Neurospora at the Millennium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neurospora Crassa William K
Published online 18 September 2020 Nucleic Acids Research, 2020, Vol. 48, No. 18 10199–10210 doi: 10.1093/nar/gkaa724 LSD1 prevents aberrant heterochromatin formation in Neurospora crassa William K. Storck1, Vincent T. Bicocca1, Michael R. Rountree1, Shinji Honda2, Tereza Ormsby1 and Eric U. Selker 1,* 1Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA and 2Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan Downloaded from https://academic.oup.com/nar/article/48/18/10199/5908534 by guest on 29 September 2021 Received January 15, 2020; Revised August 17, 2020; Editorial Decision August 18, 2020; Accepted September 16, 2020 ABSTRACT INTRODUCTION Heterochromatin is a specialized form of chromatin The basic unit of chromatin, the nucleosome, consists of that restricts access to DNA and inhibits genetic about 146 bp of DNA wrapped around a histone octamer. processes, including transcription and recombina- Histones possess unstructured N-terminal tails that are sub- ject to various post-translational modifications, which re- tion. In Neurospora crassa, constitutive heterochro- / matin is characterized by trimethylation of lysine 9 flect and or influence the transcriptional state of the un- derlying chromatin. Methylation of lysines 4 and 36 of his- on histone H3, hypoacetylation of histones, and DNA tone H3 (H3K4, H3K36), as well as hyperacetylation of hi- methylation. We explored whether the conserved hi- stones, are associated with transcriptionally active euchro- stone demethylase, lysine-specific demethylase 1 matin while methylation of lysines 9 and 27 of histone H3 (LSD1), regulates heterochromatin in Neurospora, (H3K9, H3K27) and hypoacetylation are associated with and if so, how. -
Hyphal Ontogeny in : a Model Organism for All Neurospora Crassa
F1000Research 2016, 5(F1000 Faculty Rev):2801 Last updated: 17 JUL 2019 REVIEW Hyphal ontogeny in Neurospora crassa: a model organism for all seasons [version 1; peer review: 3 approved] Meritxell Riquelme, Leonora Martínez-Núñez Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860, Mexico First published: 30 Nov 2016, 5(F1000 Faculty Rev):2801 ( Open Peer Review v1 https://doi.org/10.12688/f1000research.9679.1) Latest published: 30 Nov 2016, 5(F1000 Faculty Rev):2801 ( https://doi.org/10.12688/f1000research.9679.1) Reviewer Status Abstract Invited Reviewers Filamentous fungi have proven to be a better-suited model system than 1 2 3 unicellular yeasts in analyses of cellular processes such as polarized growth, exocytosis, endocytosis, and cytoskeleton-based organelle traffic. version 1 For example, the filamentous fungus Neurospora crassa develops a variety published of cellular forms. Studying the molecular basis of these forms has led to a 30 Nov 2016 better, yet incipient, understanding of polarized growth. Polarity factors as well as Rho GTPases, septins, and a localized delivery of vesicles are the central elements described so far that participate in the shift from isotropic F1000 Faculty Reviews are written by members of to polarized growth. The growth of the cell wall by apical biosynthesis and the prestigious F1000 Faculty. They are remodeling of polysaccharide components is a key process in hyphal commissioned and are peer reviewed before morphogenesis. The coordinated action of motor proteins and Rab publication to ensure that the final, published version GTPases mediates the vesicular journey along the hyphae toward the apex, where the exocyst mediates vesicle fusion with the plasma membrane. -
Observations on the Behavior of Suppressors In
VOL . 38, 1952 GENETICS: MITCHELL AND MITCHELL 205 10 Horowitz, N. H., and Beadle, G. W., Ibid., 150, 325-333 (1943). 11 Horowitz, N. H., Bonner, D., and Houlahan, M. B., Ibid., 159, 145-151 (1945). 12 Horowitz, N. H., Ibid., 162, 413-419 (1945). 13 Shive, W., J. Am. Chem. Soc., 69, 725 (1947). 14 Stetten, M. R., and Fox, C. L., J. Biol. Chem., 161, 333 (1945). " Teas, H. J., Thesis, California Institute of Technology (1947). 16 Emerson, S., and Cushing, J. E., Federation Proc., 5, 379-389 (1946). 17 Emerson, S., J. Bact., 54, 195-207 (1947). 18 Zalokar, M., these PROCEEDINGS, 34, 32-36 (1948). '9 Zalokar, M., J. Bact., 60, 191-203 (1950). OBSERVATIONS ON THE BEHA VIOR OF SUPPRESSORS IN NE UROSPORA * By MARY B. MITCHELL AND HERSCHEL K. MlTCHELL KERCKHOFF LABORATORIES OF BIOLOGY, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA Communicated by G. W. Beadle, January 14, 1952 A suppressor of pyrimidineless 3a (37301) and some aspects of the be- havior of the suppressed mutant have been described earlier.' The obser- vation that lysine, omithine, citrulline and arginine influence growth re- sponses of the suppressed mutant suggested studies of the behavior of re- combinants involving pyr 3a and s and mutants having requirements for these amino acids. Effects of the pyrimidineless mutant and its suppressor upon certain lysine-requiring mutants have been reported.2 The present paper deals with a somewhat greater variety of interactions observed be- tween pyr 3a and s and mutants which utilize proline, ornithine, citrulline or arginine.3 These interactions include suppression of two non-allelic prolineless mutants by the pyrimidineless suppressor and partial sup- pression of pyr 3a by three non-allelic omithineless mutants. -
Phylogenetic Investigations of Sordariaceae Based on Multiple Gene Sequences and Morphology
mycological research 110 (2006) 137– 150 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology Lei CAI*, Rajesh JEEWON, Kevin D. HYDE Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China article info abstract Article history: The family Sordariaceae incorporates a number of fungi that are excellent model organisms Received 10 May 2005 for various biological, biochemical, ecological, genetic and evolutionary studies. To deter- Received in revised form mine the evolutionary relationships within this group and their respective phylogenetic 19 August 2005 placements, multiple-gene sequences (partial nuclear 28S ribosomal DNA, nuclear ITS ribo- Accepted 29 September 2005 somal DNA and partial nuclear b-tubulin) were analysed using maximum parsimony and Corresponding Editor: H. Thorsten Bayesian analyses. Analyses of different gene datasets were performed individually and Lumbsch then combined to generate phylogenies. We report that Sordariaceae, with the exclusion Apodus and Diplogelasinospora, is a monophyletic group. Apodus and Diplogelasinospora are Keywords: related to Lasiosphaeriaceae. Multiple gene analyses suggest that the spore sheath is not Ascomycota a phylogenetically significant character to segregate Asordaria from Sordaria. Smooth- Gelasinospora spored Sordaria species (including so-called Asordaria species) constitute a natural group. Neurospora Asordaria is therefore congeneric with Sordaria. Anixiella species nested among Gelasinospora Sordaria species, providing further evidence that non-ostiolate ascomata have evolved from ostio- late ascomata on several independent occasions. This study agrees with previous studies that show heterothallic Neurospora species to be monophyletic, but that homothallic ones may have a multiple origins. -
The Cricket As a Model Organism Hadley Wilson Horch • Taro Mito Aleksandar Popadic´ • Hideyo Ohuchi Sumihare Noji Editors
The Cricket as a Model Organism Hadley Wilson Horch • Taro Mito Aleksandar Popadic´ • Hideyo Ohuchi Sumihare Noji Editors The Cricket as a Model Organism Development, Regeneration, and Behavior Editors Hadley Wilson Horch Taro Mito Departments of Biology and Graduate school of Bioscience and Bioindustry Neuroscience Tokushima University Bowdoin College Tokushima, Japan Brunswick, ME, USA Aleksandar Popadic´ Hideyo Ohuchi Biological Sciences Department Department of Cytology and Histology Wayne State University Okayama University Detroit, MI, USA Okayama, Japan Dentistry and Pharmaceutical Sciences Sumihare Noji Okayama University Graduate School Graduate school of Bioscience of Medicine and Bioindustry Tokushima University Okayama, Japan Tokushima, Japan ISBN 978-4-431-56476-8 ISBN 978-4-431-56478-2 (eBook) DOI 10.1007/978-4-431-56478-2 Library of Congress Control Number: 2016960036 © Springer Japan KK 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
Are Model Organisms Theoretical Models?
Are Model Organisms Theoretical Models? Veli-Pekka Parkkinen University of Bergen BIBLID [0873-626X (2017) 47; pp. 471–498] DOI: 10.1515/disp-2017-0015 Abstract This article compares the epistemic roles of theoretical models and model organisms in science, and specifically the role of non-human animal models in biomedicine. Much of the previous literature on this topic shares an assumption that animal models and theoretical models have a broadly similar epistemic role—that of indirect representation of a target through the study of a surrogate system. Recently, Levy and Currie (2015) have argued that model organism research and theoreti- cal modelling differ in the justification of model-to-target inferences, such that a unified account based on the widely accepted idea of model- ling as indirect representation does not similarly apply to both. I defend a similar conclusion, but argue that the distinction between animal models and theoretical models does not always track a difference in the justification of model-to-target inferences. Case studies of the use of animal models in biomedicine are presented to illustrate this. How- ever, Levy and Currie’s point can be argued for in a different way. I argue for the following distinction. Model organisms (and other con- crete models) function as surrogate sources of evidence, from which results are transferred to their targets by empirical extrapolation. By contrast, theoretical modelling does not involve such an inductive step. Rather, theoretical models are used for drawing conclusions from what is already known or assumed about the target system. Codifying as- sumptions about the causal structure of the target in external repre- sentational media (e.g. -
The Fungal Genetic System: a Historical Overview
UC Irvine UC Irvine Previously Published Works Title The fungal genetic system: A historical overview Permalink https://escholarship.org/uc/item/31w7q0q0 Journal Journal of Genetics, 75(3) ISSN 0022-1333 Author Davis, Rowland H Publication Date 1996-12-01 DOI 10.1007/BF02966305 Peer reviewed eScholarship.org Powered by the California Digital Library University of California J. Goner., Vol. 75, Number 3, December 1996, pp. 245 - 253. O Indian Academy of Sciences The fungai genetic system: a historical overview ROWLAND H. DAVIS Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA 1. The early years The genetics of filamentous fungi was initiated through the efforts of rather few people, whose work led to the explosive development of the genetics and biochemistry of Neurospora crassa and Aspergitlus nidulans in the 1940s and 1950s. Among the major contributors is David Perkins, whom this issue of Journal of Genetics honours, and who continues to this day to be an international resource of new knowledge about N. crassa. This article is biased towards Neurospora, in keeping with its intent to honour David and with the focus of many of the articles to follow. I have chosen a historical theme, leaving to others the task of illuminating the present. Neurospora became part of a continuous line of organisms underlying the twentieth- century revolution in biology. Many of the interests and traditions of geneticists working with Drosophila, mouse and corn were carried over to N. crassa, together with a new ambition to understand the relationship between genes and enzymes. It is easy for today's student to forget that work on Neurospora genetics and biochemistry preceded the modern development of these areas in Escherichia coli and yeast. -
Neurospora Tetrasperma from Natural Populations
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1084 Neurospora tetrasperma from Natural Populations Toward the Population Genomics of a Model Fungus PÁDRAIC CORCORAN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-8771-3 UPPSALA urn:nbn:se:uu:diva-208791 2013 Dissertation presented at Uppsala University to be publicly examined in Zootisalen, EBC, Uppsala, Friday, November 22, 2013 at 09:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Corcoran, P. 2013. Neurospora tetrasperma from Natural Populations: Toward the Population Genomics of a Model Fungus. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1084. 52 pp. Uppsala. ISBN 978-91-554-8771-3. The study of DNA sequence variation is a powerful approach to study genome evolution, and to reconstruct evolutionary histories of species. In this thesis, I have studied genetic variation in the fungus Neurospora tetrasperma and other closely related Neurospora species. I have focused on N. tetrasperma in my research because it has large regions of suppressed recombination on its mating-type chromosomes, had undergone a recent change in reproductive mode and is composed of multiple reproductively isolated lineages. Using DNA sequence data from a large sample set representing multiple species of Neurospora I estimated that N. tetrasperma evolved ~1 million years ago and that it is composed of at least 10 lineages. My analysis of the type of asexual spores produced using newly described N. tetrasperma populations in Britain revealed that lineages differ considerably in life history characteristics that may have consequences for their evolution. -
Identification and Characterization of a Galacturonic Acid Transporter From
Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes Benz et al. Benz et al. Biotechnology for Biofuels 2014, 7:20 http://www.biotechnologyforbiofuels.com/content/7/1/20 Benz et al. Biotechnology for Biofuels 2014, 7:20 http://www.biotechnologyforbiofuels.com/content/7/1/20 RESEARCH Open Access Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes J Philipp Benz1*, Ryan J Protzko1,2, Jonas MS Andrich1,5, Stefan Bauer1, John E Dueber1,3 and Chris R Somerville1,4 Abstract Background: Pectin-rich agricultural wastes potentially represent favorable feedstocks for the sustainable production of alternative energy and bio-products. Their efficient utilization requires the conversion of all major constituent sugars. The current inability of the popular fermentation host Saccharomyces cerevisiae to metabolize the major pectic monosaccharide D-galacturonic acid (D-GalA) significantly hampers these efforts. While it has been reasoned that the optimization of cellular D-GalA uptake will be critical for the engineering of D-GalA utilization in yeast, no dedicated eukaryotic transport protein has been biochemically described. Here we report for the first time such a eukaryotic D-GalA transporter and characterize its functionality in S. cerevisiae. Results: We identified and characterized the D-GalA transporter GAT-1 out of a group of candidate genes obtained from co-expression analysis in N. crassa. The N. crassa Δgat-1 deletion strain is substantially affected in growth on pectic substrates, unable to take up D-GalA, and impaired in D-GalA-mediated signaling events. -
MEIOSIS and RECOMBINATION in SORDARIA FIMICOLA Introduction
MEIOSIS AND RECOMBINATION IN SORDARIA FIMICOLA Introduction: In ascomycete fungi, a form of meiosis occurs in which the products of meiosis order themselves within a fruiting body according to the physical separation and segregation of chromatids during the meiotic process. This is covered in some detail on pages 150-152 (including Figures 4.26 and 4.27) in Hartl and Jones, Essential Genetics. You should study these pages before beginning this module. As described, ordered tetrad analysis provides a way to measure the genetic map distance between a gene and the centromere of the chromosome on which that gene resides. That is what you will do over the next two weeks in this laboratory. I. Natural history and Life Cycle of Sordaria fimicola Sordaria fimicola is an ascomycete fungi that can be found growing in rotting vegetation and animal dung (in fact, the name Sordaria fimicola means "filthy dung dweller"). Sordaria and another ascomycete, the common bread fungus Neurospora crassa (Fig. 4.26), have been used as model systems for studying the process of chromosome exchange (crossing-over) because of their reproductive characteristics. The life cycle of Sordaria is representative of the ascomycetes (although there are substantial differences in the details among species). The individual fungus begins as a haploid ascospore. The ascospore germinates to form hyphae (singular = hypha), which are long filaments comprised of haploid cells. These hyphae grow and extend throughout the nutrient source (dung or rotting vegetation in nature, nutrient medium in the laboratory situation) and digest it by means of enzymes secreted by the cells. Nutrients are then absorbed into the cells. -
1 What's So Special About Model Organisms?
ORE Open Research Exeter TITLE What makes a model organism? AUTHORS Leonelli, Sabina; Ankeny, Rachel A. JOURNAL Endeavour DEPOSITED IN ORE 15 January 2015 This version available at http://hdl.handle.net/10871/20864 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication What’s So Special About Model Organisms? Rachel A. Ankeny* and Sabina Leonelli *Corresponding author: email: [email protected] , mailing address: School of History and Politics, Napier 423, University of Adelaide, Adelaide 5005 SA, Australia, telephone: +61-8-8303-5570, fax: +61-8-8303-3443. Abstract This paper aims to identify the key characteristics of model organisms that make them a specific type of model within the contemporary life sciences: in particular, we argue that the term “model organism” does not apply to all organisms used for the purposes of experimental research. We explore the differences between experimental and model organisms in terms of their material and epistemic features, and argue that it is essential to distinguish between their representational scope and representational target . We also examine the characteristics of the communities who use these two types of models, including their research goals, disciplinary affiliations, and preferred practices to show how these have contributed to the conceptualization of a model organism. We conclude that model organisms are a specific subgroup of organisms that have been standardized to fit an integrative and comparative mode of research, and that must be clearly distinguished from the broader class of experimental organisms. -
Insulin Or Insulin-Like Studies on Unicellular Organisms: a Review
973 Vol.47, n. 6 : pp. 973-981, November 2004 ISSN 1516-8913 Printed in Brazil BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Insulin or Insulin-Like Studies on Unicellular Organisms: a Review Alzira Martins Ferreira de Souza1* and Jorge A. López2 1Departamento de Bioquímica, CCB, Universidade Federal de Pernambuco, ex-Professor Av. Morais Rego, s/n Cidade Universitária; 50670-420; Recife - PE - Brazil; 2Departamento de Parasitologia; ICB 2; Universidade de São Paulo; 05508-900; São Paulo - SP - Brazil; e-mail: [email protected] ABSTRACT This paper presents a review of studies about insulin and insulin-like substances in prokaryotes, eukaryotes and fungi have been published over the last two decades, constituting an updating of our previous review (1988) which included references to invertebrate insulin or insulin-like substances both in uni- and pluricellular Monera, Protoctista, Fungii and Animal species. This present article reviews experiments and evidence obtained using modern techniques in the understanding of molecule evolution and behaviour, which confirm its very ancient molecular structure origin. The involvement of insulin-like and related material in signalling biological pathway and modulator effects is also reported. Key words: Unicellular, invertebrate, insulin, insulin-like, insulin receptor INTRODUCTION aiming to include research on protist and prokaryote insulin or insulin-like substances Since the 1970’s investigations in the field of the carried out over the past two decades. In the comparative biochemistry have increased current Biological Classification scheme these exponentially. Nowadays, investigators focus on insulin-like substances correspond to prokaryotes, the possible evolutionary ancestors of the insulin eukaryotes and fungi substances (Margulis, superfamily, e.g, insulins, insulin-related peptides, 1992).