Irradiation Processes in the Early Solar System 323

Total Page:16

File Type:pdf, Size:1020Kb

Irradiation Processes in the Early Solar System 323 Chaussidon and Gounelle: Irradiation Processes in the Early Solar System 323 Irradiation Processes in the Early Solar System Marc Chaussidon Centre de Recherches Pétrographiques et Géochimiques Matthieu Gounelle Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse–Université Paris XI During recent years, a growing body of evidence, both astrophysical observations of young stellar objects and cosmochemical observations made on meteorites, has strengthened the case that a fraction of the dust and gas of the solar accretion disk has been irradiated by cosmic rays emitted by the young forming active Sun. We review this meteoritic evidence, specifically the most convincing data obtained on Ca-Al-rich inclusions (CAIs) of primitive chondrite me- teorites. Boron-isotopic variations in CAIs can be explained by decay products of short-lived 10 7 Be (T1/2 = 1.5 m.y.) while a combination of extinct Be (T1/2 = 53 d) and of spallogenic Li may explain 7Li/6Li variations. We then discuss irradiation models that attempt to account for the origin of short-lived radionuclides and evaluate the predictions of these models in light of experimental data. Several anomalies, such as 21Ne and 36Ar excesses, suggest an exposure of CAIs and of chondrules (or their precusors) to cosmic rays emitted by the young Sun. The possible effects of early solar irradiation processes on the mineralogy, chemistry, and light- element isotopic compositions (e.g., O, H, N) of early solar system solids are also considered and evaluated. 1. INTRODUCTION of interstellar graphite grains, which would be incorporated in the presolar nebula (Dwek, 1978a). It has long been recognized that, because light elements It is important to point out here that, historically, the (D, Li, Be, and B) could not be synthesized by thermonu- situation with short-lived 26Al is quite similar to that of Li- clear reactions taking place at temperatures higher than Be-B. In fact, two possible sources were proposed for 26Al ≈106 K in stellar interiors, other nucleosynthetic processes when it was discovered in CAIs: either an external seed- had to be invoked to explain their presence in the galaxy ing of the solar system by fresh supernova products or a and the solar system (Burbidge et al., 1957). This is espe- local production within the solar system by irradiation pro- cially true for 6Li, B, and Be since 7Li can also be produced cesses around the young active Sun (Lee et al., 1976). The by Big Bang nucleosynthesis and during stellar evolution idea of an internal source by irradiation was nearly aban- either in the red giant phase or in the H-explosive-burning doned for many years, but the original calculations of the phase of nova (e.g., Audouze and Vauclair, 1980). Among fluence required to produce the amount of 26Al observed the different mechanisms studied for the production of Li- in CAIs yielded values (≈1020 protons cm–2) of the same Be-B elements, it was suggested that endothermic spalla- order of magnitude as those calculated in the latest irradia- tion reactions that occur at high energies (typically higher tion models. than a few MeV) can produce these elements in significant This old idea that a fraction of solar system material was amounts. irradiated by solar cosmic rays (SCRs) around the young From the observation that concentrations of Li-Be-B ele- active Sun was recently renewed from two different lines ments were higher by a factor of ≈106 in galactic cosmic of evidence. First, observations of solar-type stars during rays (GCRs) relative to solar system abundances, Reeves et their pre-main-sequence phases (protostars, “classical” al. (1970) found that these elements were synthesized by T Tauri stars with accretion disks, and “weak-lined” T Tauri spallation reactions between high-energy GCR particles stars without accretion disks) show powerful X-ray flares (mostly protons and α particles) and the heavy nuclei 12C that are very likely accompanied by intense fluxes of ac- and 16O. However, before this understanding of the nucleo- celerated particles (Feigelson and Montmerle, 1999; Gudel, synthetic origin of Li-Be-B elements was reached, it was 2004). The X-ray flares are seen in virtually all young stars, originally proposed that these elements were produced in while radio gyrosynchrotron emission from flare MeV elec- the early solar system by irradiation of meter-sized plan- trons are detected in some cases. Recent studies of the pre- etesimals with high-energy solar particles (Fowler et al., main-sequence population in the Orion nebula have shown 1962; Burnett et al., 1965). Other scenarios were envisaged, that analogs of the young Sun exhibit X-ray flare enhance- such as the production of Li-Be-B elements by irradiation ments by factors of 104 and inferred proton fluence en- 323 324 Meteorites and the Early Solar System II hancements by factors of 105 (Feigelson et al., 2002; Wolk bulk carbonaceous chondrites (James and Palmer, 2000; et al., 2005). X-ray absorption and Fe fluorescent emission McDonough et al., 2003). However, the isotopic composi- line measurements give direct evidence that X-rays effi- tions of Li-Be-B elements in components of chondrites ciently irradiate the protoplanetary disks (Tsujimoto et al., (CAIs, refractory grains, chondrules, etc.) are anticipated 2005; Kastner et al., 2005). Second, the discovery of short- to be much more variable for several reasons. These varia- lived 10Be in CAIs from primitive chondrites (McKeegan tions, if present, might be a very rich source of informa- et al., 2000; Sugiura et al., 2001; MacPherson et al., 2003) tion concerning irradiation processes in the presolar or was taken as a strong argument in favor of the presence of protosolar nebula. irradiation products among the precursors of CAIs. Al- First, Li-Be-B elements are efficiently produced by spal- though this view was recently challenged from a calcula- lation reactions during collisions between accelerated pro- tion of the amount of 10Be trapped during stopping of GCRs tons and C and O nuclei (e.g., Reeves, 1994). Because the in the molecular cloud core, parent of the solar system solar system abundance of Li-Be-B elements (Anders and (Desch et al., 2004), the presence of radioactive 7Be in one Grevesse, 1989) is lower by 5 to 7 orders of magnitude Allende CAI (Chaussidon et al., 2004, 2005) would be a relative to that of the target elements C and O (which have decisive argument for an irradiation of a fraction of the solar a different nucleosynthetic origin than Li-Be-B), even a nebula. However, the evidence for 7Be needs to be secured small addition of a spallation component to a solar system from other CAIs in the future. Li-Be-B abundance might be detectable. Second, the spal- In the following sections, we review the few traces of lation Li and B components have a priori isotopic compo- irradiation processes that have been reported so far in me- sitions that will be very different from bulk chondrites. This teorites. This includes either interactions with accelerated comes from the fact that the cross sections for the produc- protons or α particles that result in spallation reactions or tion of the different Li and B isotopes vary as a function of interactions with X-rays or UV radiation. The strongest the energy: Ramaty et al. (1996) calculated 7Li/6Li pro- evidence that we discuss in more detail is the variation in duction ratios ranging from ≈1.5 to ≈8 and 11B/10B ratios the Li- and B-isotopic compositions in CAIs and the in- ranging from ≈2.5 to ≈8 for spallation reactions at energies ferred presence in the early solar system of short-lived 7Be between a few and 100 MeV/nucleon using variable com- and 10Be. In addition, we discuss more briefly (1) the case positions for the cosmic ray and the target at rest (spalla- of 21Ne and 36Ar excesses reported in gas-rich meteorites tion 7Li/6Li and 11B/10B ratios are the lowest at high energies and in chondrules, (2) the recent claims for UV irradiation >100 MeV). The difference between the chondritic and the as a source of non-mass-dependent O-isotopic anomalies spallation isotopic ratio is large for Li because solar sys- and of 15N enrichment in the early solar system, and (3) the tem Li also contains 7Li produced during Big Bang nucleo- chemical and mineralogical traces of electron and ion irra- synthesis. Thus, in any case the spallogenic 7Li/6Li will be diation in irradiated silicates. We also mention the possible significantly lower than the chondritic 7Li/6Li of ≈12. Third, effects of X-rays as a source of ionization that can promote two radioactive isotopes of Be having very different half- ion-molecule reactions responsible for D- and N-isotopic lives exist: 7Be (half-life of 53 d) decays by electron cap- variations. The existing models of irradiation are then de- ture to 7Li and 10Be (half-life of 1.5 m.y.) decays by β decay scribed and their contrasted predictions evaluated concern- to 10B. These two isotopes are produced efficiently by spal- ing the production of the different short-lived radioactivities lation reactions: the cross sections for the production by observed in CAIs (7Be, 10Be, 26Al, 41Ca, and 53Mn). collisions between accelerated protons and O nuclei are, for instance, at 650 MeV of ≈11 mb, ≈3 mb, and ≈1.5 mb for 2. TRACES OF EARLY IRRADIATION 7Be, 9Be, and 10Be, respectively (Read and Viola, 1984; PROCESSES IN METEORITES Michel et al., 1997; Sisterson et al., 1997). 2.1.2. Evidence for the incorporation of short-lived be- 2.1.
Recommended publications
  • Implications for the Solar Protoplanetary Disk from Short-Lived Radionuclides
    From Dust to Planetesimals: Implications for the Solar Protoplanetary Disk from Short-lived Radionuclides M. Wadhwa The Field Museum Y. Amelin Geological Survey of Canada A. M. Davis The University of Chicago G. W. Lugmair University of California at San Diego B. Meyer Clemson University M. Gounelle Muséum National d’Histoire Naturelle S. J. Desch Arizona State University ________________________________________________________________ Since the publication of the Protostars and Planets IV volume in 2000, there have been signifi- cant advances in our understanding of the potential sources and distributions of short-lived, now ex- tinct, radionuclides in the early Solar System. Based on recent data, there is definitive evidence for the presence of two new short-lived radionuclides (10Be and 36Cl) and a compelling case can be made for revising the estimates of the initial Solar System abundances of several others (e.g., 26Al, 60Fe and 182Hf). The presence of 10Be, which is produced only by spallation reactions, is either the result of irradiation within the solar nebula (a process that possibly also resulted in the production of some of the other short-lived radionuclides) or of trapping of Galactic Cosmic Rays in the protosolar mo- lecular cloud. On the other hand, the latest estimates for the initial Solar System abundance of 60Fe, which is produced only by stellar nucleosynthesis, indicate that this short-lived radionuclide (and possibly significant proportions of others with mean lives ≤10 My) was injected into the solar nebula from a nearby stellar source. As such, at least two distinct sources (e.g., irradiation and stellar nu- cleosynthesis) are required to account for the abundances of the short-lived radionuclides estimated to be present in the early Solar System.
    [Show full text]
  • Timing Studies of X Persei and the Discovery of Its Transient Quasi-Periodic Oscillation Feature
    MNRAS 444, 457–465 (2014) doi:10.1093/mnras/stu1351 Timing studies of X Persei and the discovery of its transient quasi-periodic oscillation feature Downloaded from https://academic.oup.com/mnras/article-abstract/444/1/457/1009862 by Baskent University Library (BASK) user on 17 December 2019 Z. Acuner,1‹ S. C¸.Inam,˙ 2 S¸. S¸ahiner,1 M. M. Serim,1 A. Baykal1 and J. Swank3 1Physics Department, Middle East Technical University, 06531 Ankara, Turkey 2Department of Electrical and Electronics Engineering, Bas¸kent University, 06810 Ankara, Turkey 3Astrophysics Science Division, Goddard Space Flight Center, NASA, Greenbelt, MD 20771, USA Accepted 2014 July 3. Received 2014 July 2; in original form 2014 May 15 ABSTRACT We present a timing analysis of X Persei (X Per) using observations made between 1998 and 2010 with the Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) and with the INTEGRAL Soft Gamma-Ray Imager (ISGRI). All pulse arrival times obtained from the RXTE-PCA observations are phase-connected and a timing solution is obtained using these arrival times. We update the long-term pulse frequency history of the source by measuring its pulse frequencies using RXTE-PCA and ISGRI data. From the RXTE- PCA data, the relation between the frequency derivative and X-ray flux suggests accretion via the companion’s stellar wind. However, the detection of a transient quasi-periodic oscillation feature, peaking at ∼0.2 Hz, suggests the existence of an accretion disc. We find that double- break models fit the average power spectra well, which suggests that the source has at least two different accretion flow components dominating the overall flow.
    [Show full text]
  • An Eccentric Wave in the Circumstellar Disc of the Be/X-Ray Binary X Persei
    MNRAS 000, 1–7 (2020?) Preprint 6 October 2020 Compiled using MNRAS LATEX style file v3.0 An eccentric wave in the circumstellar disc of the Be/X-ray binary X Persei R. K. Zamanov,1⋆ K. A. Stoyanov1, U. Wolter2, D. Marchev3, N. A. Tomov1, M. F. Bode4,5, Y. M. Nikolov1, V. Marchev1, L. Iliev1, I. K. Stateva1 1 Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, 1784 Sofia, Bulgaria 2 Hamburger Sternwarte, Universit¨at Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany 3 Department of Physics and Astronomy, Shumen University, 115 Universitetska Str., 9700 Shumen, Bulgaria 4 Astrophysics Research Institute, Liverpool John Moores University, IC2, 149 Brownlow Hill, Liverpool, L3 5RF, UK 5 Office of the Vice Chancellor, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana Accepted 2020 September 30. Received 2020 September 18; in original form 2020 March 16 ABSTRACT We present spectroscopic observations of the Be/X-ray binary X Per obtained during the period December 2017 - January 2020 (MJD 58095 - MJD 58865). In December 2017 the Hα, Hβ, and HeI 6678 emission lines were symmetric with violet-to-red peak ratio V/R ≈ 1. During the first part of the period (December 2017 - August 2018) the V/R- ratio decreased to 0.5 and the asymmetry developed simultaneously in all three lines. In September 2018, a third component with velocity ≈ 250 km s−1 appeared on the red side of the HeI line profile. Later this component emerged in Hβ, accompanied by the appearance of a red shoulder in Hα.
    [Show full text]
  • Variable Star Section Circular
    British Astronomical Association Variable Star Section Circular No 82, December 1994 CONTENTS A New Director 1 Credit for Observations 1 Submission of 1994 Observations 1 Chart Problems 1 Recent Novae Named 1 Z Ursae Minoris - A New R CrB Star? 2 The February 1995 Eclipse of 0¼ Geminorum 2 Computerisation News - Dave McAdam 3 'Stella Haitland, or Love and the Stars' - Philip Hurst 4 The 1994 Outburst of UZ Bootis - Gary Poyner 5 Observations of Betelgeuse by the SPA-VSS - Tony Markham 6 The AAVSO and the Contribution of Amateurs to VS Research Suspected Variables - Colin Henshaw 8 From the Literature 9 Eclipsing Binary Predictions 11 Summaries of IBVS's Nos 4040 to 4092 14 The BAA Instruments and Imaging Section Newsletter 16 Light-curves (TZ Per, R CrB, SV Sge, SU Tau, AC Her) - Dave McAdam 17 ISSN 0267-9272 Office: Burlington House, Piccadilly, London, W1V 9AG Section Officers Director Tristram Brelstaff, 3 Malvern Court, Addington Road, READING, Berks, RG1 5PL Tel: 0734-268981 Section Melvyn D Taylor, 17 Cross Lane, WAKEFIELD, Secretary West Yorks, WF2 8DA Tel: 0924-374651 Chart John Toone, Hillside View, 17 Ashdale Road, Cressage, Secretary SHREWSBURY, SY5 6DT Tel: 0952-510794 Computer Dave McAdam, 33 Wrekin View, Madeley, TELFORD, Secretary Shropshire, TF7 5HZ Tel: 0952-432048 E-mail: COMPUSERV 73671,3205 Nova/Supernova Guy M Hurst, 16 Westminster Close, Kempshott Rise, Secretary BASINGSTOKE, Hants, RG22 4PP Tel & Fax: 0256-471074 E-mail: [email protected] [email protected] Pro-Am Liaison Roger D Pickard, 28 Appletons, HADLOW, Kent TN11 0DT Committee Tel: 0732-850663 Secretary E-mail: [email protected] KENVAD::RDP Eclipsing Binary See Director Secretary Circulars Editor See Director Telephone Alert Numbers Nova and First phone Nova/Supernova Secretary.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • A Perspective from Extinct Radionuclides on a Young Stellar Object: the Sun and Its Accretion Disk
    Annu. Rev. Earth Planet. Sci. 2011. 39: 351-386 doi:10.1146/annurev-earth-040610-133428 Copyright © 2011 by Annual Reviews. All rights reserved UNCORRECTED PREPRINT A PERSPECTIVE FROM EXTINCT RADIONUCLIDES ON A YOUNG STELLAR OBJECT: THE SUN AND ITS ACCRETION DISK Nicolas Dauphas,1 Marc Chaussidon2 1Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, Chicago, Illinois 60637; email: [email protected] 2Centre de Recherches Pétrographiques et Géochimiques (CRPG)-Nancy Université-CNRS, UPR 2300, 54501 Vandoeuvre-lès-Nancy, France ■ Abstract Meteorites, which are remnants of solar system formation, provide a direct glimpse into the dynamics and evolution of a young stellar object (YSO), namely our Sun. Much of our knowledge about the astrophysical context of the birth of the Sun, the chronology of planetary growth from micrometer-sized dust to terrestrial planets, and the activity of the young Sun comes from the study of extinct 26 radionuclides such as Al (t1/2 = 0.717 Myr). Here we review how the signatures of extinct radionuclides (short-lived isotopes that were present when the solar system formed and that have now decayed below detection level) in planetary materials influence the current paradigm of solar system formation. Particular attention is given to tying meteorite measurements to remote astronomical observations of YSOs and modeling efforts. Some extinct radionuclides were inherited from the long-term chemical evolution of the Galaxy, others were injected into the solar system by a nearby supernova, and some were produced by particle irradiation from the T-Tauri Sun. The chronology inferred from extinct radionuclides reveals that dust agglomeration to form centimeter-sized particles in the inner part of the disk was very rapid (<50 kyr), planetesimal formation started early and spanned several million years, planetary embryos (possibly like Mars) were formed in a few million years, and terrestrial planets (like Earth) completed their growths several tens of million years after the birth of the Sun.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • 19 67 Ap J. . .149. .107F the Astrophysical Journal, Vol. 149
    .107F The Astrophysical Journal, Vol. 149, July 1967 .149. J. Ap 67 19 COLLINDER 121: A YOUNG SOUTHERN OPEN CLUSTER SIMILAR TO h AND x PERSEI* Alejandro FEiNSTEmf Observatorio Astronómico, Universidad Nacional de La Plata, Argentina Received September 6, 1966; revised February 1, 1967 ABSTRACT Three-color photoelectric photometry has been carried out for stars in the open cluster Cr 121. The data state that the cluster is nearly identical to h and x Persei but has fewer members It was found that some bright and high-luminosity stars in Canis Major (7,6,77,6, are members of this cluster A Wolf-Rayet star (HD 50896) may also be a member according to the observed colors Its position in the color-magnitude diagram is close to the turnoff point of the main sequence. Cr 121 is situated at a dis- tance of 630 pc, and is as young as the double cluster in Perseus. The reddening is very small. I. INTRODUCTION The open cluster Collinder 121, which lies around the red supergiant o1 CMa, was measured in connection with a program of photoelectric observations of some bright southern clusters. This cluster, located in Canis Major (/n = 235°4, b11 — —10°4), became of considerable interest after Roberts (1958) pointed out that a Wolf-Rayet star lies within one cluster radius. Schmidt-Kaler (1961) called attention to Cr 121 because around the K supergiant, which is inside the cluster boundaries, there are some B stars of apparent visual magnitude between mv — 1 and mv — S which have similar values of the radial velocities and proper motions.
    [Show full text]
  • Lecture 2: Radioactive Decay
    Geol. 655 Isotope Geochemistry Lecture 2 Spring 2005 RADIOACTIVE DECAY As we have seen, some combinations of protons and neutrons form nuclei that are only “metastable”. These ultimately transform to stable nuclei through the process called radioactive decay. Just as an atom can exist in any one of a number of excited states, so too can a nucleus have a set of discrete, quantized, excited nuclear states. The new nucleus produced by radioactive decay is often in one of these excited states. The behavior of nuclei in transforming to more stable states is somewhat similar to atomic transformation from excited to more stable states, but there are some important differences. First, energy level spacing is much greater; second, the time an unstable nucleus spends in an excited state can range from 10-14 sec to 1011 years, whereas atomic life times are usually about 10-8 sec; third, excited atoms emit photons, but excited nuclei may emit photons or particles of non-zero rest mass. Nuclear reactions must obey general physical laws, conservation of momentum, mass-energy, spin, etc. and conservation of nuclear particles. Nuclear decay takes place at a rate that follows the law of radioactive decay. There are two extremely interesting and important aspects of radioactive decay. First, the decay rate is dependent only on the energy state of the nuclide; it is independent of the history of the nucleus, and essentially independent of external influences such as temperature, pressure, etc. It is this property that makes radioactive decay so useful as a chronometer. Second, it is completely impossible to predict when a given nucleus will decay.
    [Show full text]
  • December 2019 BRAS Newsletter
    A Monthly Meeting December 11th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Annual Christmas Potluck, and election of officers. What's In This Issue? President’s Message Secretary's Summary Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner – The Green Odyssey Messages from the HRPO Friday Night Lecture Series Science Academy Solar Viewing Stem Expansion Transit of Murcury Edge of Night Natural Sky Conference Observing Notes: Perseus – Rescuer Of Andromeda, or the Hero & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 25 December 2019 President’s Message I would like to thank everyone for having me as your president for the last two years . I hope you have enjoyed the past two year as much as I did. We had our first Members Only Observing Night (MOON) at HRPO on Sunday, 29 November,. New officers nominated for next year: Scott Cadwallader for President, Coy Wagoner for Vice- President, Thomas Halligan for Secretary, and Trey Anding for Treasurer. Of course, the nominations are still open. If you wish to be an officer or know of a fellow member who would make a good officer contact John Nagle, Merrill Hess, or Craig Brenden. We will hold our annual Baton Rouge “Gastronomical” Society Christmas holiday feast potluck and officer elections on Monday, December 9th at 7PM at HRPO. I look forward to seeing you all there. ALCon 2022 Bid Preparation and Planning Committee: We’ll meet again on December 14 at 3:00.pm at Coffee Call, 3132 College Dr F, Baton Rouge, LA 70808, UPCOMING BRAS MEETINGS: Light Pollution Committee - HRPO, Wednesday December 4th, 6:15 P.M.
    [Show full text]
  • Isotope Geochemistry
    Isotope Geochemistry Chapter 5: Isotope Cosmochemistry Isotope Cosmochemistry 5.1 INTRODUCTION Meteorites are our primary source of in- formation about the early Solar System. Chemical, isotopic, and petrological fea- tures of meteorites reflect events that occurred in the first few tens of millions of years of Solar Sys- tem history. Obser- vations on meteor- ites, together with astronomical obser- vations on the birth of stars and the laws of physics, are the basis of our ideas on how the Solar Sys- tem, and the Earth, Figure 5.1. Photograph of the meteorite Allende, which fell in Mexico in 1969. formed. Circular/spherical features are chondrules. Irregular white patches are Meteorites can be CAI’s. divided into two broad groups: primitive meteorites and differentiated meteorites. The chondrites constitute the primitive group: most of their chemical, isotopic, and petrological features resulted from processes that occurred in the cloud of gas and dust that we refer to as the solar nebula. They are far more commonly observed to fall than differentiated meteorites*. All chondrites, however, have experienced at least some meta- morphism on “parent bodies”, the small planets (diameters ranging from a few km to a few hundred km) from which meteorites are derived by collisions. The differentiated meteorites, which include the achondrites, stony irons, and irons, were so extensively processed in parent bodies, by melting and brecciation, that information about nebular processes has largely been lost. On the other hand, the dif- ferentiated meteorites provide insights into the early stages of planet formation. We’ll provide only a brief overview here. More details of meteoritics (the study of meteorites) can be found in McSween and Huss (2010) and White (2013).
    [Show full text]
  • The I-Xe Chronometer and the Early Solar System
    Meteoritics & Planetary Science 41, Nr 1, 19–31 (2006) Abstract available online at http://meteoritics.org The I-Xe chronometer and the early solar system J. D. GILMOUR1*, O. V. PRAVDIVTSEVA2, A. BUSFIELD1, and C. M. HOHENBERG2 1School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK 2McDonnell Center for the Space Sciences and Physics Department, Washington University, CB 1105, One Brookings Drive, Saint Louis, Missouri 63130, USA *Corresponding author. E-mail: [email protected] (Received 31 January 2005; revision accepted 05 August 2005) Abstract–We review the development of the I-Xe technique and how its data are interpreted, and specify the best current practices. Individual mineral phases or components can yield interpretable trends in initial 129I/127I ratio, whereas whole-rock I-Xe ages are often hard to interpret because of the diversity of host phases, many of which are secondary. Varying standardizations in early work require caution; only samples calibrated against Shallowater enstatite or Bjurbˆle can contribute reliably to the emerging I-Xe chronology of the early solar system. Although sparse, data for which I-Xe and Mn-Cr can be compared suggest that the two systems are concordant among ordinary chondrite samples. We derive a new age for the closure of the Shallowater enstatite standard of 4563.3 ± 0.4 Myr from the relationship between the I-Xe and Pb-Pb systems. This yields absolute I-Xe ages and allows data from this and other systems to be tested by attempting to construct a common chronology of events in the early solar system.
    [Show full text]