High-Energy Electron Confinement in a Magnetic Cusp Configuration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 3 Dynamics of the Electromagnetic Fields
Chapter 3 Dynamics of the Electromagnetic Fields 3.1 Maxwell Displacement Current In the early 1860s (during the American civil war!) electricity including induction was well established experimentally. A big row was going on about theory. The warring camps were divided into the • Action-at-a-distance advocates and the • Field-theory advocates. James Clerk Maxwell was firmly in the field-theory camp. He invented mechanical analogies for the behavior of the fields locally in space and how the electric and magnetic influences were carried through space by invisible circulating cogs. Being a consumate mathematician he also formulated differential equations to describe the fields. In modern notation, they would (in 1860) have read: ρ �.E = Coulomb’s Law �0 ∂B � ∧ E = − Faraday’s Law (3.1) ∂t �.B = 0 � ∧ B = µ0j Ampere’s Law. (Quasi-static) Maxwell’s stroke of genius was to realize that this set of equations is inconsistent with charge conservation. In particular it is the quasi-static form of Ampere’s law that has a problem. Taking its divergence µ0�.j = �. (� ∧ B) = 0 (3.2) (because divergence of a curl is zero). This is fine for a static situation, but can’t work for a time-varying one. Conservation of charge in time-dependent case is ∂ρ �.j = − not zero. (3.3) ∂t 55 The problem can be fixed by adding an extra term to Ampere’s law because � � ∂ρ ∂ ∂E �.j + = �.j + �0�.E = �. j + �0 (3.4) ∂t ∂t ∂t Therefore Ampere’s law is consistent with charge conservation only if it is really to be written with the quantity (j + �0∂E/∂t) replacing j. -
Controlled Nuclear Fusion
Controlled Nuclear Fusion HANNAH SILVER, SPENCER LUKE, PETER TING, ADAM BARRETT, TORY TILTON, GABE KARP, TIMOTHY BERWIND Nuclear Fusion Thermonuclear fusion is the process by which nuclei of low atomic weight such as hydrogen combine to form nuclei of higher atomic weight such as helium. two isotopes of hydrogen, deuterium (composed of a hydrogen nucleus containing one neutrons and one proton) and tritium (a hydrogen nucleus containing two neutrons and one proton), provide the most energetically favorable fusion reactants. in the fusion process, some of the mass of the original nuclei is lost and transformed to energy in the form of high-energy particles. energy from fusion reactions is the most basic form of energy in the universe; our sun and all other stars produce energy through thermonuclear fusion reactions. Nuclear Fusion Overview Two nuclei fuse together to form one larger nucleus Fusion occurs in the sun, supernovae explosion, and right after the big bang Occurs in the stars Initially, research failed Nuclear weapon research renewed interest The Science of Nuclear Fusion Fusion in stars is mostly of hydrogen (H1 & H2) Electrically charged hydrogen atoms repel each other. The heat from stars speeds up hydrogen atoms Nuclei move so fast, they push through the repulsive electric force Reaction creates radiant & thermal energy Controlled Fusion uses two main elements Deuterium is found in sea water and can be extracted using sea water Tritium can be made from lithium When the thermal energy output exceeds input, the equation is self-sustaining and called a thermonuclear reaction 1929 1939 1954 1976 1988 1993 2003 Prediction Quantitativ ZETA JET Project Japanese Princeton ITER using e=mc2, e theory Tokomak Generates that energy explaining 10 from fusion is fusion. -
Can 250+ Fusions Per Muon Be Achieved?
CAN 250+ FUSIONS PER MUON BE ACHIEVED? CONF-870448—1 Steven E. Jones DE87 010472 Brigham Young University Dept. of Physics and Astronomy Provo, UT 84602 U.S.A. INTRODUCTION Nuclear fusion of hydrogen isotopes can be induced by negative muons (u) in reactions such as: y- + d + t + o + n -s- u- (1) t J N This reaction is analagous to the nuclear fusion reaction achieved in stars in which hydrogen isotopes (such as deuterium, d, and tritium, t) at very high temperatures first penetrate the Coulomb repulsive barrier and then fuse together to produce an alpha particle (a) and a neutron (n), releasing energy which reaches the earth as light and heat. Life in the universe depends on fusion energy. In the case of reaction (1), the muon in general reappears after inducing fusion so that the reaction can be repeated many (N) times. Thus, the muon may serve as an effective catalyst for nuclear fusion. Muon- catalyzed fusion is unique in that it proceeds rapidly in deuterium-tritium mixtures at relatively cold temperatures, e.g. room temperature. The need for plasma temperatures to initiate fusion is overcome by the presence of the nuon. In analogy to an ordinary hydrogen molecule, the nuon binds together the deuteron and triton in a very small molecule. Since the muonic mass is so large, the dtp molecule is tiny, so small that the deuteron and triton are induced to fuse together in about a picosecond - one millionth of the nuon lifetime. We could speak here of nuonlc confinement, in lieu of the gravitational confinement found in stars, or MASTER DISTRIBUTION OF THIS BBCUMENT IS UNLIMITED magnetic or inertial confinement of hot plasmas favored in earth-bound attempts at imitating stellar fusion. -
Thermonuclear AB-Reactors for Aerospace
1 Article Micro Thermonuclear Reactor after Ct 9 18 06 AIAA-2006-8104 Micro -Thermonuclear AB-Reactors for Aerospace* Alexander Bolonkin C&R, 1310 Avenue R, #F-6, Brooklyn, NY 11229, USA T/F 718-339-4563, [email protected], [email protected], http://Bolonkin.narod.ru Abstract About fifty years ago, scientists conducted R&D of a thermonuclear reactor that promises a true revolution in the energy industry and, especially, in aerospace. Using such a reactor, aircraft could undertake flights of very long distance and for extended periods and that, of course, decreases a significant cost of aerial transportation, allowing the saving of ever-more expensive imported oil-based fuels. (As of mid-2006, the USA’s DoD has a program to make aircraft fuel from domestic natural gas sources.) The temperature and pressure required for any particular fuel to fuse is known as the Lawson criterion L. Lawson criterion relates to plasma production temperature, plasma density and time. The thermonuclear reaction is realised when L > 1014. There are two main methods of nuclear fusion: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Existing thermonuclear reactors are very complex, expensive, large, and heavy. They cannot achieve the Lawson criterion. The author offers several innovations that he first suggested publicly early in 1983 for the AB multi- reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB- Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. -
Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device
instruments Article Simultaneous Ultra-Fast Imaging and Neutron Emission from a Compact Dense Plasma Focus Fusion Device Nathan Majernik, Seth Pree, Yusuke Sakai, Brian Naranjo, Seth Putterman and James Rosenzweig * ID Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA; [email protected] (N.M.); [email protected] (S.P.); [email protected] (Y.S.); [email protected] (B.N.); [email protected] (S.P.) * Correspondence: [email protected]; Tel.: +310-206-4541 Received: 12 February 2018; Accepted: 5 April 2018; Published: 11 April 2018 Abstract: Recently, there has been intense interest in small dense plasma focus (DPF) devices for use as pulsed neutron and X-ray sources. Although DPFs have been studied for decades and scaling laws for neutron yield versus system discharge current and energy have been established (Milanese, M. et al., Eur. Phys. J. D 2003, 27, 77–81), there are notable deviations at low energies due to contributions from both thermonuclear and beam-target interactions (Schmidt, A. et al., Phys. Rev. Lett. 2012, 109, 1–4). For low energy DPFs (100 s of Joules), other empirical scaling laws have been found (Bures, B.L. et al., Phys. Plasmas 2012, 112702, 1–9). Although theoretical mechanisms to explain this change have been proposed, the cause of this reduced efficiency is not well understood. A new apparatus with advanced diagnostic capabilities allows us to probe this regime, including variants in which a piston gas is employed. Several complementary diagnostics of the pinch dynamics and resulting X-ray neutron production are employed to understand the underlying mechanisms involved. -
This Chapter Deals with Conservation of Energy, Momentum and Angular Momentum in Electromagnetic Systems
This chapter deals with conservation of energy, momentum and angular momentum in electromagnetic systems. The basic idea is to use Maxwell’s Eqn. to write the charge and currents entirely in terms of the E and B-fields. For example, the current density can be written in terms of the curl of B and the Maxwell Displacement current or the rate of change of the E-field. We could then write the power density which is E dot J entirely in terms of fields and their time derivatives. We begin with a discussion of Poynting’s Theorem which describes the flow of power out of an electromagnetic system using this approach. We turn next to a discussion of the Maxwell stress tensor which is an elegant way of computing electromagnetic forces. For example, we write the charge density which is part of the electrostatic force density (rho times E) in terms of the divergence of the E-field. The magnetic forces involve current densities which can be written as the fields as just described to complete the electromagnetic force description. Since the force is the rate of change of momentum, the Maxwell stress tensor naturally leads to a discussion of electromagnetic momentum density which is similar in spirit to our previous discussion of electromagnetic energy density. In particular, we find that electromagnetic fields contain an angular momentum which accounts for the angular momentum achieved by charge distributions due to the EMF from collapsing magnetic fields according to Faraday’s law. This clears up a mystery from Physics 435. We will frequently re-visit this chapter since it develops many of our crucial tools we need in electrodynamics. -
Operational Characteristics of the Stabilized Toroidal Pinch Machine, Perhapsatron S-4
P/2488 USA Operational Characteristics of the Stabilized Toroidal Pinch Machine, Perhapsatron S-4 By J. P. Conner, D. C. H age r m an, J. L. Honsaker, H. J. Karr, J. P. Mize, J. E. Osher, J. A. Phillips and E. J. Stovall Jr. Several investigators1"6 have reported initial success largely inductance-limited and not resistance-limited in stabilizing a pinched discharge through the utiliza- as observed in PS-3. After gas breakdown about 80% tion of an axial Bz magnetic field and conducting of the condenser voltage appears around the secondary, walls, and theoretical work,7"11 with simplifying in agreement with the ratio of source and load induct- assumptions, predicts stabilization under these con- ances. The rate of increase of gas current is at first ditions. At Los Alamos this approach has been large, ~1.3xlOn amp/sec, until the gas current examined in linear (Columbus) and toroidal (Per- contracts to cause an increase in inductance, at which hapsatron) geometries. time the gas current is a good approximation to a sine Perhapsatron S-3 (PS-3), described elsewhere,4 was curve. The gas current maximum is found to rise found to be resistance-limited in that the discharge linearly with primary voltage (Fig. 3), deviating as current did not increase significantly for primary expected at the higher voltages because of saturation vçltages over 12 kv (120 volts/cm). The minor inside of the iron core. diameter of this machine was small, 5.3 cm, and the At the discharge current maximum, the secondary onset of impurity light from wall material in the voltage is not zero, and if one assumes that there is discharge occurred early in the gas current cycle. -
Abstract the Levitated Dipole Concept Ist Levitated Dipole Experiment
Abstract Hoist Levitated Dipole Experiment (LDX) Significant Stored Energy in Thermal Plasma Towards Higher Density Dipole Confined Plasmas No Levitation: 80515025 80515026 Flux Decay of “Ring Current” with ECRH Off Only hot trapped electrons Dipole Edge Power Balance Scaling LDX Phase III Target Plasmas The Levitated Dipole Experiment (LDX) investigates plasmas confined in 1.1 MA Floating dipole coil 6 Levitation Coil Total Heating Power 81001006 0.4 Supported 2.5 kW (2.45 GHz source)! the closed field line dipole magnetic geometry where the plasma stability 4 1.0! ! Levitated 2.5 kW (2.45 GHz source)! ‣ Nb3Sn superconductor 12 kW Levitated 15 kW! Steady state central chordal density Original proposal goal for thermal plasma studies is provided by compressibility and where plasma convection leads to 2 0.2 0.8! ) -2 15 kW, He measurement versus neutral 10 13 3 ‣ Inductively charged by 10 MJ 0 cm 5 kW, He ~10 / cm density peaked profiles and may allow for τE > τp. In the past year, we have 13 ‣ 0.6! 20 pressure for different conditions. 15 kW, D2 charging coil Neutral Pressure 0.0 8 continued to investigate the improved energy and particle confinement 15 5 kW, D2 ‣ peak β order unity (Flux (mWb)) 10 0.4! 5 kW, D2, supported Torr 10 6 when the supports are removed from the plasma. ‣ Up to 2 hour levitation using -6 -0.2 Increasing power increases the core Log 10 5 Current plasmas ~ 15 kW Hot Electron Energy Fraction 0.2! active feedback on upper 0 density and there is large mass effect 4 Of most significance, we observe that: 5 15 -0.4 12 3 ‣ peak density ~ 0.8 x 10 / cm levitation coil > Chord average density 14.0 14.5 15.0 15.5 16.0 16.5 0.0! for the optimal fueling. -
Magnetohydrodynamics 1 19.1Overview
Contents 19 Magnetohydrodynamics 1 19.1Overview...................................... 1 19.2 BasicEquationsofMHD . 2 19.2.1 Maxwell’s Equations in the MHD Approximation . ..... 4 19.2.2 Momentum and Energy Conservation . .. 8 19.2.3 BoundaryConditions. 10 19.2.4 Magneticfieldandvorticity . .. 12 19.3 MagnetostaticEquilibria . ..... 13 19.3.1 Controlled thermonuclear fusion . ..... 13 19.3.2 Z-Pinch .................................. 15 19.3.3 Θ-Pinch .................................. 17 19.3.4 Tokamak.................................. 17 19.4 HydromagneticFlows. .. 18 19.5 Stability of Hydromagnetic Equilibria . ......... 22 19.5.1 LinearPerturbationTheory . .. 22 19.5.2 Z-Pinch: Sausage and Kink Instabilities . ...... 25 19.5.3 EnergyPrinciple ............................. 28 19.6 Dynamos and Reconnection of Magnetic Field Lines . ......... 29 19.6.1 Cowling’stheorem ............................ 30 19.6.2 Kinematicdynamos............................ 30 19.6.3 MagneticReconnection. 31 19.7 Magnetosonic Waves and the Scattering of Cosmic Rays . ......... 33 19.7.1 CosmicRays ............................... 33 19.7.2 Magnetosonic Dispersion Relation . ..... 34 19.7.3 ScatteringofCosmicRays . 36 0 Chapter 19 Magnetohydrodynamics Version 1219.1.K.pdf, 7 September 2012 Please send comments, suggestions, and errata via email to [email protected] or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125 Box 19.1 Reader’s Guide This chapter relies heavily on Chap. 13 and somewhat on the treatment of vorticity • transport in Sec. 14.2 Part VI, Plasma Physics (Chaps. 20-23) relies heavily on this chapter. • 19.1 Overview In preceding chapters, we have described the consequences of incorporating viscosity and thermal conductivity into the description of a fluid. We now turn to our final embellishment of fluid mechanics, in which the fluid is electrically conducting and moves in a magnetic field. -
Formation of Hot, Stable, Long-Lived Field-Reversed Configuration Plasmas on the C-2W Device
IOP Nuclear Fusion International Atomic Energy Agency Nuclear Fusion Nucl. Fusion Nucl. Fusion 59 (2019) 112009 (16pp) https://doi.org/10.1088/1741-4326/ab0be9 59 Formation of hot, stable, long-lived 2019 field-reversed configuration plasmas © 2019 IAEA, Vienna on the C-2W device NUFUAU H. Gota1 , M.W. Binderbauer1 , T. Tajima1, S. Putvinski1, M. Tuszewski1, 1 1 1 1 112009 B.H. Deng , S.A. Dettrick , D.K. Gupta , S. Korepanov , R.M. Magee1 , T. Roche1 , J.A. Romero1 , A. Smirnov1, V. Sokolov1, Y. Song1, L.C. Steinhauer1 , M.C. Thompson1 , E. Trask1 , A.D. Van H. Gota et al Drie1, X. Yang1, P. Yushmanov1, K. Zhai1 , I. Allfrey1, R. Andow1, E. Barraza1, M. Beall1 , N.G. Bolte1 , E. Bomgardner1, F. Ceccherini1, A. Chirumamilla1, R. Clary1, T. DeHaas1, J.D. Douglass1, A.M. DuBois1 , A. Dunaevsky1, D. Fallah1, P. Feng1, C. Finucane1, D.P. Fulton1, L. Galeotti1, K. Galvin1, E.M. Granstedt1 , M.E. Griswold1, U. Guerrero1, S. Gupta1, Printed in the UK K. Hubbard1, I. Isakov1, J.S. Kinley1, A. Korepanov1, S. Krause1, C.K. Lau1 , H. Leinweber1, J. Leuenberger1, D. Lieurance1, M. Madrid1, NF D. Madura1, T. Matsumoto1, V. Matvienko1, M. Meekins1, R. Mendoza1, R. Michel1, Y. Mok1, M. Morehouse1, M. Nations1 , A. Necas1, 1 1 1 1 1 10.1088/1741-4326/ab0be9 M. Onofri , D. Osin , A. Ottaviano , E. Parke , T.M. Schindler , J.H. Schroeder1, L. Sevier1, D. Sheftman1 , A. Sibley1, M. Signorelli1, R.J. Smith1 , M. Slepchenkov1, G. Snitchler1, J.B. Titus1, J. Ufnal1, Paper T. Valentine1, W. Waggoner1, J.K. Walters1, C. -
1. Introduction 2. the ROSE Code
M. Drevlak et al. New results in stellarator optimisation M. Drevlak , C. D. Beidler, J. Geiger, P. Helander, S. Henneberg, C. N¨uhrenberg, Y. Turkin Max-Planck-Institut f¨ur Plasmaphysik, 17491 Greifswald, Germany Email: [email protected] Abstract The ROSE code was written for the optimisation of stellarator equilibria. It uses VMEC for the equilibrium calculation and several different optimising algorithms for adjusting the boundary coefficients of the plasma. Some of the most important capabilities include optimisation for simple coils, the ability to simultaneously optimise vacuum and finite beta field, direct analysis of particle drift orbits and direct shaping of the magnetic field structure. ROSE was used to optimise quasi- isodynamic, quasi-axially symmetric and quasi-helically symmetric stellarator configurations. 1. Introduction The performance of stellarators, characterised by properties related to MHD stability, confinement of fast particles, neoclassical and anomalous transport and engineering complexity, is known to depend strongly on the underlying equilibrium configuration. While the first fully optimised stellarators, HSX and Wendelstein 7-X, have entered operation, new stellarator designs are being considered. In particular, a possible stellarator reactor needs to be optimised beyond the optimisation level achieved for these devices. A strong need for progress has been identified in the confinement of fast particles significantly away from the magnetic axis. At the same time, coil complexity must not exceed the limits of feasibility. 2. The ROSE Code The ROSE [1] code was written for the optimi- VMEC Equilibrium field sation of stellarator equilibria. Like other tools Brents algorithm created for the optimisation of stellarator equilib- Parallel Line−Search VM2MAG B spectrum ria [2] [3], it uses VMEC [4] for the equilibrium Genetic Optimisation mn calculation and several different optimising algo- Harmony Search SURFGEN, Coil complexity rithms for adjusting the coefficients of the bound- Particle Swarm NESCOIL ary shape of the plasma. -
1 Looking Back at Half a Century of Fusion Research Association Euratom-CEA, Centre De
Looking Back at Half a Century of Fusion Research P. STOTT Association Euratom-CEA, Centre de Cadarache, 13108 Saint Paul lez Durance, France. This article gives a short overview of the origins of nuclear fusion and of its development as a potential source of terrestrial energy. 1 Introduction A hundred years ago, at the dawn of the twentieth century, physicists did not understand the source of the Sun‘s energy. Although classical physics had made major advances during the nineteenth century and many people thought that there was little of the physical sciences left to be discovered, they could not explain how the Sun could continue to radiate energy, apparently indefinitely. The law of energy conservation required that there must be an internal energy source equal to that radiated from the Sun‘s surface but the only substantial sources of energy known at that time were wood or coal. The mass of the Sun and the rate at which it radiated energy were known and it was easy to show that if the Sun had started off as a solid lump of coal it would have burnt out in a few thousand years. It was clear that this was much too shortœœthe Sun had to be older than the Earth and, although there was much controversy about the age of the Earth, it was clear that it had to be older than a few thousand years. The realization that the source of energy in the Sun and stars is due to nuclear fusion followed three main steps in the development of science.