Disentangling Sedimentary Pathways for the Pleniglacial Lower Danube Loess Based on Geochemical Signatures
ORIGINAL RESEARCH published: 20 April 2021 doi: 10.3389/feart.2021.600010 Disentangling Sedimentary Pathways for the Pleniglacial Lower Danube Loess Based on Geochemical Signatures Stephan Pötter 1*, Daniel Veres 1,2, Yunus Baykal 3, Janina J. Nett 1, Philipp Schulte 1, Ulrich Hambach 4 and Frank Lehmkuhl 1 1Department of Geography, Chair of Physical Geography and Geoecology, RWTH Aachen University, Aachen, Germany, 2Romanian Academy, Institute of Speleology, Cluj-Napoca, Romania, 3Department of Earth Sciences, Uppsala University, Uppsala, Sweden, 4BayCEER and Chair of Geomorphology, University of Bayreuth, Bayreuth, Germany The source of aeolian sediments such as loess has been investigated since decades. Reliable knowledge on potential dust sources is crucial to understand past climatic and environmental conditions accompanying the dispersal of early modern humans (EMH) into Europe. Provenance studies are usually performed on small sample sets and most Edited by: established methods are expensive and time-consuming. Here, we present the results of Annett Junginger, fi Department of Geosciences, high-resolution geochemical analyses performed on ve loess-palaeosol sequences from University of Tubingen, Germany the Lower Danube Basin (LDB), a region, despite its importance as a trajectory for EMH, Reviewed by: largely underrepresented in loess provenance studies. We compare our results with Mingrui Qiang, geochemical data of loess-palaeosol sequences from Austria, Hungary, Serbia, and South China Normal University, China Roberto Adrián
[Show full text]