Generating Discrete Analogues of Continuous Probability Distributions-A Survey of Methods and Constructions Subrata Chakraborty
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Half Logistic Inverse Lomax Distribution with Applications
S S symmetry Article Half Logistic Inverse Lomax Distribution with Applications Sanaa Al-Marzouki 1, Farrukh Jamal 2, Christophe Chesneau 3,* and Mohammed Elgarhy 4 1 Statistics Department, Faculty of Science, King AbdulAziz University, Jeddah 21551, Saudi Arabia; [email protected] 2 Department of Statistics, The Islamia University of Bahawalpur, Punjab 63100, Pakistan; [email protected] 3 Department of Mathematics, LMNO, Université de Caen-Normandie, Campus II, Science 3, 14032 Caen, France 4 The Higher Institute of Commercial Sciences, Al mahalla Al kubra, Algarbia 31951, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +33-02-3156-7424 Abstract: The last years have revealed the importance of the inverse Lomax distribution in the un- derstanding of lifetime heavy-tailed phenomena. However, the inverse Lomax modeling capabilities have certain limits that researchers aim to overcome. These limits include a certain stiffness in the modulation of the peak and tail properties of the related probability density function. In this paper, a solution is given by using the functionalities of the half logistic family. We introduce a new three- parameter extended inverse Lomax distribution called the half logistic inverse Lomax distribution. We highlight its superiority over the inverse Lomax distribution through various theoretical and practical approaches. The derived properties include the stochastic orders, quantiles, moments, incomplete moments, entropy (Rényi and q) and order statistics. Then, an emphasis is put on the corresponding parametric model. The parameters estimation is performed by six well-established methods. Numerical results are presented to compare the performance of the obtained estimates. Also, a simulation study on the estimation of the Rényi entropy is proposed. -
Study of Generalized Lomax Distribution and Change Point Problem
STUDY OF GENERALIZED LOMAX DISTRIBUTION AND CHANGE POINT PROBLEM Amani Alghamdi A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2018 Committee: Arjun K. Gupta, Committee Co-Chair Wei Ning, Committee Co-Chair Jane Chang, Graduate Faculty Representative John Chen Copyright c 2018 Amani Alghamdi All rights reserved iii ABSTRACT Arjun K. Gupta and Wei Ning, Committee Co-Chair Generalizations of univariate distributions are often of interest to serve for real life phenomena. These generalized distributions are very useful in many fields such as medicine, physics, engineer- ing and biology. Lomax distribution (Pareto-II) is one of the well known univariate distributions that is considered as an alternative to the exponential, gamma, and Weibull distributions for heavy tailed data. However, this distribution does not grant great flexibility in modeling data. In this dissertation, we introduce a generalization of the Lomax distribution called Rayleigh Lo- max (RL) distribution using the form obtained by El-Bassiouny et al. (2015). This distribution provides great fit in modeling wide range of real data sets. It is a very flexible distribution that is related to some of the useful univariate distributions such as exponential, Weibull and Rayleigh dis- tributions. Moreover, this new distribution can also be transformed to a lifetime distribution which is applicable in many situations. For example, we obtain the inverse estimation and confidence intervals in the case of progressively Type-II right censored situation. We also apply Schwartz information approach (SIC) and modified information approach (MIC) to detect the changes in parameters of the RL distribution. -
The Poisson-Lomax Distribution
Revista Colombiana de Estadística Junio 2014, volumen 37, no. 1, pp. 225 a 245 The Poisson-Lomax Distribution Distribución Poisson-Lomax Bander Al-Zahrania, Hanaa Sagorb Department of Statistics, King Abdulaziz University, Jeddah, Saudi Arabia Abstract In this paper we propose a new three-parameter lifetime distribution with upside-down bathtub shaped failure rate. The distribution is a com- pound distribution of the zero-truncated Poisson and the Lomax distribu- tions (PLD). The density function, shape of the hazard rate function, a general expansion for moments, the density of the rth order statistic, and the mean and median deviations of the PLD are derived and studied in de- tail. The maximum likelihood estimators of the unknown parameters are obtained. The asymptotic confidence intervals for the parameters are also obtained based on asymptotic variance-covariance matrix. Finally, a real data set is analyzed to show the potential of the new proposed distribution. Key words: Asymptotic variance-covariance matrix, Compounding, Life- time distributions, Lomax distribution, Poisson distribution, Maximum like- lihood estimation. Resumen En este artículo se propone una nueva distribución de sobrevida de tres parámetros con tasa fallo en forma de bañera. La distribución es una mezcla de la Poisson truncada y la distribución Lomax. La función de densidad, la función de riesgo, una expansión general de los momentos, la densidad del r-ésimo estadístico de orden, y la media así como su desviación estándar son derivadas y estudiadas en detalle. Los estimadores de máximo verosímiles de los parámetros desconocidos son obtenidos. Los intervalos de confianza asintóticas se obtienen según la matriz de varianzas y covarianzas asintótica. -
Weibull-Lomax Distribution and Its Properties and Applications
Al-Azhar University-Gaza Deanship of Postgraduate Studies Faculty of Economics and Administrative Sciences Department of Statistics Weibull-Lomax Distribution and its Properties and Applications توزيع ويبل - لومكس و خصائصه و تطبيقاته By: Ahmed Majed Hamad El-deeb Supervisor: Prof. Dr. Mahmoud Khalid Okasha A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master in Statistics Gaza, 2015 Abstract The Weibull distribution is a very popular probability mathematical distribution for its flexibility in modeling lifetime data particularly for phenomenon with monotone failure rates. When modeling monotone hazard rates, the Weibull distribution may be an initial choice because of its negatively and positively skewed density shapes. However, it does not provide a reasonable parametric fit for modeling phenomenon with non-monotone failure rates such as the bathtub and upside-down bathtub shapes and the unimodal failure rates which are common in reliability, biological studies and survival studies. In this thesis we introduce and discuss a new generalization of Weibull distribution called the Four-parameter Weibull-Lomax distribution in an attempt to overcome the problem of not being able to fit the phenomenon with non-monotone failure rates. The new distribution is quite flexible for analyzing various shapes of lifetime data and has an increasing, decreasing, constant, bathtub or upside down bathtub shaped hazard rate function. Some basic mathematical functions associated with the proposed distribution are obtained. The Weibull-Lomax density function could be wrought as a double mixture of Exponentiated Lomax densities. And includes as special cases the exponential, Weibull. Shapes of the density and the hazard rate function are discussed. -
Severity Models - Special Families of Distributions
Severity Models - Special Families of Distributions Sections 5.3-5.4 Stat 477 - Loss Models Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 1 / 1 Introduction Introduction Given that a claim occurs, the (individual) claim size X is typically referred to as claim severity. While typically this may be of continuous random variables, sometimes claim sizes can be considered discrete. When modeling claims severity, insurers are usually concerned with the tails of the distribution. There are certain types of insurance contracts with what are called long tails. Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 2 / 1 Introduction parametric class Parametric distributions A parametric distribution consists of a set of distribution functions with each member determined by specifying one or more values called \parameters". The parameter is fixed and finite, and it could be a one value or several in which case we call it a vector of parameters. Parameter vector could be denoted by θ. The Normal distribution is a clear example: 1 −(x−µ)2=2σ2 fX (x) = p e ; 2πσ where the parameter vector θ = (µ, σ). It is well known that µ is the mean and σ2 is the variance. Some important properties: Standard Normal when µ = 0 and σ = 1. X−µ If X ∼ N(µ, σ), then Z = σ ∼ N(0; 1). Sums of Normal random variables is again Normal. If X ∼ N(µ, σ), then cX ∼ N(cµ, cσ). Sections 5.3-5.4 (Stat 477) Claim Severity Models Brian Hartman - BYU 3 / 1 Introduction some claim size distributions Some parametric claim size distributions Normal - easy to work with, but careful with getting negative claims. -
Package 'Distributional'
Package ‘distributional’ February 2, 2021 Title Vectorised Probability Distributions Version 0.2.2 Description Vectorised distribution objects with tools for manipulating, visualising, and using probability distributions. Designed to allow model prediction outputs to return distributions rather than their parameters, allowing users to directly interact with predictive distributions in a data-oriented workflow. In addition to providing generic replacements for p/d/q/r functions, other useful statistics can be computed including means, variances, intervals, and highest density regions. License GPL-3 Imports vctrs (>= 0.3.0), rlang (>= 0.4.5), generics, ellipsis, stats, numDeriv, ggplot2, scales, farver, digest, utils, lifecycle Suggests testthat (>= 2.1.0), covr, mvtnorm, actuar, ggdist RdMacros lifecycle URL https://pkg.mitchelloharawild.com/distributional/, https: //github.com/mitchelloharawild/distributional BugReports https://github.com/mitchelloharawild/distributional/issues Encoding UTF-8 Language en-GB LazyData true Roxygen list(markdown = TRUE, roclets=c('rd', 'collate', 'namespace')) RoxygenNote 7.1.1 1 2 R topics documented: R topics documented: autoplot.distribution . .3 cdf..............................................4 density.distribution . .4 dist_bernoulli . .5 dist_beta . .6 dist_binomial . .7 dist_burr . .8 dist_cauchy . .9 dist_chisq . 10 dist_degenerate . 11 dist_exponential . 12 dist_f . 13 dist_gamma . 14 dist_geometric . 16 dist_gumbel . 17 dist_hypergeometric . 18 dist_inflated . 20 dist_inverse_exponential . 20 dist_inverse_gamma -
Bivariate Burr Distributions by Extending the Defining Equation
DECLARATION This thesis contains no material which has been accepted for the award of any other degree or diploma in any university and to the best ofmy knowledge and belief, it contains no material previously published by any other person, except where due references are made in the text ofthe thesis !~ ~ Cochin-22 BISMI.G.NADH June 2005 ACKNOWLEDGEMENTS I wish to express my profound gratitude to Dr. V.K. Ramachandran Nair, Professor, Department of Statistics, CUSAT for his guidance, encouragement and support through out the development ofthis thesis. I am deeply indebted to Dr. N. Unnikrishnan Nair, Fonner Vice Chancellor, CUSAT for the motivation, persistent encouragement and constructive criticism through out the development and writing of this thesis. The co-operation rendered by all teachers in the Department of Statistics, CUSAT is also thankfully acknowledged. I also wish to express great happiness at the steadfast encouragement rendered by my family. Finally I dedicate this thesis to the loving memory of my father Late. Sri. C.K. Gopinath. BISMI.G.NADH CONTENTS Page CHAPTER I INTRODUCTION 1 1.1 Families ofDistributions 1.2· Burr system 2 1.3 Present study 17 CHAPTER II BIVARIATE BURR SYSTEM OF DISTRIBUTIONS 18 2.1 Introduction 18 2.2 Bivariate Burr system 21 2.3 General Properties of Bivariate Burr system 23 2.4 Members ofbivariate Burr system 27 CHAPTER III CHARACTERIZATIONS OF BIVARIATE BURR 33 SYSTEM 3.1 Introduction 33 3.2 Characterizations ofbivariate Burr system using reliability 33 concepts 3.3 Characterization ofbivariate -
Bounds on Tail Probabilities of Discrete Distributions
PEIS02-3 Probability in the Engineering and Informational Sciences, 14, 2000, 161–171+ Printed in the U+S+A+ BOUNDS ON TAIL PROBABILITIES OF DISCRETE DISTRIBUTIONS BEERRRNNNHHHAAARRRDD KLLAAARR Institut für Mathematische Stochastik Universität Karlsruhe D-76128 Karlsruhe, Germany E-mail: [email protected] We examine several approaches to derive lower and upper bounds on tail probabil- ities of discrete distributions+ Numerical comparisons exemplify the quality of the bounds+ 1. INTRODUCTION There has not been much work concerning bounds on tail probabilities of discrete distributions+ In the work of Johnson, Kotz, and Kemp @9#, for example, only two ~quite bad! upper bounds on Poisson tail probabilities are quoted+ This article examines several more generally applicable methods to derive lower and upper bounds on tail probabilities of discrete distributions+ Section 2 presents an elementary approach to obtain such bounds for many families of discrete distribu- tions+ Besides the Poisson, the binomial, the negative binomial, the logseries, and the zeta distribution, we consider the generalized Poisson distribution, which is fre- quently used in applications+ Some of the bounds emerge in different areas in the literature+ Despite the elementary proofs, the bounds reveal much of the character of the distributional tail and are sometimes better than other, more complicated bounds+ As shown in Section 3, some of the elementary bounds can be improved using similar arguments+ In a recent article, Ross @11# derived bounds on Poisson tail probabilities using the importance sampling identity+ Section 4 extends this method to the logseries and the negative binomial distribution+ Finally, some numerical com- parisons illustrate the quality of the bounds+ Whereas approximations to tail probabilities become less important due to an increase in computing power, bounds on the tails are often needed for theoretical © 2000 Cambridge University Press 0269-9648000 $12+50 161 162 B. -
Loss Distributions
Munich Personal RePEc Archive Loss Distributions Burnecki, Krzysztof and Misiorek, Adam and Weron, Rafal 2010 Online at https://mpra.ub.uni-muenchen.de/22163/ MPRA Paper No. 22163, posted 20 Apr 2010 10:14 UTC Loss Distributions1 Krzysztof Burneckia, Adam Misiorekb,c, Rafał Weronb aHugo Steinhaus Center, Wrocław University of Technology, 50-370 Wrocław, Poland bInstitute of Organization and Management, Wrocław University of Technology, 50-370 Wrocław, Poland cSantander Consumer Bank S.A., Wrocław, Poland Abstract This paper is intended as a guide to statistical inference for loss distributions. There are three basic approaches to deriving the loss distribution in an insurance risk model: empirical, analytical, and moment based. The empirical method is based on a sufficiently smooth and accurate estimate of the cumulative distribution function (cdf) and can be used only when large data sets are available. The analytical approach is probably the most often used in practice and certainly the most frequently adopted in the actuarial literature. It reduces to finding a suitable analytical expression which fits the observed data well and which is easy to handle. In some applications the exact shape of the loss distribution is not required. We may then use the moment based approach, which consists of estimating only the lowest characteristics (moments) of the distribution, like the mean and variance. Having a large collection of distributions to choose from, we need to narrow our selection to a single model and a unique parameter estimate. The type of the objective loss distribution can be easily selected by comparing the shapes of the empirical and theoretical mean excess functions. -
Package 'Univrng'
Package ‘UnivRNG’ March 5, 2021 Type Package Title Univariate Pseudo-Random Number Generation Version 1.2.3 Date 2021-03-05 Author Hakan Demirtas, Rawan Allozi, Ran Gao Maintainer Ran Gao <[email protected]> Description Pseudo-random number generation of 17 univariate distributions proposed by Demir- tas. (2005) <DOI:10.22237/jmasm/1114907220>. License GPL-2 | GPL-3 NeedsCompilation no Repository CRAN Date/Publication 2021-03-05 18:10:02 UTC R topics documented: UnivRNG-package . .2 draw.beta.alphabeta.less.than.one . .3 draw.beta.binomial . .4 draw.gamma.alpha.greater.than.one . .5 draw.gamma.alpha.less.than.one . .6 draw.inverse.gaussian . .7 draw.laplace . .8 draw.left.truncated.gamma . .8 draw.logarithmic . .9 draw.noncentral.chisquared . 10 draw.noncentral.F . 11 draw.noncentral.t . 12 draw.pareto . 12 draw.rayleigh . 13 draw.t ............................................ 14 draw.von.mises . 15 draw.weibull . 16 draw.zeta . 16 1 2 UnivRNG-package Index 18 UnivRNG-package Univariate Pseudo-Random Number Generation Description This package implements the algorithms described in Demirtas (2005) for pseudo-random number generation of 17 univariate distributions. The following distributions are available: Left Truncated Gamma, Laplace, Inverse Gaussian, Von Mises, Zeta (Zipf), Logarithmic, Beta-Binomial, Rayleigh, Pareto, Non-central t, Non-central Chi-squared, Doubly non-central F , Standard t, Weibull, Gamma with α<1, Gamma with α>1, and Beta with α<1 and β<1. For some distributions, functions that have similar capabilities exist in the base package; the functions herein should be regarded as com- plementary tools. The methodology for each random-number generation procedure varies and each distribution has its own function. -
A Probabilistic Approach to Some of Euler's Number Theoretic Identities
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 350, Number 7, July 1998, Pages 2939{2951 S 0002-9947(98)01969-2 A PROBABILISTIC APPROACH TO SOME OF EULER'S NUMBER THEORETIC IDENTITIES DON RAWLINGS Abstract. Probabilistic proofs and interpretations are given for the q-bino- mial theorem, q-binomial series, two of Euler's fundamental partition identi- ties, and for q-analogs of product expansions for the Riemann zeta and Euler phi functions. The underlying processes involve Bernoulli trials with variable probabilities. Also presented are several variations on the classical derange- ment problem inherent in the distributions considered. 1. Introduction For an integer k 1, the q-shifted factorial of t is defined as ≥ k 1 (t; q) =(1 t)(1 tq) (1 tq − ) : k − − ··· − By convention, (t; q)0 = 1. Using arguments on partitions, Euler showed that k ∞ (2) k ∞ q t i 1 (1) = (1 + tq − ) (q; q) k i=1 kX=0 Y and ∞ k ∞ t i 1 1 (2) = (1 tq − )− (q; q) − k i=1 Xk=0 Y hold formally. Identity (1) follows from the observation that the coefficient of k n k t q − in either the sum or the product is equal to the number of partitions of n k n k into k distinct parts. The coefficient of t q − in either side of (2) is the number of partitions of n with k parts (repetition allowed). For n 0, similar arguments on partitions with bounded parts yield the ≥ k k n k q-Binomial Theorem: (t; q) = ( 1) q(2) t n − k k 0 X≥ and the n + k q-Binomial Series: 1=(t; q) = tk n+1 k k 0 X≥ Received by the editors August 8, 1996 and, in revised form, September 16, 1996. -
Newdistns: an R Package for New Families of Distributions
JSS Journal of Statistical Software March 2016, Volume 69, Issue 10. doi: 10.18637/jss.v069.i10 Newdistns: An R Package for New Families of Distributions Saralees Nadarajah Ricardo Rocha University of Manchester Universidade Federal de São Carlos Abstract The contributed R package Newdistns written by the authors is introduced. This pack- age computes the probability density function, cumulative distribution function, quantile function, random numbers and some measures of inference for nineteen families of distri- butions. Each family is flexible enough to encompass a large number of structures. The use of the package is illustrated using a real data set. Also robustness of random number generation is checked by simulation. Keywords: cumulative distribution function, probability density function, quantile function, random numbers. 1. Introduction Let G be any valid cumulative distribution function defined on the real line. The last decade or so has seen many approaches proposed for generating new distributions based on G. All of these approaches can be put in the form F (x) = B (G(x)) , (1) where B : [0, 1] → [0, 1] and F is a valid cumulative distribution function. So, for every G one can use (1) to generate a new distribution. The first approach of the kind of (1) proposed in recent years was that due to Marshall and Olkin(1997). In Marshall and Olkin(1997), B was taken to be B(p) = βp/ {1 − (1 − β)p} for β > 0. The distributions generated in this way using (1) will be referred to as Marshall Olkin G distributions. Since Marshall and Olkin(1997), many other approaches have been proposed.