How Similar Are Fluid Cognition And

Total Page:16

File Type:pdf, Size:1020Kb

How Similar Are Fluid Cognition And Edinburgh Research Explorer Clarifying process versus structure in human intelligence: Stop talking about fluid and crystallized. Citation for published version: Johnson, W & Gottesman, II 2006, 'Clarifying process versus structure in human intelligence: Stop talking about fluid and crystallized.', Behavioral and Brain Sciences, vol. 29, no. 2, pp. 136-137. https://doi.org/10.1017/S0140525X06329032 Digital Object Identifier (DOI): 10.1017/S0140525X06329032 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Behavioral and Brain Sciences Publisher Rights Statement: ©Johnson, W., & Gottesman, I. I. (2006). Clarifying process versus structure in human intelligence: Stop talking about fluid and crystallized.Behavioral and Brain Sciences, 29(2), 136-137doi: 10.1017/S0140525X06329032 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 BEHAVIORAL AND BRAIN SCIENCES (2006) 29, 109–160 Printed in the United States of America How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability Clancy Blair Human Development and Family Studies, Pennsylvania State University, University Park, PA 16802-6504 [email protected] Abstract: This target article considers the relation of fluid cognitive functioning to general intelligence. A neurobiological model differentiating working memory/executive function cognitive processes of the prefrontal cortex from aspects of psychometrically defined general intelligence is presented. Work examining the rise in mean intelligence-test performance between normative cohorts, the neuropsychology and neuroscience of cognitive function in typically and atypically developing human populations, and stress, brain development, and corticolimbic connectivity in human and nonhuman animal models is reviewed and found to provide evidence of mechanisms through which early experience affects the development of an aspect of cognition closely related to, but distinct from, general intelligence. Particular emphasis is placed on the role of emotion in fluid cognition and on research indicating fluid cognitive deficits associated with early hippocampal pathology and with dysregulation of the hypothalamic-pituitary-adrenal axis stress-response system. Findings are seen to be consistent with the idea of an independent fluid cognitive construct and to assist with the interpretation of findings from the study of early compensatory education for children facing psychosocial adversity and from behavior genetic research on intelligence. It is concluded that ongoing development of neurobiologically grounded measures of fluid cognitive skills appropriate for young children will play a key role in understanding early mental development and the adaptive success to which it is related, particularly for young children facing social and economic disadvantage. Specifically, in the evaluation of the efficacy of compensatory education efforts such as Head Start and the readiness for school of children from diverse backgrounds, it is important to distinguish fluid cognition from psychometrically defined general intelligence. Keywords: cognition; cognition-emotion reciprocity; developmental disorders; emotion; fluid cognition; Flynn effect; general intelligence; limbic system; neuroscience; phenylketonuria; prefrontal cortex; psychometrics; schizophrenia 1. Introduction biological bases of g, and the extent to which g is itself reducible to known, theoretically tractable cognitive pro- 1.1. What is general intelligence? cesses, are interrelated, overarching questions high on Historically, theories of intelligence have focused on the the priority list for intelligence researchers. identification of a single factor, referred to as psychometric As a mathematically defined entity with large expla- g, that has been shown to underlie performance on tests of natory power, the general factor has been pervasive mental abilities (Spearman 1927). The single-factor theory in the psychological literature for over one hundred reflects the fact that the various subtests of IQ measures years. However, it is important to keep in mind that correlate positively. Although several alternative interpret- ations exist as to just what this positive manifold among tests means, it is beyond question that a single mathemat- CLANCY BLAIR, Ph.D., M.P.H., is an Associate ically derived factor can be extracted from tests of diverse Professor in the Department of Human Development mental abilities (Carroll 1993; Jensen 1998; see the edited and Family Studies at Pennsylvania State University. volume by Sternberg & Grigorenko 2002). Jensen (1998) He is the author of numerous peer-reviewed pub- provides a comprehensive review of research on g, detail- lications examining the effects of early psychosocial ing the evidence for g and the relation of g to various real- adversity on child health and development. His chief interest concerns the interrelation of cognitive and world outcomes by using the method of correlated vectors. emotional development early in the life course, and There are, however, numerous questions about g that are the ways in which neurobiology and experience interact the subject of ongoing research and scientific exchange. In to shape developmental trajectories in early childhood. particular, questions about the unitary nature of g, the # 2006 Cambridge University Press 0140-525x/06 $12.50 109 Blair: How similar are fluid cognition and general intelligence? psychometric g is not a thing in itself but a manifestation of two aspects of functioning covary to an extent that they some as yet undefined properties of brain structure and appear to be unitary. Overall, the available evidence function. In fact, it is only in the last several decades suggests that fluid cognition is an aspect of cognitive func- that the underlying processes and functions through tioning that can be under considerable environmental which g may be manifest have begun to be worked out influence both cumulatively over time and interactively in any detail, albeit with only limited success. For within context in a way that indicates it to be a highly example, a general speed-of-processing hypothesis has salient influence on behavior, but one that is distinct been examined using measures of inspection time and from general intelligence, psychometrically defined. reaction time. Although the conceptual relation of these Several sources of evidence indicate dissociation of fluid measures to g is sound, a number of studies have shown cognition from g, and the purpose of this target article is to that their empirical relation to g tends to be small review this evidence and to consider its implications for (Crawford et al. 1998; Luciano et al. 2004). Similarly, a understanding cognition and human behavior. The first conceptually sound general synaptic plasticity thesis has source of evidence is psychometric and at the population been proposed as an underlying basis for g (Garlick level of analysis and concerns the worldwide rise in the 2002). However, although perhaps promising, the synaptic mean level of mental test performance known as the plasticity argument lacks specificity as to a clear relation Flynn effect. The second is neuroscientific and at the indi- between brain plasticity and intelligence and at present vidual level and concerns evidence indicating fluid cogni- offers no way of measuring individual differences in tive and learning impairments in humans and in animals plasticity that might correlate with psychometric g. with damage to a neural network integrating areas of the In apparent contrast to general speediness and plasticity prefrontal cortex with structures of the brain’s limbic explanations for g, work on fluid cognitive functions – region. A third source of evidence is neuropsychological those associated with general reasoning and problem- and concerns the extent to which cognitive impairments solving processes and referred to primarily as working in identified developmental disorders are consistent with memory (WM), executive function (EF), or fluid intelli- a pattern of dissociation between fluid cognitive functions gence (gF) – seems to have shown some early and substan- and general intelligence. Having considered this evidence, tial promise in indicating that both the conceptual basis work examining reciprocal interconnectivity among limbic and neural structural basis for g may be close at hand. brain structures associated with emotional reactivity and However, as is argued in section 3 and the sections that the stress response and prefrontal cortical structures follow, this promise is perhaps more apparent than real. associated with fluid cognition is reviewed. It is argued Given psychometric evidence for a relation between that this work indicates potentially large environmental fluid cognition
Recommended publications
  • Cognitive Correlates of Listening Comprehension
    Cognitive Correlates of Listening Comprehension Young-Suk Kim ABSTRACT In an effort to understand cognitive foundations of oral language compre- Beth Phillips hension (i.e., listening comprehension), we examined how inhibitory control, F l o r i d a S t a t e U n i v e r s i t y , T a l l a h a s s e e , theory of mind, and comprehension monitoring are uniquely related to listen- U S A ing comprehension over and above vocabulary and age. A total of 156 chil- dren in kindergarten and first grade from high- poverty schools participated in the study. Using structural equation modeling, results showed that all three cognitive skills (inhibitory control, theory of mind, and comprehension moni- toring) were positively related to listening comprehension after accounting for vocabulary and age. In addition, inhibitory control had a direct relation to listening comprehension, not indirectly via theory of mind. Results are discussed in light of cognitive component skills for listening comprehension. ral language comprehension is the foundational skill not only in social interactions but also in literacy acquisition (e.g., O Catts, Fey, Zhang, & Tomblin, 1999 ; Snow, Burns, & Griffin, 1998 ). Along with word reading, oral language comprehension is one of the two necessary skills for reading comprehension according to the simple view of reading (Hoover & Gough, 1990 ). Evidence for the role of oral language comprehension in reading comprehension has been demonstrated across languages with varying depths of orthogra- phy, including English, Spanish, Chinese, and Korean (Hoover & Gough, 1990 ; Joshi, Tao, Aaron, & Quiroz, 2012 ; Kendeou, van den Broek, White, & Lynch, 2009 ; Kim, Park, & Wagner, 2014 ; Vellutino, Tunmer, Jaccard, & Chen, 2007 ).
    [Show full text]
  • A Differential–Developmental Model (DDM): Mental Speed, Attention Lapses, and General Intelligence (G)
    Commentary A Differential–Developmental Model (DDM): Mental Speed, Attention Lapses, and General Intelligence (g) Thomas R. Coyle Department of Psychology, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected]; Tel.: +1-210-458-7407; Fax: +1-210-458-5728 Academic Editors: Andreas Demetriou and George Spanoudis Received: 23 December 2016; Accepted: 6 June 2017; Published: 12 June 2017 Abstract: The aim of this paper is to provide a parsimonious account of developmental and individual differences in intelligence (measured as g). The paper proposes a Differential– Developmental Model (DDM), which focuses on factors common to intelligence and cognitive development (e.g., mental speed and attention lapses). It also proposes a complementary method based on Jensen’s box, namely a chronometric device. The device systematically varies task complexity, and separates two components of mental speed that differentially predict intelligence and cognitive development (reaction time and movement time). The paper reviews key assumptions of DDM, preliminary findings relevant to DDM, and future research on DDM. Keywords: cognitive development; differential–developmental model (DDM); Jensen’s box; intelligence; mental speed; attention lapses; reaction time; movement time 1. Introduction All models are wrong, but some are useful. ([1], p. 202). The aim of this paper is to provide a parsimonious account of developmental and individual difference in intelligence (measured as g). 1 To this end, the paper proposes a Differential– Developmental Model (DDM), which focuses on factors common to cognitive development and intelligence (e.g., mental speed and attention lapses). The model attempts to bridge the two disciplines at the heart of the Special Issue: differential psychology, which focuses on individual differences in intelligence, and cognitive development, which focuses on age differences in intelligence.
    [Show full text]
  • Multidimensional Perceptual-Cognitive Skills Training Reduces Spatio-Temporal Errors and Improves Dynamic Performance Among Seniors
    MULTIDIMENSIONAL PERCEPTUAL-COGNITIVE SKILLS TRAINING REDUCES SPATIO-TEMPORAL ERRORS AND IMPROVES DYNAMIC PERFORMANCE AMONG SENIORS By RYAN J. CASERTA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007 © 2007 Ryan J. Caserta This dissertation is dedicated to my mother and father. Thank you for making this dream come true. ACKNOWLEDGMENTS First, I thank my advisor, Dr. Christopher M. Janelle, for seeing me through the last leg of my journey. No words can express the respect I have for him as a professional and, more importantly, as a person. I also thank Dr. Robert N. Singer for his academic and life wisdom of which both have served me well throughout my time at the University of Florida. His friendship will stay with me forever. Special thanks goes to my doctoral committee, Dr. Heather Hausenblas, Dr. John Chow, and Dr. Ira Fischler, for their expertise, insight, and hard work. Finally, I thank my parents, Jean and Ron Caserta. Through their sacrifice and support, I was able to receive this Ph.D. However, they have given me the greatest gift of all – love. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF TABLES............................................................................................................ vii LIST OF FIGURES ........................................................................................................
    [Show full text]
  • Binet's Error: Developmental Change and Individual Differences In
    Journal of Intelligence Article Binet’s Error: Developmental Change and Individual Differences in Intelligence Are Related to Different Mechanisms Mike Anderson School of Psychology & Exercise Science, Murdoch University, Murdoch 6150, Australia; [email protected]; Tel.: +61-8-9360-2186 Academic Editors: Andreas Demetriou and George Spanoudis Received: 23 February 2017; Accepted: 30 May 2017; Published: 9 June 2017 Abstract: In common with most, if not all, papers in this special issue, I will argue that understanding the nature of developmental change and individual differences in intelligence requires a theory of the mechanisms underlying both factors. Insofar as these mechanisms constitute part of the fundamental architecture of cognition, this is also an exercise in unifying the discipline and research on intelligence in both children and adults. However, I argue that a variety of data support a theory suggesting that developmental change is the province of mechanisms commonly regarded as components of executive functioning or cognitive control, whereas individual differences are constrained by the speed of information processing. Perhaps paradoxically, this leads to the conclusion that Binet’s fundamental insight—that children’s increasing ability to solve problems of increasing difficulty could generate a single scale of intelligence—is wrong. Compounding the paradox, this means that mental age and IQ are not simply two different ways of expressing the same thing, but are related to two different dimensions of g itself.
    [Show full text]
  • Fostering and Measuring Skills: Improving Cognitive and Non-Cognitive Skills to Promote Lifetime Success
    Fostering and Measuring Skills: Improving Cognitive and Non-Cognitive Skills to Promote Lifetime Success Tim Kautz, James J. Heckman, Ron Diris, Bas ter Weel, Lex Borghans Directorate for Education and Skills Centre for Educational Research and Innovation (CERI) Education and Social Progress www.oecd.org/edu/ceri/educationandsocialprogress.htm FOSTERING AND MEASURING SKILLS: IMPROVING COGNITIVE AND NON-COGNITIVE SKILLS TO PROMOTE LIFETIME SUCCESS This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. Photo credits: © Shutterstock You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of the source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to [email protected]. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at [email protected] or the Centre français d’exploitation du droit de copie (CFC) at [email protected]. ACKNOWLEDGEMENTS This report was commissioned by the OECD through its project on Education and Social Progress. We thank Linor Kiknadze and Edward Sung for valuable research assistance.
    [Show full text]
  • Hierarchy of Cognitive Domain Learning Skills for Activity Design
    Session 1330 HIERARCHY OF COGNITIVE DOMAIN LEARNING SKILLS TO GUIDE ACTIVITY DESIGN, CLASSROOM FACILITATION, AND CLASSROOM ASSESSMENT Steven Beyerlein and Dan Cordon, Mechanical Engineering University of Idaho Denny Davis, Bioengineering Washington State University Cy Leise, Psychology Bellevue University Daniel Apple, President Pacific Crest ABSTRACT Development of a complex set of life-long learning skills in the cognitive, social, and affective domains is an important goal of engineering education. This is complicated by the reality that learning skill development transcends the temporal and spatial boundaries of isolated courses (SCANS 1991). This work responds to the need for a shared language to promote and reinforce learning skill development between courses and across the curriculum. The research question that motivated this work is whether greater specificity in learning skill definition than that prescribed by ABET Criteria 3 and 4 can be a useful tool for daily teaching/learning. This paper outlines the philosophy, organization, and application of a classification of learning skills within the cognitive domain. Over 90 distinct learning skills are grouped into skill clusters that fall within process areas aligned with Bloom's taxonomy. Learning skills within the classification apply from pre-college through graduate study. Candidate skills were inventoried from numerous literature sources and then validated, positioned, and refined through deliberations of an inter-disciplinary focus group. This paper includes a holistic rubric for defining, measuring, and elevating individual learning skills as well as discussion of how targeting specific skills can strengthen activity design, facilitation of learning, and classroom assessment. NEED FOR LEARNING SKILL CLASSIFICATION Educators committed to applying learning theory to classroom practice have long needed a shared language to use in discussing learning skill development.
    [Show full text]
  • Mapping Mind-Brain Development: Towards a Comprehensive Theory
    Journal of Intelligence Review Mapping Mind-Brain Development: Towards a Comprehensive Theory George Spanoudis 1,* and Andreas Demetriou 2,3 1 Psychology Department, University of Cyprus, 1678 Nicosia, Cyprus 2 Department of Psychology, University of Nicosia, 1700 Nicosia, Cyprus; [email protected] 3 Cyprus Academy of Science, Letters, and Arts, 1700 Nicosia, Cyprus * Correspondence: [email protected]; Tel.: +357-22892969 Received: 20 January 2020; Accepted: 20 April 2020; Published: 26 April 2020 Abstract: The relations between the developing mind and developing brain are explored. We outline a theory of intellectual development postulating that the mind comprises four systems of processes (domain-specific, attention and working memory, reasoning, and cognizance) developing in four cycles (episodic, realistic, rule-based, and principle-based representations, emerging at birth, 2, 6, and 11 years, respectively), with two phases in each. Changes in reasoning relate to processing efficiency in the first phase and working memory in the second phase. Awareness of mental processes is recycled with the changes in each cycle and drives their integration into the representational unit of the next cycle. Brain research shows that each type of processes is served by specialized brain networks. Domain-specific processes are rooted in sensory cortices; working memory processes are mainly rooted in hippocampal, parietal, and prefrontal cortices; abstraction and alignment processes are rooted in parietal, frontal, and prefrontal and medial cortices. Information entering these networks is available to awareness processes. Brain networks change along the four cycles, in precision, connectivity, and brain rhythms. Principles of mind-brain interaction are discussed. Keywords: brain; mind; development; intelligence; mental and brain changes; brain networks 1.
    [Show full text]
  • Social Cognitive Theory of Personality
    1 SOCIAL COGNITIVE THEORY OF PERSONALITY Albert Bandura Stanford University Bandura, A. (1999). A social cognitive theory of personality. In L. Pervin & O. John (Ed.), Handbook of personality (2nd ed., pp. 154-196). New York: Guilford Publications. (Reprinted in D. Cervone & Y. Shoda [Eds.], The coherence of personality. New York: Guilford Press.) 2 Many psychological theories have been proposed over the years to explain human behavior. The view of human nature embodied in such theories and the causal processes they postulate have considerable import. What theorists believe people to be determines which aspects of human functioning they explore most thoroughly and which they leave unexamined. The conceptions of human nature in which psychological theories are rooted is more than a theoretical issue. As knowledge gained through inquiry is applied, the conceptions guiding the social practices have even vaster implications. They affect which human potentialities are cultivated, which are underdeveloped, and whether efforts at change are directed mainly at psychosocial, biological or sociostructural factors. This chapter addresses the personal determinants and mechanisms of human functioning from the perspective of social cognitive theory (Bandura, 1986). The recent years have witnessed a resurgence of interest in self-referent phenomena. Self- processes have come to pervade diverse domains of psychology because most external influences affect human functioning through intermediary self processes rather than directly. The self system thus lies at the very heart of causal processes. To cite but a few examples, personal factors are very much involved in regulating attentional processes, schematic processing of experiences, memory representation and reconstruction, cognitively-based motivation, emotion activation, psychobiologic functioning and the efficacy with which cognitive and behavioral competencies are executed in the transactions of everyday life.
    [Show full text]
  • 07. Cristiano Mauro Assis Gomes . OK.Indd
    ISSN 1678-7153 Psychology/Psicologia Refl exão e Crítica, 27(3), 472-480. – DOI: 10.1590/1678-7153.201427307 Self-reports on Students’ Learning Processes are Academic Metacognitive Knowledge Autorrelatos de Estudantes sobre seus Processos de Aprendizagem são Conhecimento Metacognitivo Acadêmico Cristiano Mauro Assis Gomes*, a & Hudson Fernandes Golinoa, b aUniversidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil & bFaculdade Independente do Nordeste, Vitória da Conquista, Bahia, Brasil Abstract The current study postulates that students’ self-reported perceptions on their academic processes are a type of metacognition: academic metacognitive knowledge (AMcK). We investigated, using Structural Equation Modeling (SEM), three hypotheses: (a) AMcK explains the variance of factor scores of students’ learning approaches (SLA) and academic motivation (AM); (b) AMcK is distinct from working metacognition (WMC); and (c) AMcK has incremental validity, beyond WMC, on the explanation of general academic achievement (GAA) variance. Two tests (indicators of WMC) and two scales (indicators of AMcK) were administered to 684 ten-to-eighteen-year-old Brazilian children and adolescents. Annual grades in Math, Portuguese, Geography and History were used as indicators of GAA. The results show that none of the three hypotheses can be refuted. Keywords: Metacognition, approaches to learning, motivation, intelligence. Resumo Este trabalho postula que percepções autorrelatadas de estudantes sobre seus processos acadêmicos são um tipo de metacognição: conhecimento metacognitivo acadêmico (AMcK). Usando o Modelo de Equações Estruturais, investigamos três hipóteses: (a) AMcK explica a variância dos escores fatoriais das abordagens de aprendizagem (SAL) e da motivação à aprendizagem (MAL) dos estudantes; (b) AMcK é distinto da hipercognição de trabalho (WMC); e (c) AMcK possui validadeincremental, além de WMC, na explicação do desempenho acadêmico geral (GAA).
    [Show full text]
  • Intelligence As a Developing Function: a Neuroconstructivist Approach
    Journal of Intelligence Article Intelligence as a Developing Function: A Neuroconstructivist Approach Luca Rinaldi 1,2,* and Annette Karmiloff-Smith 3 1 Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy 2 Milan Center for Neuroscience, Milano 20126, Italy 3 Centre for Brain and Cognitive Development, Birkbeck, London WC1E 7HX, UK; [email protected] * Correspondence: [email protected]; Tel.: +39-02-6448-3775 Academic Editors: Andreas Demetriou and George Spanoudis Received: 23 December 2016; Accepted: 27 April 2017; Published: 29 April 2017 Abstract: The concept of intelligence encompasses the mental abilities necessary to survival and advancement in any environmental context. Attempts to grasp this multifaceted concept through a relatively simple operationalization have fostered the notion that individual differences in intelligence can often be expressed by a single score. This predominant position has contributed to expect intelligence profiles to remain substantially stable over the course of ontogenetic development and, more generally, across the life-span. These tendencies, however, are biased by the still limited number of empirical reports taking a developmental perspective on intelligence. Viewing intelligence as a dynamic concept, indeed, implies the need to identify full developmental trajectories, to assess how genes, brain, cognition, and environment interact with each other. In the present paper, we describe how a neuroconstructivist approach better explains why intelligence can rise or fall over development, as a result of a fluctuating interaction between the developing system itself and the environmental factors involved at different times across ontogenesis. Keywords: intelligence; individual differences; development; neuroconstructivism; emergent structure; developmental trajectory 1.
    [Show full text]
  • Social Cognitive Theory
    1 SOCIAL COGNITIVE THEORY Albert Bandura Stanford University Bandura, A. (1989). Social cognitive theory. In R. Vasta (Ed.), Annals of child development. Vol. 6. Six theories of child development (pp. 1-60). Greenwich, CT: JAI Press. 2 Many theories have been proposed over the years to explain the developmental changes that people undergo over the course of their lives. These theories differ in the conceptions of human nature they adopt and in what they regard to be the basic causes and mechanisms of human motivation and behavior. The present chapter analyzes human development from the perspective of social cognitive theory (Bandura, 1986). Since development is a life- long process (Baltes & Reese, 1984), the analysis is concerned with changes in the psychosocial functioning of adults as well as with those occurring in childhood. Development is not a monolithic process. Human capabilities vary in their psychobiologic origins and in the experiential conditions needed to enhance and sustain them. Human development, therefore, encompasses many different types and patterns of changes. Diversity in social practices produces substantial individual differences in the capabilities that are cultivated and those that remain underdeveloped. Triadic Reciprocal Determinism Before analyzing the development of different human capabilities, the model of causation on which social cognitive theory is founded is reviewed briefly. Human behavior has often been explained in terms of one-sided determinism. In such modes of unidirectional causation, behavior is depicted as being shaped and controlled either by environmental influences or by internal dispositions. Social cognitive theory favors a model of causation involving triadic reciprocal determinism. In this model of reciprocal causation, behavior, cognition and other personal factors, and environmental influences all operate as interacting determinants that influence each other bidirectionally (Figure 1).
    [Show full text]
  • 1 Andreas Demetriou Professor of Psychology
    ANDREAS DEMETRIOU PROFESSOR OF PSYCHOLOGY MINISTER OF EDUCATION AND CULTURE He was born in Strongylo, Famagusta in 1950. He is married to Julia Tsakalea and he has two sons, Pantelis and Demetris. Studies 1975: BA in Psychology and Education, Aristotle University of Thessaloniki, Greece. 1978: Graduate Studies in Psychology, University of New South Wales, Austarlia. 1983: PhD in Psychology, Aristotle University of Thessaloniki, Greece. Academic History 1975-1996: Member of the academic staff of the Department of Psychology of the Aristotle University of Thessaloniki—full professor of developmental psychology from 1992-1996. 1996-present: Professor of psychology, University of Cyprus. He taught as Visiting Fellow or Professor at several Universities, including the Universities of Porto, Portugal, Lublijana and Marribor, Slovenia, Fribourg, Swirzerland, and the University of Melboune, Australia, and lectured as invited lecturer for technical seminars on cognitive development at more than 50 Universities all over the world, including the Universities of Stanford, Harvard, Yale, McGill, Toronto, Munich, Leiden, Gothenburg, Wurtzburgh, Edinburgh, Leuven, etc. He is a member of many learned societies, including the European Association for Research on Learning and Instruction, the International Society for the Study of Behavioral Development, the Society for Research in Child Development, and the American Psychological Society. He served as editor or board member of many journals, including the Advances in Learning and Instruction, Learning and Instruction: The Journal of the European Association for Research on Learning and Instruction, Developmental Science, Psychology: The Journal of the Hellenic Psychological Society. Administrative Service 1992-1996: Chairman of the Department of Psychology, Aristotle University of Thessaloniki, Greece.
    [Show full text]