<<

192 North-Western Journal of 2019, vol.15 (2) - Correspondence: Notes cated roughly halfway between the coastal ranges biogeography of amphibians and of Europe. Amphibia-Reptilia delineated by Sillero et al. (2014), i.e. ca. 100 and 120 km 35(1): 1-31. Sindaco, R., Jeremcenko, V.K. (2008): The reptiles of the Western Palearctic. from the seashore in the east (near Agiokampos) and in the Annotated checklist and distributional atlas of the turtles, crocodiles, west (near Sagiada) respectively, and around 50–70 km be- amphisbaenians and of Europe, North Africa, Middle East and yond the known species range. The site is on the eastern foot Central Asia. Volume 1. Societas Herpetologica Italica I, Edizioni Belvedere. Speybroeck, J., Beukema, W., Bok B., van der Voort, J. (2016): Field guide to the of the Pindus mountain range, which is considered the natu- amphibians and reptiles of Britain and Europe [British Wildlife Field ral biogeographical barrier dividing the eastern and western Guides]. Bloomsbury Publishing, London & New York. parts of the species range here (cf. Chondropoulos 1986). To Sterijovski, B., Tomović, L., Ajtić R. (2014): Contribution to the knowledge of the fauna and diversity in FYR of Macedonia. North-Western Journal the best of our knowledge, only one published reference on of Zoology 10(1): 83-92. the possible occurrence of the species in mainland Greece is Tok C.V., Ayaz D., Cicek K. (2011): Road mortality of amphibians and reptiles available. Valakos et al. (2008) provided in their book a pic- in the Anatolian part of Turkey. Turkish Journal of Zoology 35(6): 851-857. Uhrin, M., Havaš, P., Minařík, M., Kodejš, K., Bugoš, I., Danko, S., Husák, T., ture of P. apodus located near Meteora (which is 6 km north Koleska, D., Jablonski, D. (2016): Distribution updates to amphibian and of our observation site), but without any further faunal data, reptile fauna for the Republic of Macedonia. Herpetology Notes 9: 201-220. and this record is not depicted on the species account map Valakos, E.D., Pafilis, P., Sotiropoulos, K., Lymberakis, P., Maragou, P., [Valakos et al. 2008: pp. 215 and 217]. Furthermore, no data Foufopoulos, J. (2008): The amphibians and reptiles of Greece [Frankfurter Beiträge zur Naturkunde / Frankfurt Contributions to Natural History 32. on the species are reported from the region in some relevant Edition Chimaira]. Chimaira Buchhandelsgesellschaft mbH, Frankfurt am publicly available faunistic datasets, e.g. ‘Balkan Herps‘ Main. [available at https://openbiomaps.org/] or ‘Balcanica‘ [available at http://en.balcanica.info/] projects. Consequently, this record Key words: European glass , faunistics, Greece, range, Reptilia. could be considered the first in detail documented observa- Article No.: e197503 tion of P. apodus from this part of mainland Greece and may Received: 02. July 2019 / Accepted: 22. July 2019 indicate a wider and probably more continuous distribution Available online: 25. July 2019 / Printed: December 2019 of the species in Greece. The species is also part of the as- semblages of small vertebrates that are vulnerable to road- Monika BALOGOVÁ1, Stanislav DANKO2, caused mortality within their ranges (e.g., Tok et al., 2011), Gréta NUSOVÁ1 and Marcel UHRIN1* but despite this fact, our observation of a single killed could not be sufficient indicator of a viable population in the 1. Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, region. Nonetheless, the main habitat types of the species Moyesova 11, 040 01 Košice, Slovakia (Obst, 1981) are typically located in coastal and patchwork- 2. Fauna Carpatica, Maďarská 5, 040 13 Košice, Slovakia * Corresponding author, M. Uhrin, E-mail: [email protected] like ecosystems that may be related to human agricultural activities. As such, continental and mountainous sites may be suboptimal for the species, as in the case of the neighbouring, currently well-mapped, Albania (Mizsei et al., 2017). Nematode parasites in the lizards Salvator rufescens, Teius teyou () Acknowledgement. This study was partly funded by the Scientific and underwoodi () Grant Agency (VEGA 1/0298/19). from the Monte Region in

References Central-Western Chondropoulos, B.P. (1986): A checklist of the Greek reptiles. I. The lizards. Amphibia-Reptilia 7(3): 217-235. Christopoulos, A., Verikokakis, A.G., Detsis, V., Nikolaides, I., Tsiokos, L., Studies addressing nematodes in wild generate in- Pafilis, P., Kapsalas, G. (2019) First records of Eryx jaculus (Linnaeus, 1758) formation about the diversity of parasites, contributing to from Euboea Island, Greece (: ). Herpetology Notes 12: 663- our understanding of the biology and ecology of their hosts 666. (Vieira et al. 2016). Such knowledge is important to reptile Gasc, J.P., Cabela, A., Crnobrnja-Isailović, J., Dolmen, D., Grossenbacher, K., Haffner, P., Lescure, J., Martens, H., Martinez Rica, J.P., Maurin, H., Oliveira, conservation because severe parasitosis would compromise M.A., Sofianidou, T.S., Veith, M., Zuiderwijk, A. (1997): Atlas of amphibians the host, causing diminished defenses, higher susceptibility and reptiles in Europe [Collection Patrimoines Naturels 29]. Societas to diseases and poorer performance (Spinelli et al. 1992). Europaea Herpetologica & Museum National d'Histoire Naturelle & Service du Patrimoine Naturel, Bonn & Paris. The relationships between nematodes and reptiles have Jandzik, D., Jablonski, D., Zinenko, O., Kukushkin, O.V., Moravec, J., Gvoždík, been given little attention. So far, records of parasitic nema- V. (2018): Pleistocene extinctions and recent expansions in an anguid lizard todes in lizards of the family Teiidae in Argentina are scarce of the Pseudopus. Zoologica Scripta 47(1): 21-32. Mizsei, E., Jablonski, D., Végvári, Z., Lengyel, S., Szabolcs, M. (2017): and lack for the family Phyllodactylidae (Castillo et al. 2019). Distribution and diversity of reptiles in Albania: a novel database from a Most parasitic investigations have been carried out on liz- Mediterranean hotspot. Amphibia-Reptilia 38(2): 157-173. ards of the families Liolaemidae, , and Obst, F.J. (1981): Ophisaurus apodus (Pallas, 1775) – Scheltopusik, Panzerschleiche. pp. 259-274. In: Böhme W. (eds.), Handbuch der Reptilien (Cruz et al. 1998, Ramallo & Díaz 1998, Ra- und Amphibien Europas. Band 1. Echsen (Sauria) I (, , mallo et al. 2002, Goldberg et al. 2004, O’Grady & Dearing Chamaeleonidae, , , Scincidae, I). 2006, Lamas & Zaracho 2006, Ramallo et al. 2016, Ramallo et Akademische Verlagsgesellschaft, Wiesbaden. al. 2017a, Ramallo et al. 2017b, Castillo et al. 2017, Castillo et Pafilis, P., Maragou, P. (2013) One more record of Lacerta viridis (Laurenti, 1768), from Macedonia. Herpetozoa 26(1/2): 101-102. al. 2018a). Sillero, N., Campos, J., Bonardi, A., Corti, C., Creemers, R., Crochet, P.-A., Members of the genus Salvator (Teiidae) represent the Isailović, J.C., Denoël, M., Ficetola, G.F., Gonçalves, J., Kuzmin, S., largest lizards found in South America (Montero et al. 2004). Lymberakis, P., De Pous, P., Rodríguez, A., Sindaco, R., Speybroeck, J., Toxopeus, B., Vieites, D.R., Vences, M. (2014): Updated distribution and Two species have been recorded in Argentina, the Argentine North-Western Journal of Zoology 2019, vol.15 (2) - Correspondence: Notes 193

Black and White Salvator merianae Duméril & Bibron, 1839 and the S. rufescens (Günther, 1871) (Abdala et al. 2012). Salvator rufescens is distributed across Argentina, Bolivia and Paraguay (Acosta et al. 2017). The distribution and diet of the species are described in Acosta et al. (2017) and Castillo et al. (2018b). Another Teiidae, the Four-toed Tegu Teius teyou Daudin, 1802 is distributed in Bolivia, Bra- zil, Paraguay and Argentina. It is an active forager, with preference for ants in the Monte region (Castillo & González- Rivas, unpublished data). Kluge, 1964 (Phyllodactylidae) is found in Argentina; it is insectivorous (Acosta et al. 2017). With regard to their conservation status in Argentina, these species are categorized as non- threatened (Abdala et al. 2012). Up to this study, Diaphanocephalus galeatus Rudolphi,

1819 (Nematoda: Diaphanocephalidae) is the only recorded Figure 1. Study area at El Encón, 25 de Mayo District, San Juan Prov- nematode of S. rufescens in Argentina (Spinelli et al. 1992). ince, Argentina. The first mention of Physaloptera retusa Rudolphi, 1819 in S. rufescens was by Sprehn (1932); however, this record corre- Pharyngodon sp. could not be further identified without an sponds to Bolivia. With regard to T. teyou and H. underwoodi, electron microscope; however, we presume one might be a to our knowledge, there are no reports of nematodes from previously unidentified species. these species. The present study enhances our knowledge All collected specimens were deposited in the Parasi- and provides new parasitological records of nematodes in tological Collection, Biology Department, Faculty of Exact, lizards inhabiting the Monte desert in Argentina. Physical and Natural Sciences, National University of San

Juan, Argentina (Physaloptera retusa: UNSJPar 257, Physalop- The sampling area was situated in El Encón, 25 de Mayo District (32°12′56″ S, 67°47′43″ W), San Juan Province, Argentina. This area is tera sp.: UNSJPar 258, Pharyngodon sp.: UNSJPar 259). represented by the Monte phytogeographic province and encom- Physaloptera is a nematode genus that includes approxi- passes vast arid areas with mean rainfall values < 100 mm/year, in- mately 105 species of parasites on reptiles, amphibians, cluding years with no rainfall. Xerophytic plants, adapted to the birds, and mammals (Pereira et al. 2012, 2014). In the warm dry climate, are predominant (Fig. 1; Cabrera 1976, Márquez et Neotropics, eight species are known to parasitize the stom- al. 2016). ach of reptiles: P. bonnei Ortlepp, 1922, P. liophis Vicente & In December 2017 and January 2018, using pitfall traps, we col- Santos 1974, P. lutzi Cristofaro, Guimaraes & Rodrigues lected specimens of T. teyou (n=2; male, SVL=145 mm; female, 1976, P. monodens Molin, 1860, P. obtusissima Molin, 1860, P. SVL=150 mm), H. underwoodi (n=2; males, SVL=50 mm), and S. rufes- cens (n=1; male, SVL=24 cm) that was freshly killed on the road. In- retusa Rudolphi, 1819, P. tupinambae Pereira, Alves, Rocha, dividuals were sacrificed by intraperitoneal administration of so- Lima & Luque 2012 and P. bainae Pereira, Alves, Rocha, Lima dium thiopental, fixed in hot 10% formaldehyde, and preserved in & Luque 2014 (Ramallo & Díaz 1998, Goldberg et al. 2004, 70% ethanol. All specimens are housed in the Herpetological Collec- O’Grady & Dearing 2006, Ávila & Silva 2010, Pereira et al. tion, Biology Department, School of Exact, Physical, and Natural Sci- 2012, 2014, Lamas et al. 2016). ences, National University of San Juan (H. underwoodi: UNSJ 4006, Three species of Physaloptera (P. retusa, P. lutzi and P. lio- 4007; T. teyou: UNSJ 4008, 4009; S. rufescens: UNSJ 4309). All applica- phis) have been recorded for Argentina, parasitizing four liz- ble national and institutional guidelines for the care and use of ani- mals were followed. In the laboratory, the lizards were dissected ard genera belonging to four families (Liolaemidae, through a ventral longitudinal incision from the mouth to the cloaca Tropiduridae, Leiosauridae, and Dipsadidae; Table 2). Most and examined under a stereoscopic binocular microscope to find records are of P. retusa and P. lutzi, with only one record of nematodes. All nematodes found were kept in 70% ethanol. For their P. liophis. According to our literature review, this is the first observation, we used the diaphanization by lacto-phenol technique. record of the genus Physaloptera in H. underwoodi. For identification, we used an Arcano optical microscope and perti- The general morphology of the nematode species re- nent literature (Rudolphi 1819, Ortlepp 1922, Skrjabin et al. 1960, corded in S. rufescens matched that of P. retusa as it has a Vicente et al. 1993, Anderson et al. 2009, Pereira et al. 2012, 2014). vulva in the first portion of the pre-equatorial region of the Prevalence and mean intensity were estimated following Bush et al. (1997). body, between 20–26% of the total body length. Physaloptera lutzi differs from P. retusa mainly by having the vulva lo- We recorded 113 nematodes (Table 1) corresponding to three cated near the anus, approximately at 95% of the body taxa (Physaloptera retusa, n=34; Physaloptera sp., n=2; Pharyn- length. Physaloptera retusa males have 21 caudal papillae that godon sp., n=77), all of them found in the stomach area. The sets them apart from P. tupinambae (22 caudal papillae) and

Table 1. Nematode species found in the stomachs of lizards in the Monte region in central-western Argentina. P = Prevalence, I = Intensity, MI = Mean intensity.

Nematode Host P I MI Physaloptera retusa Salvator rufescens 100% 34 (31 ♀, 3 ♂) - Physaloptera sp. Homonota underwoodi 50% 2 (larvae) 2 (larvae) Pharyngodon sp. Teius teyou 100% 77 (72 ♀, 5 ♂) 38.5 194 North-Western Journal of Zoology 2019, vol.15 (2) - Correspondence: Notes

Table 2. Physaloptera spp. previously reported from lizards in Argentina. P = prevalence, MI = Mean intensity. N/A = Not available.

Host Physaloptera spp. P MI Location References Family Species Liolaemidae quilmes P. lutzi ? ? Salta [1] L. ornatus P. lutzi ? ? Salta [1] L. alticolor P. lutzi ? ? Tucumán [1] L. koslowskyi P. retusa ? ? N/A [2] L. darwinii P. retusa ? ? N/A [2] L. neuquensis P. retusa 50% 1 Neuquén [3] Tropiduridae Tropidurus etheridgei Physaloptera sp. Salta [4] Leiosauridae Leiosaurus catamarcensis P. retusa 100% 2.5 La Rioja [3] L. belli P. retusa 100% 211 Rio Negro [3] Dipsadidae Xenodon merremi P. liophis 25% 23 Chaco [5]

[1] Ramallo & Díaz 1998; [2] O’Grady & Dearing 2006; [3] Goldberg et al. 2004; [4] Cruz et al. 1998; [5] Lamas et al. 2016.

P. bainae (23 caudal papillae) (Pereira et al. 2014). rufescens and H. underwoodi), may explain the varying para- Pharyngodon is a genus of nematodes parasitizing on sitic intensities likely to be recorded in different lizard spe- amphibians and reptiles (Vicente 1993). Approximately 36 cies, due to their probability of encountering parasites. In species of Pharyngodon have been recorded (Bursey et al. addition, the parasite life cycle may also favor higher nema- 2008), with four parasite species being mentioned for tode intensity. Neotropic lizards: P. cesarpintoi Pereira, 1935, P. micrurus Our study serves to enhance knowledge, contributing Freitas & Ibañez, 1963, P. travassosi Pereira, 1935, and P. yuca- new parasitological data on reptiles of Argentina. tanensis Chitwood 1938 (Bursey & Goldberg 1996). In South America, nematodes of the genus Pharyngodon commonly Acknowledgement. We thank the Sub-Secretary of the Environment occur in Brazil, parasitizing lizards of the genera Liolaemus for the permits granted (Nº 1300-3097-16), and the rangers (Mariano (Liolaemidae), Tropidurus (Tropiduridae), Ameiva, Cnemido- Hidalgo, Jorge Cayuela, Jesús Quiroga and José Castro) for their help in field samplings. Nélida Horak assisted us in drafting the English phorus (=Aurivela) and Dicrodon (Teiidae) (Ávila & Silva version. We thank two anonymous reviewers for improving the 2010). In Argentina, the genus Pharyngodon has not previ- manuscript. The authors declare no competing interests. ously been mentioned for any reptile species, making our re- cord for a lizard the first. References The different species of Pharyngodon are differentiated by Abdala, C.S., Acosta, J.L., Acosta, J.C., Blanca, B.A., Arias, F., Avila, L.J., Blanco, the presence or absence of spicule, the morphology of caudal M.G., Bonino, M., Boretto, J.M., Brancatelli, G., Breitman, M.F., Cabrera, M.R., Cairo, S., Corbalan, V., Hernando, A., Ibarguengoytia, N.R., Kacoliris, wings, the egg shape, the presence or absence of spines in F., Laspiur, A., Montero, R., Morando, M., Pelegrin, N., Perez, C.H.F., the tail filament in adults, and the geographic distribution; Quinteros, A.S., Semhan, R.V., Tedesco, M.E., Vega, L., Zalba, S. M. (2012): with their geographic distribution being the major factor for Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetología 26: 215-248. oxyurid speciation in reptiles (Bursey & Godlberg 1996). Acosta, J.C., Blanco, G.M., Gómez-Alés, R., Acosta, R., Piaggio-Kokot, L. The general morphology of the nematodes recorded in Victorica A.E., Villavicencio, H.J., Fava, G.A. (2017): Los reptiles de San Juan. the stomach of T. teyou allowed identifying them to the ge- Editorial Brujas, Córdoba, Spain. Anderson, R.C., Chabaud, A.G., Willmott, S. (2009): Keys to the nematode nus Pharyngodon, family Pharyngodonidae, order Oxyurida. parasites of vertebrates. CAB International, Cambridge, USA. The Pharyngodon males recorded were characterized by hav- Anjos, L.A., Ávila, R.W., Ribeiro, S.C., Almeida, W.O., da Silva, R.J. (2013): ing a well-developed caudal wing, which forms a genital Gastrointestinal nematodes of the lizard Tropidurus hispidus (Squamata: Tropiduridae) from a semi-arid region of north-eastern Brazil. Journal of pouch that envelops all genital papillae; this differentiates Helminthology 87: 443-449. them from Spauligodon males, whose posterior pair of papil- Ávila, R.W., Silva, R.J. (2010): Checklist of helminths from lizards and lae is located outside the genital pouch, and from Skrjabino- amphisbaenians (Reptilia, Squamata) of South America. Journal of don males, which lack a caudal wing (Skrjabin et al. 1960, Venomous Animals and Toxins including Tropical Diseases 16: 543-572. Brito, S.V., Corso, G., Almeida, A.M., Ferreira, F.S., Almeida, W.O., Anjos, L.A., Anderson et al. 2009). It probably corresponds to a new spe- Mesquita, D.O., Vasconcellos, A. (2014): Phylogeny and micro-habitats cies and we prefer not to associate it with any currently utilized by lizards determine the composition of their endoparasites in the known species yet. semiarid Caatinga of Northeast Brazil. Parasitology Research 113: 3963-3972. Bursey, C., Goldberg, S., Kraus, F. (2008): A new species of Pharyngodon Differences found in the intensities from the three stud- (Nematoda, Pharyngodonidae) and other helminths in Cyrtodactylus ied species are likely due to factors such as body size (Ribas louisiadensis (Sauria, Gekkonidae) from Papua New Guinea. Acta et al. 1995) and foraging strategies (Brito et al. 2014). The re- Parasitologica 53: 41-45. Bursey, C.R., Goldberg, S.R. (1996): Pharyngodon lepidodactylus sp. n. lationship between lizard SVL (snout vent length) and the (Nematoda: Pharyngodonidae) from the Mourning , Lepidodactylus intensity of nematode infection suggest that body size is an lugubris (Lacertilia: Gekkonidae), from Hawaii. Journal of the important determinant of the infection rate (Ribas et al. 1995; Helminthological Society of Washington 63: 51-55. Bush, A.O., Lafferty, K.D., Lotz, J.M., Shostak, A.W. (1997): Parasitology meets Anjos et al. 013). The larger digestive tract of the larger liz- ecology on its own terms. Journal of Parasitology 83: 575-583. ards (T. teyou and S. rufescens), provides more microhabitats Cabrera, A.L. (1976): Enciclopedia Argentina de agricultura y jardinería: suitable for nematode settlement compared to the relatively regiones fitogeográficas . Acme, Buenos Aires. smaller one of H. underwoodi. Additionally, the different for- Castillo, G.N., Ramallo, G., Acosta, J.C. (2017): Liolaemus ruibali (Rubal’s Tree Iguana). Endoparasites. Herpetological Review 48: 651-652. aging behaviors (Ribas et al. 1995) in the lizards (T. teyou, S. North-Western Journal of Zoology 2019, vol.15 (2) - Correspondence: Notes 195

Castillo, G.N., González-Rivas C.J., Acosta J.C. (2018b): Salvator rufescens Article No.: e197504 (Argentine Red Tegu). Diet. Herpetological Review 49: 539-540. Received: 15. April 2019 / Accepted: 21. April 2019 Castillo, G.N., Acosta, J.C., Blanco, G.M. (2019): Trophic analysis and Available online: 25. April 2019 / Printed: December 2019 parasitological aspects of Liolaemus parvus (Iguania: Liolaemidae) in the Central Andes of Argentina. Turkish Journal of Zoology 43: 277-286. Castillo, G.N., Acosta J.C., Ramallo G., Pizarro J. (2018a): Pattern of infection by Gabriel Natalio CASTILLO1,2,3,*, Parapharyngodon riojensis Ramallo, Bursey, Goldberg 2002 (Nematoda: 1,4 Pharyngodonidae) in the lizard extrilidus from Puna region, Cynthia GONZÁLEZ-RIVAS Argentina. Annals of Parasitology 64: 83-88. and Juan Carlos ACOSTA1,2 Cruz, F.B., Silva, S., Scrocchi, G.J. (1998): Ecology of the lizard Tropidurus etheridgei (Squamata: Tropiduridae) from the dry Chaco of Salta, 1. Faculty of Exact, Physical and Natural Sciences, National University Argentina. Herpetological Natural History 6: 23-31. of San Juan, Av. Ignacio de la Roza 590, 5402, San Juan, Argentina. Goldberg, S.R., Bursey, C.R., Morando, M. (2004): Metazoan endoparasites of 12 2. DIBIOVA Research Office (Diversity and Biology of Vertebrates of species of lizards from Argentina. Comparative Parasitology 71: 208-214. the Arid), National University of San Juan, Av. Ignacio de la Lamas, M.F., Céspedez, J.A., Ruiz-García, J.A. (2016): Primer registro de Roza 590, 5402, San Juan, Argentina. nematodes parásitos para la culebra Xenodon merremi (Squamata, 3. CONICET (National Council of Scientific and Technical Research), Dipsadidae) en Argentina. Facena 32: 59-67. Av. Ignacio de la Roza 590, 5402, San Juan, Argentina. Lamas, M.F., Zaracho, V.H. (2006): Tropidurus torquatus. Endoparasites. 4. Center for Rehabilitation of Wildlife, Environmental Education Herpetology Review 37: 474-475. and Responsible Recreation, San Juan, Argentina. Márquez, J., Martínez Carretero, E., Dalmasso A. (2016): Provincias * Corresponding author, G. Castillo, E-mail: [email protected] fitogeográficas de la Provincia de San Juan. pp. 187-197. En: Martínez

Carretero, E., Garcia A. (eds), San Juan Ambiental, 1º edición. Editorial INCA, Mendoza. Montero, R., Abdala, V., Moro, S., Gallardo, G. (2004): Atlas de rufescens (Squamata: Teiidae). Anatomía externa, osteología y bibliografía. Cuadernos de Herpetología 18:17-32. A case of unusual head scalation in O’Grady, S.P., Dearing, M.D. (2006): Isotopic insight into host–endosymbiont Vipera ammodytes (Squamata: relationships in Liolaemidae lizards. Oecologia 150: 355-361. Ortlepp, R.J. (1922): The nematode genus Physaloptera Rudolphi. Proceedings of Serpentes: ) the Zoological Society of London 4: 999-1107. in Western Serbia Pereira, F.B., Alves, P.V., Rocha, B.M., de Souza Lima, S., Luque, J.L. (2012): A new Physaloptera (Nematoda: Physalopteridae) parasite of Tupinambis merianae (Squamata: Teiidae) from southeastern Brazil. Journal of In squamates, head scalation is often used in taxonomic Parasitology 98: 1227-1235. identification of a species (Ursel 1978; Sanders et al. 2006), as Pereira, F.B., Alves, P.V., Rocha, B.M., de Souza Lima, S., Luque, J.L. (2014): the genes which determine the developmental processes re- Physaloptera bainae n. sp. (Nematoda: Physalopteridae) parasitic in Salvator merianae (Squamata: Teiidae), with a key to Physaloptera species parasitizing lated to scalation could change through the speciation (Mur- reptiles from Brazil. Journal of Parasitology 100: 221-227. phy et al. 1987 and references therein). Some studies have Ramallo, G., Bursey, C., Castillo, G., Acosta, J.C. (2016): New species of suggested that the scalation pattern could have genetic Parapharyngodon (Nematoda: Pharyngodonidae) in Phymaturus spp. (Iguania: Liolaemidae) from Argentina. Acta Parasitologica 61: 461-465. (Murphy et al. 1987; King 1997), environmental (Lourdais et Ramallo, G., Bursey, C.H., Goldberg, S., Castillo, G., Acosta, J.C. (2017b): al. 2004), or combined background (Uveges et al. 2012). It is Phymaturus extrilidus. Endoparasites. Herpetological Review 48: 198. therefore important to report any deviation from the “typi- Ramallo, G., Bursey, C.R., Goldberg, S.R. (2002): Spauligodon loboi n. sp. (Nematoda: Pharyngodonidae) parasite of Liolaemus spp. (Iguania: cal” head scalation pattern in a squamate species, as it can be Liolaemidae) from northwestern Argentina. Journal of Parasitology 88: 370- relevant for different evolutionary and ecological studies. 374. Furthermore, some studies suggested that inbreeding (Mur- Ramallo, G., Goldberg, S., Bursey, C., Castillo, G., Acosta, J.C. (2017a): Thubunaea eleodori sp. nov. (Nematoda: Physalopteridae) from Liolaemus phy et al. 1987; Olsson et al. 1996) or abiotic factors such as eleodori (Sauria: Liolaemidae) from Argentina. Parasitology Research 116: temperature (Shine et al. 2005; Idrisova 2018) could contrib- 293-297. ute to the morphological abnormalities such as unusual sca- Ramallo, G.R., Díaz, F. (1998): Physaloptera lutzi (Nematoda, Physalopteridae) lation pattern. Sometimes, such malformations could indi- parasite de Liolaemus (Iguania, Tropiduridae) del noroeste Argentino. Boletín Chileno de Parasitología 53: 19-22. cate the need for future conservation assessments or actions Ribas, S.C., Rocha, C.F.D., Teixeira-Filho, P.F., Vicente, J.J. (1995): Helminths on particular population(s) as some malformations can be (Nematoda) of the lizard Cnemidophorus ocellifer (Sauria: Teiidae): Assessing correlated with the ecological performance of the individual the effect of rainfall, body size and sex in the nematode infection rates. Ciencia e Cultura 47: 88-91. (Brown et al. 2017). Here we report a case of atypical head Rudolphi, C.A. (1819): Entozoorum Synopsis, Cui Accedunt Mantissa Duplex et scalation in a nose-horned viper (Vipera ammodytes), as we Indices Locupletissimi. Augusti Rucker, Berlin, Germany. did not detect it in this species in more than thirty years of Skrjabin, K.I., Shikhobalova, N.P., Lagodovskaya, E.A. (1960): Oxyurata of animals and man. Part one. Oxyuroidea. Essentials of Nematodology, Vol. field work. VIII. Israel Program for Scientific Translations. Moskva, Russia. Vipera ammodytes (Linnaeus, 1758) is venomous Spinelli, C.M., Fiorito de López, L.E., Stiebel, C. (1992): Alteraciones with a distribution range that spans from southern Austria histológicas en el intestino delgado en Tupinambis rufescens (Sauria: teiidae) causadas por Diaphanocephalus galestus (Nematoda: diaphanocephalidae). and northern Italy, through the Balkans to Asia Minor Cuadernos de Herpetología 7: 37-40. (Crnobrnja-Isailović & Haxhiu 1997). It is one of the larger Sprehn, C. (1932): Uber einige von Dr. Eisentraut in Bolivien gesammelte European vipers, with the total body length usually up to 1 nematoden. Zoologischer Anzeiger 100: 273-284. m (Arnold & Ovenden 2002). The head is large, triangular, Vicente, J.J., Rodrigues, H.D.O., Gomes, D.C., Pinto, R.M. (1993): Brazilian nematodes. Part III: Nematodes of reptiles. Revista Brasileira de Zoologia 10: with its dorsal side covered by small scales, except for the 19-168. supraoculars (Arnold & Ovenden 2002). Within its range, the Vieira, T.D., Fedatto-Bernardon, F., Müller, G. (2016): Diaphanocephalus galeatus species is easily recognizable by the prominent horn on the (Nematoda: Diaphanocephalidae), parásito de Salvator merianae (Squamata: Teiidae) en el sur del Brasil. Revista Mexicana de Biodiversidad 87: 512-515. top of the viper’s snout. It has 21-23 rows (sometimes 19) of dorsal scales on the mid body and 137-163 ventral scales Key words: Homonota underwoodi, nematodes, Physaloptera retusa, (Tomović 2006; Boulenger 1913). There is a sexual dimor- Pharyngodon, parasites, Salvator rufescens, Teius teyou. phism which is the most prominent in the tail length and