neuronal Ca2+ Spikes: A Possible Action on Ca2+- Dependent Dependent K+ Channels Hanieh Tamadon1, Zahra Ghasemi2 , Fatemeh Ghasemi1, Narges Hosseinmardi1, Hossein Vatanpour3, Mahyar Janahmadi1* 1. Department of Physiology, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 2. Department of Physiology, School of Medicine, Tarbiat Modares University, Tehran, Iran. 3. Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Use your device to scan and read the article online Citation Tamadon, H., Ghasemi, Z., Ghasemi, F., Hosseinmardi, N., Vatanpour, H., & Janahmadi, M. (2019). Characterization of Functional Effects of Two New Active Fractions Isolated From Scorpion Venom on Neuronal Ca2+ Spikes: A Possible Action on Ca2+-Dependent Dependent K+ Channels. Basic and Clinical Neuroscience, 10(1), 49-58. http://dx.doi.org/10.32598/bcn.9.10.350 : http://dx.doi.org/10.32598/bcn.9.10.352 A B S T R A C T Introduction: It is a long time that natural toxin research is conducted to unlock the medical potential of toxins. Although venoms-toxins cause pathophysiological conditions, they may Article info: be effective to treat several diseases. Since toxins including scorpion toxins target voltage- Received: 26 Oct 2017 gated ion channels, they may have profound effects on excitable cells. Therefore, elucidating First Revision:10 Nov 2017 the cellular and electrophysiological impacts of toxins, particularly scorpion toxins would be Accepted: 30 Apr 2018 helpful in future drug development opportunities.
    [Show full text]
  • The Metabotropic Glutamate Receptor Mglur1 Regulates the Voltage-Gated Potassium Channel Kv1.2 Through Agonist-Dependent and Agonist-Independent Mechanisms
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2019 The etM abotropic glutamate receptor mGluR1 regulates the voltage-gated potassium channel Kv1.2 through agonist-dependent and agonist- independent mechanisms Sharath Chandra Madasu University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Cell Biology Commons, Neuroscience and Neurobiology Commons, and the Pharmacology Commons Recommended Citation Madasu, Sharath Chandra, "The eM tabotropic glutamate receptor mGluR1 regulates the voltage-gated potassium channel Kv1.2 through agonist-dependent and agonist-independent mechanisms" (2019). Graduate College Dissertations and Theses. 982. https://scholarworks.uvm.edu/graddis/982 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. THE METABOTROPIC GLUTAMATE RECEPTOR MGLUR1 REGULATES THE VOLTAGE-GATED POTASSIUM CHANNEL KV1.2 THROUGH AGONIST-DEPENDENT AND AGONIST-INDEPENDENT MECHANISMS. A Dissertation Presented by Sharath Chandra Madasu to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Cellular Molecular and Biomedical Science January, 2019 Defense Date: September 27, 2018 Dissertation Examination Committee: Anthony D. Morielli, PhD., Advisor John Green, PhD., Chairperson Karen Lounsbury, Ph.D. Benedek Erdos, PhD. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT The voltage gated potassium channel Kv1.2 plays a key role in the central nervous system and mutations in Kv1.2 cause neurological disorders such as epilepsies and ataxias.
    [Show full text]
  • Variants in the KCNE1 Or KCNE3 Gene and Risk of Ménière’S Disease: a Meta-Analysis
    Journal of Vestibular Research 25 (2015) 211–218 211 DOI 10.3233/VES-160569 IOS Press Variants in the KCNE1 or KCNE3 gene and risk of Ménière’s disease: A meta-analysis Yuan-Jun Li, Zhan-Guo Jin and Xian-Rong Xu∗ The Center of Clinical Aviation Medicine, General Hospital of Air Force, Beijing, China Received 1 August 2015 Accepted 8 December 2015 Abstract. BACKGROUND: Ménière’s disease (MD) is defined as an idiopathic disorder of the inner ear characterized by the triad of tinnitus, vertigo, and sensorineural hearing loss. Although many studies have evaluated the association between variants in the KCNE1 or KCNE3 gene and MD risk, debates still exist. OBJECTIVE: Our aim is to evaluate the association between KCNE gene variants, including KCNE1 rs1805127 and KCNE3 rs2270676, and the risk of MD by a systematic review. METHODS: We searched the literature in PubMed, SCOPUS and EMBASE through May 2015. We calculated pooled odds ra- tios (OR) and 95% confidence intervals (CIs) using a fixed-effects model or a random-effects model for the risk to MD associated with different KCNE gene variants. The heterogeneity assumption decided the effect model. RESULTS: A total of three relevant studies, with 302 MD cases and 515 controls, were included in this meta-analysis. The results indicated that neither the KCNE1 rs1805127 variant (for G vs. A: OR = 0.724, 95%CI 0.320, 1.638, P = 0.438), nor the KCNE3 rs2270676 variant (for T vs. C: OR = 0.714, 95%CI 0.327, 1.559, P = 0.398) was associated with MD risk.
    [Show full text]
  • Kvlqt1, a Voltage-Gated Potassium Channel Responsible for Human Cardiac Arrhythmias
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 4017–4021, April 1997 Medical Sciences KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias WEN-PIN YANG,PAUL C. LEVESQUE,WAYNE A. LITTLE,MARY LEE CONDER,FOUAD Y. SHALABY, AND MICHAEL A. BLANAR* Department of Cardiovascular Drug Discovery, Bristol–Myers Squibb Pharmaceutical Research Institute, Route 206 and Provinceline Road, Princeton, NJ 08543-4000 Communicated by Leon E. Rosenberg, Bristol–Myers Squibb Pharmaceutical Research Institute, Princeton, NJ, January 29, 1997 (received for review November 13, 1996) ABSTRACT The clinical features of long QT syndrome amplifying adult human cardiac and pancreas cDNA libraries result from episodic life-threatening cardiac arrhythmias, or Marathon-Ready cDNAs (CLONTECH) using primers specifically the polymorphic ventricular tachycardia torsades derived from the S1 and S2 region of the partial KVLQT1 de pointes. KVLQT1 has been established as the human cDNA sequence described previously (1). PCR products were chromosome 11-linked gene responsible for more than 50% of gel-purified, subcloned, and sequenced. Primers subsequently inherited long QT syndrome. Here we describe the cloning of were designed from the sequences containing the candidate 59 a full-length KVLQT1 cDNA and its functional expression. end of KVLQT1 and were used for a second round of 59 RACE. KVLQT1 encodes a 676-amino acid polypeptide with struc- This procedure was repeated until no additional 59 end cDNA tural characteristics similar to voltage-gated potassium chan- sequence was obtained. Random-primed 32P-labeled DNA nels. Expression of KvLQT1 in Xenopus oocytes and in human probes containing specific regions of KVLQT1 sequence were embryonic kidney cells elicits a rapidly activating, K1- used for screening of cDNA libraries and Northern blot selective outward current.
    [Show full text]
  • A Hoverfly Guide to the Bayer Research Farm in Great Chishill
    A hoverfly guide to the Bayer Research Farm in Great Chishill 1 Orchard Farm, Great Chishill • Nesting and visiting birds ayer Crop Science’s farm in • Butterflies and moths Encouraging Hoverflies Great Chishill covers some 20 • Bees Bhectares on a gently undulating • Successful fledging of barn owl 1. Food Sources Hoverflies do not have suitable clay plateau to the south west of chicks (as an indicator of small Growing just about any wildflowers will mouthparts to feed from pea-flowers Cambridge, on the Hertfordshire mammal populations) attract at least some hoverflies and a such as clover, lucerne or sainfoin border. It is a working farm set up variety of species selected to flower that favour bees but will feed from to help the company research and Hoverflies continuously throughout the spring mints, both cornmint and watermint understand better, new crop protection Hoverflies are a group of Diptera (flies) and summer would be preferable. and other Labiates such as thyme, products and new seed varieties. As comprising the family Syrphidae with Traditional wildflower meadows are marjoram and so on. Some Crucifers its name implies, the farm used to be many being fairly large and colourful. often good places to look for hoverflies, are good such as the spring flowering an orchard and indeed, there remains Some of them, such as the Marmalade and there are several plants which cuckoo flower and hedge mustard; some apple and pear trees on the Hoverfly are generally common and are favoured. Common bramble is a later on water cress, oil seed rape and site used for testing of novel crop numerous enough to have a common magnet for various hoverflies and other other mustards are good.
    [Show full text]
  • Characterizing the Mechanisms of Kappa Opioid Receptor Signaling Within Mesolimbic Dopamine Circuitry Katie Reichard a Dissertat
    Characterizing the mechanisms of kappa opioid receptor signaling within mesolimbic dopamine circuitry Katie Reichard A dissertation submitted in partial fulfillment of the degree requirements for the degree of: Doctor of Philosophy University of Washington 2020 Reading Committee: Charles Chavkin, Chair Paul Phillips Larry Zweifel Program Authorized to Confer Degree: Neuroscience Graduate Program TABLE OF CONTENTS Summary/Abstract………………………………………………………………………….……..6 Dedication……………………………………………………………………………….………...9 Chapter 1 The therapeutic potential of the targeting the kappa opioid receptor system in stress- associated mental health disorders……………………………….………………………………10 Section 1.1 Activation of the dynorphin/kappa opioid receptor system is associated with dysphoria, cognitive disruption, and increased preference for drugs of abuse…………………..13 Section 1.2 Contribution of the dyn/KOR system to substance use disorder, anxiety, and depression………………………………………………………………………………………..15 Section 1.3 KORs are expressed on dorsal raphe serotonin neurons and contribute to stress- induced plasticity with serotonin circuitry……………………………………………………….17 Section 1.4 Kappa opioid receptor expression in the VTA contributes to the behavioral response to stress……………………………………………………………………………………....…..19 Section 1.5 Other brain regions contributing to the KOR-mediated response to stress…………23 Section 1.6 G Protein signaling at the KOR …………………………………………………….25 Chapter 2: JNK-Receptor Inactivation Affects D2 Receptor through both agonist action and norBNI-mediated cross-inactivation
    [Show full text]
  • The Chondrocyte Channelome: a Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2017 The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities Anthony J. Asmar Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, Molecular Biology Commons, and the Physiology Commons Recommended Citation Asmar, Anthony J.. "The Chondrocyte Channelome: A Novel Ion Channel Candidate in the Pathogenesis of Pectus Deformities" (2017). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/pyha-7838 https://digitalcommons.odu.edu/biology_etds/19 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES by Anthony J. Asmar B.S. Biology May 2010, Virginia Polytechnic Institute M.S. Biology May 2013, Old Dominion University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY BIOMEDICAL SCIENCES OLD DOMINION UNIVERSITY August 2017 Approved by: Christopher Osgood (Co-Director) Michael Stacey (Co-Director) Lesley Greene (Member) Andrei Pakhomov (Member) Jing He (Member) ABSTRACT THE CHONDROCYTE CHANNELOME: A NOVEL ION CHANNEL CANDIDATE IN THE PATHOGENESIS OF PECTUS DEFORMITIES Anthony J. Asmar Old Dominion University, 2017 Co-Directors: Dr. Christopher Osgood Dr. Michael Stacey Costal cartilage is a type of rod-like hyaline cartilage connecting the ribs to the sternum.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]