S S symmetry Article Half Logistic Inverse Lomax Distribution with Applications Sanaa Al-Marzouki 1, Farrukh Jamal 2, Christophe Chesneau 3,* and Mohammed Elgarhy 4 1 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah 21551, Saudi Arabia;
[email protected] 2 Department of Statistics, The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
[email protected] 3 Department of Mathematics, LMNO, Université de Caen-Normandie, Campus II, Science 3, 14032 Caen, France 4 The Higher Institute of Commercial Sciences, Al mahalla Al kubra, Algarbia 31951, Egypt;
[email protected] * Correspondence:
[email protected]; Tel.: +33-02-3156-7424 Abstract: The last years have revealed the importance of the inverse Lomax distribution in the un- derstanding of lifetime heavy-tailed phenomena. However, the inverse Lomax modeling capabilities have certain limits that researchers aim to overcome. These limits include a certain stiffness in the modulation of the peak and tail properties of the related probability density function. In this paper, a solution is given by using the functionalities of the half logistic family. We introduce a new three- parameter extended inverse Lomax distribution called the half logistic inverse Lomax distribution. We highlight its superiority over the inverse Lomax distribution through various theoretical and practical approaches. The derived properties include the stochastic orders, quantiles, moments, incomplete moments, entropy (Rényi and q) and order statistics. Then, an emphasis is put on the corresponding parametric model. The parameters estimation is performed by six well-established methods. Numerical results are presented to compare the performance of the obtained estimates. Also, a simulation study on the estimation of the Rényi entropy is proposed.