Circular Dichroism

Total Page:16

File Type:pdf, Size:1020Kb

Circular Dichroism T H E U N I V E R S I T Y of T E X A S S C H O O L O F H E A L T H I N F O R M A T I O N S C I E N C E S A T H O U S T O N Circular Dichroism For students of HI 6001-100 “Computational Structural Biology” Willy Wriggers, Ph.D. Adopted from material by Mathew Baker, Univ. of Bath http://staff.bath.ac.uk/bssmdb/ http://biomachina.org/courses/structures/08.html What is Circular Dichroism? • Circular Dichroism (CD) is a type of absorption spectroscopy that can provide information on the structures of many types of biological macromolecules • It measures the difference between the absorption of left and right handed circularly-polarized light by proteins. CD is used for; • Protein structure determination. • Induced structural changes, i.e. pH, heat & solvent. • Protein folding/unfolding. • Ligand binding • Structural aspects of nucleic acids, polysaccharides, peptides, hormones & other small molecules. Plane Polarized Light E M Direction of propagation E vectors Polarizer Direction of propagation Plane & Circularly Polarized Light •A light source usually consists of a collection of randomly orientated emitters, the emitted light is a collection of waves with all possible orientations of the E vectors. •Plane polarized light is is obtained by passing light through a polarizer that transmits light with only a single plane of polarization. i.e. it passes only those components of the E vector that are parallel to the axis of the polarizer. •Circular polarized light; The E vectors of two electromagnetic waves are ¼ wavelength out of phase & are perpendicular. The vector that is the sum of the E vectors of the two components rotates so that its tip follows a helical path (dotted line). Circularly Polarized Light • Linearly polarized light: Electric vector direction constant - magnitude varies. • Circularly polarized light: Electric vector direction varies - magnitude constant Circularly Polarized Light • Circular polarized light: Electric vector direction varies - magnitude constant • So its in two forms: left and right handed E E Right- Left- handed handed Circular Dichroism • CD measures the difference between the absorption of left and right handed circularly-polarized light. polarized light: • This is measured as a function of wavelength, & the difference is always very small (<<1/10000 of total). After passing through the sample, the L & R beams have different amplitudes & the combination of the two unequal beams gives elliptically polarized light.Hence, CD measures the ellipicity of the transmitted light (the light that remains that is not absorbed): Absorption Spectroscopy • Shine light through a sample and measure the proportion absorbed as a function of wavelength. • Absorbance A = log(I /I) 0 l • Beer-Lambert law: wavelength A(λ) = ε(λ)lc λ ε: extinction coefficient Sample I0 conc. I C • The longer the path or the more concentrated the sample, the higher the absorbance Absorption Spectroscopy • CD measures the difference between the absorption of left and right handed circularly-polarized light: ∆A(λ) = AR(λ)-AL(λ) = [εR (λ) - εL (λ)]lc or ∆A(λ) = ∆ε (λ)lc ∆ε is the difference in the extinction coefficients typically < 10 M-1cm-1 typical ε around 20 000 M-1cm-1 So the CD signal is a very small difference between two large originals. Absorption Spectroscopy • CD is only observed at wavelengths where absorption occurs, in absorption bands. • CD arises because of the interaction between different transition dipoles doing the absorption. As this depends on the relative orientation of different groups in space, the signal is very sensitive to conformation. • So in general ∆ε is much more conformation dependent that ε. • We will concentrate on the “electronic CD” of peptides and proteins below 240nm. This region is dominated by the absorption of peptide bond and is sensitive to changes in secondary structure. • Can also do CD in near UV (look at trp side chains), visible (cofactors etc.) and IR regions. •The peptide bond is inherently asymmetric & is always optically active. • Any optical activity from side-chain chromophores is induced & results from interactions with asymmetrical neighbouring groups. CD Signal is a Small Difference Between Two Large Originals • CD of E.Coli DNA Native ------ Denatured • For instance at 260 nm ∆ε = ~3 M-1cm-1 ε = ~6000 M-1cm-1 • i.e. CD signal 0.05% of original • need to measure signals ~1/100 of this! CD Signals for Different Secondary Structures 80000 -1 EL –ER > 0 60000 α-helix dmol β-sheet 2 40000 random coil 20000 0 EL –ER < 0 -20000 -40000 190 200 210 220 230 240 250 Mean residue ellipicity deg cm in wavelength in nm • These are Fasman standard curves for polylysine in different environments (data from ftp://jgiqc.llnl.gov) CD Spectra of Protein 2ndary Structures -ve band (nm) +ve band (nm) α-helix 222 192 208 β-sheet 216 195 β-turn 220-230 (weak) 205 180-190 (strong) L.H polypro II helix 190 210-230 weak Random coil 200 CD Signals are Sensitive to Secondary Structure CD signals for GCN4-p1 • GCN4-p1 is a coiled–coil: O'Shea et al. Science (1989) 243:538 figure 3: 34µM GCN4-p1 in 0.15M NaCl, 10mM phosphate pH 7.0 80 70 60 0 OC -1 50 50 OC O 40 75 C dmol 2 30 20 10 0 in 1000 cm 1000 deg in θ] -10 [ -20 • 100% helical at 0oC -30 -40 190 200 210 220 230 240 250 260 • It melts to a random coil at wavelength in nm high temperature This is the CD spectrum for an α-helix Applications of CD in Structural Biology •Determination of secondary structure of proteins that cannot be crystallised •Investigation of the effect of e.g. drug binding on protein secondary structure •Dynamic processes, e.g. protein folding •Studies of the effects of environment on protein structure •Secondary structure and super-secondary structure of membrane proteins •Study of ligand-induced conformational changes •Carbohydrate conformation •Investigations of protein-protein and protein-nucleic acid interactions •Fold recognition Why use CD? • Simple and quick experiments • No extensive preparation • Measurements on solution phase • Relatively low concentrations/amounts of sample • Microsecond time resolution • Any size of macromolecule Total Signal for a Protein Depends on its Secondary Structure —— chymotrypsin (~all β) —— lysozyme (mixed α & β) —— triosephosphate isomerase (mostly α some β) —— myoglobin (all α) • Notice the progressive change in θ222 as the amount of helix increases from chymotrypsin to myoglobin Finding Proportion of 2ndary Structures • Fit the unknown curve θu to a combination of standard curves. • In the simplest case use the Fasman standards θt = xαθα + xβθβ + xcθc 80000 •Vary x x and x -1 dmol 60000 α, β c 2 α-helix β-sheet to give the best fit of θ to θ 40000 random coil t u 20000 while xα+ xβ + xc = 1.0 0 -20000 -40000 Mean residue ellipicity in deg cm in deg ellipicity residue Mean 190 200 210 220 230 240 250 wavelength in nm • Do this by least squares minimization (http://www-structure.llnl.gov/Xray/comp/lsq.htm) Example Fit: Myoglobin • In this case: θt = xαθα + xβθβ + xcθc • fits best with xα = 80%, xβ= 0% xc = 20% 80000 -1 dmol 60000 2 α-helix β-sheet 40000 random coil 20000 0 • agrees well with structure -20000 -40000 Mean residue ellipicity in deg cm in deg ellipicity residue Mean 78% helix, 22% coil 190 200 210 220 230 240 250 wavelength in nm For further details: www-structure.llnl.gov/cd/cdtutorial.htm Example Fit (2): GCN4-p1 CD signals for GCN4-p1 O'Shea et al. Science (1989) 243:538 figure 3: 34µM GCN4-p1 in 0.15M NaCl, 10mM phosphate pH 7.0 o 80 •At 0C 100% helix 70 60 0 OC -1 O o 50 50 C O 75 C 0% helix 40 75 C dmol 2 30 20 o 10 • Q: what about 50 C? 0 in 1000 deg cm in θ] θ] -10 [ -20 -30 θ = x θ + x θ -40 190 200 210 220 230 240 250 260 t o o 75 75 wavelength in nm • fits best with fit to GCN4-p1 50OC data 10 xo = 50%, original data 5 best fit with mix of 0OC and 75OC spectra x = 50% -1 75 0 mol 2 • Shows that at 50oC -5 -10 1/2 of peptide α-helix dimer -15 MRE in 1000 degs cm 1/2 of peptide random coil -20 monomer -25 200 210 220 230 240 250 wavelength in nm However, CD Signal Depends Somewhat on Environment • Can see this by looking • But on a coiled-coil breaks down at the effect of trifluoroethanol helical dimer to single helices (TFE) on a coiled-coil similar to Effect of 50% TFE on a coiled-coil 0 GCN4-p1 TM-36 aqueous -5 TM-36 + TFE • TFE induces helicity in all -10 peptides -15 Effect of 50% TFE on a monomeric peptide MRE -20 0 peptide in water peptide in 50% TFE -25 -5 -30 -10 TFE -35 -15 200 210 220 230 240 MRE wavelength in nm -20 TFE -25 • Although 2ndry structure same -30 CD changes -35 200 210 220 230 240 wavelength in nm Lau, Taneja and Hodges (1984) J.Biol.Chem. 259:13253-13261 Best Fitting Procedures Use Many Different Proteins For Standard Spectra • There are many different algorithms. • All rely on using up to 20 CD spectra of proteins of known structure. • By mixing these together a fit spectra is obtained for an unknown. • For full details see Dichroweb: the online CD analysis tool www.cryst.bbk.ac.uk/cdweb/html/ • Can generally get accuracies of 0.97 for helices, 0.75 for beta sheet, 0.50 for turns, and 0.89 for other structure types (Manavalan & Johnson, 1987, Anal.
Recommended publications
  • Developing Back Reflectance Absorbance As a Useful Technique
    Design of a Simple Cryogenic System for Ultraviolet-Visible Absorption Spectroscopy with a Back-reflectance Fiber Optic Probe Andrew Vinyard, Kaj Hansen, Ross Byrd, Douglas A Stuart * and John Hansen * Department of Chemistry, University of West Georgia *Corresponding Authors, email: [email protected] and [email protected] Abstract We report a convenient and inexpensive technique for the rapid acquisition of absorption spectra from small samples at cryogenic temperatures using a home built cryostat with novel collection optics. A cylindrical copper block was constructed with a coaxial bore to hold a 4.00 mm diameter EPR tube and mounted on a copper feed in thermal contact with liquid nitrogen. A 6.35 mm diameter hole was bored into the side of the cylinder so a fiber optic cable bundle could be positioned orthogonally to the EPR tube. The light passing through the sample is reflected off of the opposing surfaces of the EPR tube and surrounding copper, back through the sample. The emergent light is then collected by the fiber optic bundle, and analyzed by a dispersive spectrometer. Absorption spectra for KMnO4 were measured between 400 nm and 700 nm. Absorption intensity at 506 nm, 525 nm, 545 nm and 567 nm was found to be proportional to concentration, displaying Beer’s law like behavior. The EPR tube had an internal diameter of 3.2 mm; the double pass of the probe beam through the sample affords a central path length of about 6.4 mm. Comparing these measurements with those recorded on a conventional tabletop spectrometer using a cuvette with a 10.00 mm path length, we consistently found a ratio between intensities of 0.58 rather than the anticipated 0.64.
    [Show full text]
  • 2 in 1 Fluorescence and Absorbance Spectrometer
    2 in 1 Fluorescence and Application Fluorescence Absorbance Spectrometer: Note How does it work? Life Sciences Figure 1: Duetta (left) and the inside of the Duetta sample compartment (right) with direction of the light path Introduction Duetta™ is a 2-in-1 fluorescence and absorbance excitation energy and the spectrum at longer wavelengths spectrometer from HORIBA Scientific. There are several is acquired to measure the distribution of intensity and benefits of having two different spectroscopies in one energy (wavelength) of the photons emitted. instrument. For high concentration solutions of interest, both primary and secondary inner-filter effects will affect Fluorescence Excitation Spectrum the fluorescence spectrum measured on a standard Acquiring the intensity of photons emitted at a single fluorometer. Having absorbance and fluorescence emission wavelength and scanning the excitation spectroscopy on the same instrument enables Duetta monochromator to excite the population of molecules in and EzSpec software to apply corrections for inner-filter the sample with different wavelengths. A fluorescence effect and provide more accurate data, for a wider range of excitation spectrum is analogous to an absorbance sample concentrations. Another benefit of the two in one spectrum, but is specific to a single emitting species/ instrument is that absorbance results and fluorescence wavelength as opposed to collecting all absorbing species results contain less error since the sample does not move in a sample or solution. from one instrument to another to get both measurements. Standard fluorescence methods such as Emission %Transmittance Spectrum Spectrum and Excitation Spectrum are available on Duetta, This is a ratio, in terms of percentage, of the intensity of but EzSpec software gives a user the ability to measure transmitted light through an absorbing sample (I) compared the Absorbance Spectrum as a stand-alone method or to the transmitted light through a blank solvent (I0).
    [Show full text]
  • Determination of Polypeptide Conformation with Nanoscale
    Determination of Polypeptide Conformation with Nanoscale Resolution in Water Georg Ramer,[a,b]+ Francesco Simone Ruggeri,[c]+ Aviad Levin[c] , Tuomas P.J. Knowles[cd] & Andrea Centrone*[a] [a] Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States [b] Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, United States [c] Department of Chemistry, University of Cambridge, Cambridge, United Kingdom, CB30FT [d] Cavendish laboratory, Department of Physics, J J Thomson Avenue, CB3 1HE, Cambridge United Kingdom Corresponding author E-mail: [email protected] Abstract: The folding and acquisition of native structure of proteins is central to all biological processes of life. By contrast, protein misfolding can lead to toxic amyloid aggregates formation, linked to the onset of 1 neurodegenerative disorders. To shed light on the molecular basis of protein function and malfunction, it is crucial to access structural information of single protein assemblies and aggregates under native conditions. Yet, current conformation-sensitive spectroscopic methods lack the spatial resolution and sensitivity necessary for characterizing heterogeneous protein aggregates in solution. To overcome this limitation, here we use photothermal induced resonance (PTIR) to demonstrate that it is possible to acquire nanoscale infrared spectra in water with high signal to noise ratio (SNR). Using this approach, we probe supramolecular aggregates of diphenylalanine, the core recognition module of the Alzheimer's disease β-amyloid peptide, and its derivative Boc-diphenylalanine. We achieve nanoscale resolved IR spectra and maps in air and water with comparable SNR and lateral resolution, thus enabling accurate identification of the chemical and structural state of morphologically similar networks at the single aggregate (i.e.
    [Show full text]
  • Strongly Enhanced Raman Optical Activity in Molecules by Magnetic Response of Nanoparticles
    Strongly Enhanced Raman Optical Activity in Molecules by Magnetic Response of Nanoparticles Tong Wu1, Xiuhui Zhang2, Rongyao Wang1 and Xiangdong Zhang1* 1School of Physics and Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems,Beijing Institute of Technology, Beijing, 100081, China 2School of Chemistry and Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China ABSTRACT: An analytical theory for the surface-enhanced Raman optical activity (SEROA) with the magnetic response of the substrate particle has been presented. We have demonstrated that the SEROA signal is proportional to the magnetic polarizability of the substrate particle, which can be significantly enhanced due to the existence of the magnetic response. At the same time, a large circular intensity difference (CID) for the SEROA can also be achieved in the presence of the magnetic response. Taking Si nanoparticles as examples, we have found that the CID enhanced by a Si nanoparticle is 10 times larger than that of Au. Furthermore, when the molecule is located in the hotspot of a Si dimer, CID can be 60 times larger. The phenomena originate from large magnetic fields concentrated near the nanoparticle and boosted magnetic dipole emission of the molecule. The symmetric breaking of the electric fields caused by the magnetic dipole response of the nanoparticle also plays an important role. Our findings provide a new way to tailor the Raman optical activity by designing metamaterials with the strong magnetic response. I.INTRODUCTION Chirality plays a crucial role in modern biochemistry and the evolution of life.1 Many biologically active molecules are chiral, detection and quantification of chiral enantiomers of these biomolecules are of considerable importance.
    [Show full text]
  • Uncompensated Antiferromagnetic Spins at the Interface in Mn-Ir Based Exchange Biased Bilayers
    CORE Metadata, citation and similar papers at core.ac.uk Uncompensated antiferromagnetic spins at the interface in Mn-Ir based exchange biased bilayers 著者 角田 匡清 journal or Journal of applied physics publication title volume 101 number 9 page range 09E510-1-09E510-3 year 2007 URL http://hdl.handle.net/10097/35381 doi: 10.1063/1.2710216 JOURNAL OF APPLIED PHYSICS 101, 09E510 ͑2007͒ Uncompensated antiferromagnetic spins at the interface in Mn–Ir based exchange biased bilayers ͒ M. Tsunoda,a S. Yoshitaki, and Y. Ashizawa Department of Electronic Engineering, Tohoku University, Sendai 980-8579, Japan C. Mitsumata Advanced Electronics Research Laboratory, Hitachi Metals Ltd., Kumagaya 360-0843, Japan and New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan T. Nakamura, H. Osawa, and T. Hirono JASRI/SPring-8, 1-1-1 Kouto, Sayo-cho 679-5198, Japan D. Y. Kim and M. Takahashi New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan ͑Presented on 9 January 2007; received 27 October 2006; accepted 27 November 2006; published online 12 April 2007͒ The microscopic origin of the uncompensated antiferromagnetic ͑AFM͒ spins was investigated by means of the x-ray magnetic circular dichroism ͑XMCD͒ spectroscopy with transmission mode for Mn–Ir/ferromagnetic ͑FM͒ bilayers. As the AFM layer thickness increases, resonant absorption magnitude of Mn L edge naturally increases, but the XMCD magnitude does not change so much. When the FM layer material is modified, the XMCD signal of Mn L edge drastically changes not only in its magnitude but also in its sign. The XMCD signal vanishes without the FM layer.
    [Show full text]
  • Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: a Review
    polymers Review Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review Phuong Nguyen-Tri 1,2,*, Payman Ghassemi 2, Pascal Carriere 3, Sonil Nanda 4 , Aymen Amine Assadi 5 and Dinh Duc Nguyen 6,7 1 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam 2 Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada; [email protected] 3 Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France; [email protected] 4 Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada; [email protected] 5 ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France; [email protected] 6 Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; [email protected] 7 Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea * Correspondence: [email protected]; Tel.: +819-376-5011 (ext. 4505) Received: 5 March 2020; Accepted: 13 May 2020; Published: 17 May 2020 Abstract: Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science.
    [Show full text]
  • Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-1-2019 Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors Elizabeth M. Scherrer Follow this and additional works at: https://scholar.afit.edu/etd Part of the Electromagnetics and Photonics Commons Recommended Citation Scherrer, Elizabeth M., "Optical and Electron Paramagnetic Resonance Characterization of Point Defects in Semiconductors" (2019). Theses and Dissertations. 2463. https://scholar.afit.edu/etd/2463 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. OPTICAL AND ELECTRON PARAMAGNETIC RESONANCE CHARACTERIZATION OF POINT DEFECTS IN SEMICONDUCTORS DISSERTATION Elizabeth M. Scherrer, Captain, USAF AFIT-ENP-DS-19-M-091 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-DS-19-M-091 OPTICAL AND ELECTRON PARAMAGNETIC RESONANCE CHARACTERIZATION OF POINT DEFECTS IN SEMICONDUCTORS DISSERTATION Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Doctor of Philosophy Degree Elizabeth M.
    [Show full text]
  • Circular Dichroism Spectroscopy in the Undergraduate Curriculum Adam R
    Trinity University Digital Commons @ Trinity Chemistry Faculty Research Chemistry Department 9-1-2010 Circular Dichroism Spectroscopy in the Undergraduate Curriculum Adam R. Urbach Trinity University, [email protected] Follow this and additional works at: https://digitalcommons.trinity.edu/chem_faculty Part of the Chemistry Commons Repository Citation Urbach, A. R. (2010). Circular dichroism spectroscopy in the undergraduate curriculum. Journal of Chemical Education, 87(9), 891-893. doi: 10.1021/ed1005954 This Post-Print is brought to you for free and open access by the Chemistry Department at Digital Commons @ Trinity. It has been accepted for inclusion in Chemistry Faculty Research by an authorized administrator of Digital Commons @ Trinity. For more information, please contact [email protected]. Circular Dichroism Spectroscopy in the Undergraduate Curriculum Adam R. Urbach Department of Chemistry, Trinity University, San Antonio, TX 78212 [email protected] Adam R. Urbach is Associate Professor of Chemistry at Trinity University, specializing in bioorganic chemistry. His group applies circular dichroism spectroscopy to studies on the molecular recognition of proteins and nucleic acids by designed molecules. Circular dichroism spectropolarimetry (CD) is a method of optical spectroscopy that seems in most practical ways like UV–visible spectroscopy. The main difference between the two methods is that CD, instead of measuring the absorbance of light as a function of wavelength, measures the difference in absorbance of left versus right circularly polarized light as a function of wavelength. A CD spectrum is an observation of the structure of a chiral compound; it often serves as a “fingerprint” of the structure of biological molecules such as proteins and nucleic acids.
    [Show full text]
  • Spectrophotometry Light and Spectra
    Page: 1 Spectrophotometry Spectrophotometry and colorimetry are conventional techniques for quantitatively determining substances encountered in biochemistry. All substances in solution absorb light of some wavelength and transmit light of other wavelengths. Absorbance is a characteristic of a substance just like melting point, boiling point, density and solubility. Absorbance can be related to the amount of the substance in solution, thus it can be used to quantitatively determine the amount of substance that is present. Light and Spectra Light or electromagnetic radiation is composed of photons moving in a wave that oscillates along the path of motion. The wavelength of light is defined as the distance between adjacent peaks in the wave and can be further defined by the equation: λ = c / ν where λ is the wavelength, c is the speed of light, and ϖ is the frequency or number of waves passing a certain point per unit time. Photons of different wavelengths have different energies that are given by: E = hc / λ = h ν where h is Planck's constant. Thus, the shorter the wavelength, the greater the energy. Electromagnetic radiation can be divided into various regions according to wavelength: the ultraviolet region has wavelengths 200-400 nm and the visible region has wavelengths of 400-700 nm. There are other regions such as infrared, radio wave, microwave and more, but you will not apply them in this course. In the visible region, lights of different wavelengths have different colors: violet and blue in the low wavelength region and orange and red in the high wavelength region. When a substance in solution appears blue, it means that the substance is absorbing red light and transmitting blue light.
    [Show full text]
  • Electron Paramagnetic Resonance of Radicals and Metal Complexes. 2. International Conference of the Polish EPR Association. Wars
    ! U t S - PL — voZ, PL9700944 Warsaw, 9-13 September 1996 ELECTRON PARAMAGNETIC RESONANCE OF RADICALS AND METAL COMPLEXES 2nd International Conference of the Polish EPR Association INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY UNIVERSITY OF WARSAW VGL 2 8 Hi 1 2 ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology Prof. Andrzej G. Chmielewski, Ph.D., D.Sc. Assoc. Prof. Hanna B. Ambroz, Ph.D., D.Sc. Assoc. Prof. Jacek Michalik, Ph.D., D.Sc. Dr Zbigniew Zimek University of Warsaw Prof. Zbigniew Kqcki, Ph.D., D.Sc. ADDRESS OF ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology, Dorodna 16,03-195 Warsaw, Poland phone: (0-4822) 11 23 47; telex: 813027 ichtj pi; fax: (0-4822) 11 15 32; e-mail: [email protected] .waw.pl Abstracts are published in the form as received from the Authors SPONSORS The organizers would like to thank the following sponsors for their financial support: » State Committee of Scientific Research » Stiftung fur Deutsch-Polnische Zusammenarbeit » National Atomic Energy Agency, Warsaw, Poland » Committee of Chemistry, Polish Academy of Sciences, Warsaw, Poland » Committee of Physics, Polish Academy of Sciences, Poznan, Poland » The British Council, Warsaw, Poland » CIECH S.A. » ELEKTRIM S.A. » Broker Analytische Messtechnik, Div. ESR/MINISPEC, Germany 3 CONTENTS CONFERENCE PROGRAM 9 LECTURES 15 RADICALS IN DNA AS SEEN BY ESR SPECTROSCOPY M.C.R. Symons 17 ELECTRON AND HOLE TRANSFER WITHIN DNA AND ITS HYDRATION LAYER M.D. Sevilla, D. Becker, Y. Razskazovskii 18 MODELS FOR PHOTOSYNTHETIC REACTION CENTER: STEADY STATE AND TIME RESOLVED EPR SPECTROSCOPY H. Kurreck, G. Eiger, M. Fuhs, A Wiehe, J.
    [Show full text]
  • UV-Vis Spectroscopy: a New Approach for Assessing the Color Index of Transformer Insulating Oil
    sensors Article UV-Vis Spectroscopy: A New Approach for Assessing the Color Index of Transformer Insulating Oil Yang Sing Leong 1 ID , Pin Jern Ker 1,*, M. Z. Jamaludin 1, Saifuddin M. Nomanbhay 1, Aiman Ismail 1, Fairuz Abdullah 1, Hui Mun Looe 2 and Chin Kim Lo 2 1 Institute of Power Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; [email protected] (Y.S.L.); [email protected] (M.Z.J.); [email protected] (S.M.N.); [email protected] (A.I.); [email protected] (F.A.) 2 Tenaga Nasional Berhad (TNB) Research Sdn. Bhd., Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; [email protected] (H.M.L.); [email protected] (C.K.L.) * Correspondence: [email protected] Received: 30 April 2018; Accepted: 15 June 2018; Published: 6 July 2018 Abstract: Monitoring the condition of transformer oil is considered to be one of the preventive maintenance measures and it is very critical in ensuring the safety as well as optimal performance of the equipment. Various oil properties and contents in oil can be monitored such as acidity, furanic compounds and color. The current method is used to determine the color index (CI) of transformer oil produces an error of 0.5 in measurement, has high risk of human handling error, additional expense such as sampling and transportations, and limited samples can be measured per day due to safety and health reasons. Therefore, this work proposes the determination of CI of transformer oil using ultraviolet-to-visible (UV-Vis) spectroscopy.
    [Show full text]
  • Chemically Denatured Structures of Porcine Pepsin Using Small-Angle X-Ray Scattering
    polymers Article Chemically Denatured Structures of Porcine Pepsin using Small-Angle X-ray Scattering Yecheol Rho 1, Jun Ha Kim 2, Byoungseok Min 2 and Kyeong Sik Jin 2,* 1 Chemical Analysis Center, Korea Research Institute of Chemical Technology, 141, Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; [email protected] 2 Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigokro-127-beongil, Nam-Gu, Pohang, Kyungbuk 37673, Korea; [email protected] (J.H.K.); [email protected] (B.M.) * Correspondence: [email protected]; Tel.: +82-54-279-1573; Fax: +82-54-279-1599 Received: 6 November 2019; Accepted: 12 December 2019; Published: 14 December 2019 Abstract: Porcine pepsin is a gastric aspartic proteinase that reportedly plays a pivotal role in the digestive process of many vertebrates. We have investigated the three-dimensional (3D) structure and conformational transition of porcine pepsin in solution over a wide range of denaturant urea concentrations (0–10 M) using Raman spectroscopy and small-angle X-ray scattering. Furthermore, 3D GASBOR ab initio structural models, which provide an adequate conformational description of pepsin under varying denatured conditions, were successfully constructed. It was shown that pepsin molecules retain native conformation at 0–5 M urea, undergo partial denaturation at 6 M urea, and display a strongly unfolded conformation at 7–10 M urea. According to the resulting GASBOR solution models, we identified an intermediate pepsin conformation that was dominant during the early stage of denaturation. We believe that the structural evidence presented here provides useful insights into the relationship between enzymatic activity and conformation of porcine pepsin at different states of denaturation.
    [Show full text]